N

N

Following the evolution of glassy states under external
perturbations: compression and shear-strain

Corrado Rainone, Pierfrancesco Urbani, Hajime Yoshino, Francesco Zamponi

» To cite this version:

Corrado Rainone, Pierfrancesco Urbani, Hajime Yoshino, Francesco Zamponi. Following the evolution
of glassy states under external perturbations: compression and shear-strain. Physical Review Letters,
2014, 10.1103/PhysRevLett.114.015701 . cea-01463143

HAL 1d: cea-01463143
https://cea.hal.science/cea-01463143
Submitted on 9 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://cea.hal.science/cea-01463143
https://hal.archives-ouvertes.fr

1411.0826v1 [cond-mat.soft] 4 Nov 2014

arXiv

Following the evolution of glassy states under external perturbations:
compression and shear-strain

Corrado Rainone,™? Pierfrancesco Urbani,® Hajime Yoshino,*® and Francesco Zamponi®

ILPT, Ecole Normale Supérieure, CNRS UMR 8549, 24 Rue Lhomond, 75005 France
2 Dipartimento di Fisica, Sapienza Universita di Roma, P.le A. Moro 2, I-00185 Roma, Italy
JIPRT, CEA/DSM-CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
4 Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
> Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

We consider the adiabatic evolution of glassy states under external perturbations. Although
the formalism we use is very general, we focus here on infinite-dimensional hard spheres where
an exact analysis is possible. We consider perturbations of the boundary, i.e. compression or
(volume preserving) shear-strain, and we compute the response of glassy states to such perturbations:
pressure and shear-stress. We find that both quantities overshoot before the glass state becomes
unstable at a spinodal point where it melts into a liquid (or yields). We also estimate the yield stress
of the glass. Finally, we study the stability of the glass basins towards breaking into sub-basins,

corresponding to a Gardner transition. We find that close to the dynamical transition, glasses
undergo a Gardner transition after an infinitesimal perturbation.

Introduction — Glasses are long lived metastable
states of matter, in which particles are confined around
an amorphous structure [1, 2]. For a given sample of
a material, the glass state is not unique: depending on
the preparation protocol, the material can be trapped
in different glasses, each displaying different thermody-
namic properties. For example, the specific volume of a
glass prepared by cooling a liquid depends strongly on
the cooling rate [1, 2]. Other procedures, such as vapor
deposition, produce very stable glasses, with higher den-
sity than those obtained by simple cooling [3, 4]. When
heated up, glasses show hysteresis: their energy (specific
volume) remains below the liquid one, until a “spinodal”
point is reached, at which they melt into the liquid (see
e.g. [2, Fig.1] and [4, Fig.2]).

The behavior of glasses under shear-strain also shows
similarly complex phenomena. Suppose to prepare a
glass by cooling a liquid at a given rate until some low
temperature T is reached. After cooling, a strain -y is ap-
plied and the stress o is recorded. At small 7, an elastic
(linear) regime where o ~ p~v is found. At larger v, the
stress reaches a maximum and then decreases until an
instability is reached, where the glass yields and starts
to flow (see e.g. [5, Fig.3c] and [6, Fig.2]). The ampli-
tude of the shear modulus p and of the stress overshoot
increase when the cooling rate is decreased, and more
stable glasses are reached.

Computing these observables theoretically is a diffi-
cult challenge, because glassy states are always prepared
through non-equilibrium dynamical protocols. First-
principle dynamical theories such as Mode-Coupling The-
ory (MCT) [7] are successful in describing properties of
supercooled liquids close to the glass state (including the
stress overshoot [8]), but they fail to describe glasses at
low temperatures and high pressures [9]. The dynam-
ical facilitation picture can successfully describe calori-
metric properties of glasses [10], but for the moment it
does not allow one to perform first-principles calculations
starting from the microscopic interaction potential. To

bypass the difficulty of describing all the dynamical de-
tails of glass formation, one can exploit a standard idea
in statistical mechanics, namely that metastable states
are described by a restricted equilibrium thermodynam-
ics for times much shorter than their lifetimes [11, 12].
Within schematic models of glasses, this construction was
proposed by several authors [13-16] and was formalised
through the Franz-Parisi free energy [16] and the “state
following” formalism [17-19).

In this paper we apply the state following construc-
tion [16-19] to a realistic model of glass former, made by
identical particles interacting in the continuum. For sim-
plicity, we choose here hard spheres in spatial dimension
d — o0, where the method is exact because metastable
states have infinite lifetime [13, 20, 21]. We show that all
the properties of glasses mentioned above are predicted
by this framework, including the cooling rate dependence
of the specific volume (or the pressure) [1, 2], the hystere-
sis observed upon heating glasses [2-4], the behavior of
the shear modulus and the stress overshoot [5, 6]. Follow-
ing [20, 22], our method can be generalized (under stan-
dard liquid theory approximations) to experimentally rel-
evant systems in d = 2,3 with different interaction po-
tentials, to obtain precise quantitative predictions, as we
discuss in the conclusions.

Constrained thermodynamics — The “state following”
formalism is designed to describe glass formation dur-
ing slow cooling of a liquid [19]. Approaching the glass
transition, the equilibrium dynamics of the liquid hap-
pens on two well separated time scales [1, 2]. On a T-
independent fast scale 7y, particles essentially vibrate
in the cages formed by their neighbors. On the slow
a-relaxation scale 7,(7T), that increases fast approach-
ing the glass transition, cooperative processes change
the structure of the material. When 7, (T) > 7ip, the
system vibrates for a long time around a locally stable
configuration of the particles (a glass), and then on a
time scale 7, (T) transforms in another equivalent glass.
Hence, 7,(T) is the lifetime of metastable glasses. The
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liquid reaches equilibrium if enough different glass states
are visited, hence the experimental time scale (e.g. the
cooling rate) should be Texp > 7o(T). For given Texp,
the glass transition temperature 7T} is therefore defined
by Texp = Ta(Ty) [1, 2]. For T' < T, the system is con-
fined into a given glass with lifetime 7, (7") >> Texp, Which
can thus be considered an infinitely-long lived metastable
state. Although the system is strictly speaking out of
equilibrium in this regime, the slow relaxation is effec-
tively frozen and the material is confined in a thermo-
dynamic equilibrium state restricted to a given glass. In
fact, if cooling stops at some T' < T,, thermodynamic
quantities quickly reach time-independent values, that
satisfy equilibrium thermodynamic relations. St111, the
“thermodynamic” state depends on preparation history,
and most crucially on the temperature T, at which the
liquid fell out of equilibrium. Note that aging effects can
be neglected here because they happen, for 7' < Ty, on
time scales Taging > Ta(Ty) ~ Texp-

This observation suggests how to describe the ther-
modynamic properties of glasses prepared by slow cool-
ing [16-19]. Consider N interacting classical particles,
described by coordinates X = {x;};=1 ... n and potential
energy V(X). During a cooling process with time scale
Texp, the system remains equilibrated provided T > Tj,.
Define R = {r;} the last configuration visited by the
material before falling out of equilibrium; its probabil-
ity distribution is the equilibrium one at T, P(R) =
exp[-V(R)/T,]/Z(T,) (here kg = 1). For T < Ty, the
lifetime of glasses becomes effectively infinite !: the mate-
rial visits configurations X confined in the glass selected
by R. This constraint is implemented [16, 17] by impos-
ing that the mean square displacement between X and
R, A(X,R) = (d/N) Zl (@i = 7;)?, be smaller than a
prescribed value A'. The evolution of this glass is fol-
lowed by changing its temperature 7" or applying some
perturbation v that changes the potential to V. The free
energy of the glass selected by R is therefore

F,[T,~; R] = —Tlog/dXe’Vv[XVTH[Ar ~A(X,R)] .

0(z) is the Heaviside function. Computing Fy[T,~; R]
is a formidably difficult task, because the constraint
A(X, R) < A" explicitly breaks translational invariance
and prevents one from using standard statistical mechan-
ics methods. One can simplify the problem by computing
the average free energy of all glasses that are sampled by
liquid configurations at T}, under the assumption that
these glasses have similar thermodynamic properties. We

L A short transient when 74 (7)) ~ Ty exist, where the system is
neither at equilibrium nor confined in a glass. However, because
Ta(T) increases quickly around Ty, for slow coolings this tem-
perature regime is extremely small and negligible.
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FIG. 1: Following glasses in (de)compression. Inverse reduced
pressure d/p is plotted versus packing fraction @ = 2%p/d.
Both quantities are scaled to have a finite limit for d — oc.
The liquid EOS is d/p = 2/p. The dynamical transition $q
is marked by a black dot. For ¢4 > @q, the liquid is a collec-
tion of glasses. The glassy EOS are reported as full colored
lines, that intersect the liquid EOS at @,. Upon compres-
sion, a glass prepared at @y undergoes a Gardner transition
at a(pg) (full symbols and long-dashed black line). Beyond
P our computation is not correct: glass EOS are reported as
dashed lines. For low @, they end at an unphysical spinodal
point (open symbol). Upon decompression, the glass pressure
falls below the liquid one, until it reaches a minimum, and
then grows again until a physical spinodal point at which the
glass melts into the liquid.

obtain

o~ VI(R)/T,

Fy[T, ] = Fy[T,v; R] = /dRTTq)Fg[T

R
This average can be computed using the replica trick [16],
and here we use the simplest replica symmetric (RS)
scheme [16-18]. The parameter A" is determined by min-
imizing the free energy, see the Appendix.

This computation was done for spin glasses in [16-
19, 23] and describes perfectly the properties of glasses
obtained by slow cooling [19]. Here we consider a realistic
glass-former: a hard sphere system for d — oo. Techni-
cally, the computation uses the methods of [21] in the
more complicated state following setting. Because the
details are not particularly instructive, we report them
in the Appendix, where we also discuss the conceptual
differences with respect to previous works [20, 21].

Results: compression — As a first application of the
method, we consider preparing glasses by slow compres-
sion, which is equivalent, for hard spheres, to slow cool-
ing [20]. Note that for hard spheres temperature can be
eliminated by appropriately rescaling physical quantities.
The system is prepared at low density p, particle volume
Vs is slowly increased (equivalently, container volume is
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FIG. 2: Following glassy states prepared at @, upon apply-
ing a shear-strain . Shear-stress o (main panel) and reduced
pressure p (inset) as a function of strain for different @ . Same
styles as Fig. 1. Upon increasing shear-strain, the states un-
dergo a Gardner transition at y¢($y). For v > 7@ our RS
computation is unstable but it predicts a stress overshoot fol-
lowed by a spinodal point.

decreased), and pressure P is monitored. In Fig. 1 we
plot the reduced pressure p = BP/p, with 5 = 1/T,
versus the packing fraction p = pV;. At equilibrium,
the system follows the liquid equation of state (EOS).
Above the so-called dynamical transition (or MCT tran-
sition) density ¢4, glasses appear, and equilibrium liquid
configurations at ¢4, > ¢q select a glass. In Fig. 1 we re-
port the EOS of several glasses corresponding to different
choices of ¢4. The slope of the glass EOS at ¢, is differ-
ent from that of the liquid EOS, indicating that when the
system falls out of equilibrium at ¢4, the compressibility
has a jump, as observed experimentally [20, 24]. Follow-
ing glasses in compression, pressure increases faster than
in the liquid (compressibility is smaller) and diverges at
a finite jamming density ¢;(v,) [20]. However, before
jamming is reached, the glass undergoes a Gardner tran-
sition [21, 25], at which individual glass basins split in
a fractal structure of subbasins. Because this transition
was discussed before [17, 18, 21, 25], we do not insist
on its characterization, but note that we can compute
precisely the Gardner transition point ¢q(pg) for all ¢,
(see the Appendix for details). Interestingly, as observed
in [17, 23], the Gardner transition line ends at ¢q, i.e.
va(pg = ¢d) = @a. This implies that the first glasses
appearing at ¢4 are marginally stable towards breaking
into subbasins, while glasses appearing at ¢, > ¢q re-
main stable for a finite interval of pressures before break-
ing into subbasins. Yet, all glasses undergo the Gardner
transition at finite pressure before jamming occurs [21].

For a glass selected at ¢,, when the density is higher
than ¢, the RS calculation we perform is incorrect. One
should perform a full replica symmetry breaking (fRSB)
computation [17, 18, 21]. We leave this for future work,

FIG. 3: Shear modulus versus density for different glasses.
Same styles as Fig. 1. In the inset we report u(pgy) versus og.
Note that the dilatancy R/p = (1/2)20u/0% diverges both
at jamming and at the low density spinodal point where the
glass melts (see the Appendix).

but we observe that for large enough ¢, the Gardner
transition happens at very high pressure and in that case
the RS calculation should be a good approximation to
the glass EOS at all pressures. For small ¢, instead,
the RS calculation gives a wrong prediction, namely the
existence of an unphysical spinodal point at which the
glass disappears. We expect, based on the analogy with
the results of [18], that a fRSB calculation will fix this
problem.

A given glass prepared at ¢, can be also followed in
decompression, by decompressing at a relatively fast rate
Tdec SUch that Tyip < Tgee K Texp. In this case we ob-
serve hysteresis (Fig. 1), consistently with experimental
results [2-4]. In fact, the glass pressure becomes lower
than the liquid one, until upon decreasing density a spin-
odal point is reached, at which the glass becomes unsta-
ble and melts into the liquid [26]. Note that pressure
“undershoots” (it has a local minimum, see Fig. 1) be-
fore the spinodal is reached [26].

Results: shear — We investigate now the response of
glasses to a shear-strain perturbation. We consider a sys-
tem compressed in equilibrium up to a density @y, where
it remains stuck into a glass. Now, instead of compressing
the system, we apply a shear-strain v. In Fig. 2 we re-
port the behavior of shear-stress o and pressure p versus
~v. At small v we observe a linear response elastic regime
where ¢ increases linearly with v, ¢ ~ vy and pressure in-
creases quadratically above the equilibrium liquid value,
p(7) ~ p(y = 0) + (BR/p)y?. Both the shear modulus
p and the dilatancy R > 0 increase with @, indicating
that glasses prepared by slower annealing are more rigid.

Upon further increasing -y, glasses enter a non-linear
regime, and undergo a Gardner transition at va(@g)
(Fig. 2). Like in compression, we find ya(pq) = 0, and
~¢ increases rapidly with ¢g. For v > vg(pq), the glass



breaks into subbasins and a fRSB calculation is needed.
Note that the RS computation predicts a stress over-
shoot, followed by a spinodal point where the glass basin
disappears. We expect that the fRSB computation gives
similar results. The spinodal point corresponds to the
point where the glass yields and starts to flow. The val-
ues of yield strain vy and of yield stress oy are also found
to increase with ¢,. These results are qualitatively con-
sistent with the experimental and numerical observations
of [5, 6].

Results: compression followed by shear — One could
also consider the case where (i) a liquid is slowly com-
pressed up to ¢, where it forms a glass, (i) the glass is
compressed up to a certain pressure p (Fig. 1) and then
(iii) a shear-strain «y is applied. The response to shear-
strain of these glasses compressed out of equilibrium is
qualitatively similar to the one reported in Fig. 2, and
we do not report the corresponding curves. Instead, we
report in Fig. 3 the behavior of shear modulus u as a
function of density ¢ for different glasses prepared at
different ¢,4. For each glass, we find that under compres-
sion p increases with density, and diverges at the jam-
ming point where p — oco. Note that, as discussed above
and in [21], describing the behavior around the jamming
density requires a fRSB computation, that we did not
perform here.

A useful thermodynamic identity gives the dilatancy
R/p = (1/2)¢pdn/d¢ [27] (see the Appendix). This im-
plies that the singular behavior of the shear modulus
around jamming, which itself is well captured by a fRSB
computation [28], should be directly reflected to the di-
latancy, as pointed out in [27]. Further work is needed to
understand experimental and numerical results [29-31].

Conclusions — We have applied the state following
procedure, developed in the context of spin glasses [16-
19], to a microscopic model of glass former, namely hard
spheres. We considered for simplicity the limit d — oo,
where the method we used is exact, but the calcula-
tions can be generalized to obtain approximated quan-
titative predictions in finite d. According to [20, 32], the
simplest approximation is to use the results reported in
this paper, replacing @ = 2%/(dyni (), ypi(y) being
the contact value of the pair correlation function in the
liquid phase, which can be obtained from a generalized
Carnahan-Starling liquid EOS [24]. This approximation
is expected to be good at large ¢4, but gives poor results
for ¢, ~ q. Systematic improvements over this approx-
imation can be obtained following the ideas of [20]. It
is clear, anyway, that the qualitative shape of the curves
we obtained in d — oo will not change in finite d, which
is also supported by the numerical simulations of [24].

We did not attempt here a more precise quantitative
comparison with experimental and numerical data, which
we leave for future work, but we showed that the state
following method is able to give predictions for many
physical observables of experimental interest, and repro-
duces a quite large number of observations. These in-
clude: (i) the pressure as a function of density for dif-

ferent glasses (Fig. 1), which displays a jump in com-
pressibility at ¢, [20, 24]; (#) the presence of hysteresis
and of a spinodal point in decompression in the pressure-
density curves (Fig. 1), where we show that more stable
glasses (those with higher ¢,) display a larger hysteresis,
consistently with the experimental observation of [2-4];
the behavior of pressure and shear-stress under a shear-
strain perturbation (Fig. 2), where we show that (%)
the shear modulus and the dilatancy increase for more
stable glasses (higher ¢,), and (i) that the shear-stress
overshoots before a spinodal (yielding) point is reached
where the glass yields and starts to flow (Fig. 2) [5, 6].
Note however that the spinodal (yield) point falls be-
yond the Gardner transition and therefore its estimate,
reported in Fig. 2, is only approximate, a correct compu-
tation requires fRSB [21]. Furthermore, (v) we predict
that glasses undergo a Gardner transition both in com-
pression (Fig. 1) and in shear (Fig. 2), and we locate the
Gardner transition point (see the Appendix). Finally, we
(vi) compute the dilatancy and the shear modulus every-
where in the glass phase (Fig. 3 and the Appendix) and
their behavior close to the jamming transition (see the
Appendix).

This approach thus provides a coherent picture of the
phase diagram of glasses in different regimes, under com-
pression and under shear-strain, at moderate densities
close to the dynamical glass transition and at high densi-
ties (pressures) close to jamming. Future work should be
directed towards performing systematic comparisons be-
tween theory and experiment, and improving the theory,
first by performing the fRSB computation, and second
by improving the approximation in finite dimensions.
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Appendix A: The Franz-Parisi free energy

The Franz-Parisi potential allows one to compute the properties of an individual glassy state. We consider a set of
m coupled “reference” replicas R*,--- , R™, where R = {r;} is a configuration of the system. These m replicas interact
with a potential energy V/(R) = >_, _, v(r;—7;), at temperature T, (with kg = 1), and are used to select a glassy state,
following [15]. At equilibrium we shall consider m = 1, while out of equilibrium states can be selected using m # 1. In
this paper we write the formulae for general m, but we will only report results for m = 1. Furthermore, we consider an
additional “constrained” replica X = {x;}, which is coupled to one of the m replicas and is used to probe the glassy
state selected by the reference replicas. This constrained replica has potential energy V,(X) = >, Uy (x; — xj),
where the suffix « is there to indicate the possible presence of perturbations (e.g. a shear strain), and temperature
T. We define the mean square displacement as

A(X,R) = %Z(;@ —r)? . (A1)

The factor of d is added to ensure that A(X, R) has a finite limit for d — oo [20, 33-35].
In the following we restrict the discussion to a mean-field setting in which metastable states have infinite life-time
and phase coexistence is absent (see [36] for a discussion of phase coexistence in this context). This is exactly realized



in the limit d — oo [20, 33-35] and can be taken as an approximation for finite d. We want to compute the free energy
of the constrained replica, and average over the reference replicas:

Z,R,A"] = / dXe PV(X)5(A" — A(X,R)) ,

F,[T,v;R,A"] = —Tlog/dXe—ﬂVv<X>5(N ~A(X,R)) = -TlogZ, ,

(A2)
D = /de o dR™ e P T V(RY)
R 1 m a
F,[T,~y; A" = F,[T,~; R,A"] = Z—/dR1~-~dRm e Pa i VB p (T~ RY, AT

Note that the above definition of Fy[T,~; R, A"] is slightly different from the one we have given in the main text,
because we replaced the Heaviside step functlon with a Dirac delta function. With this choice, F,[T,~;A"] is the
averaged (over glassy states) large deviation function of the mean square displacement A”: it gives the thermodynamic
weight of all the configurations of X that are at distance A" from R. Above the dynamical packing fraction ¢4 where
the first glassy states appear, the free energy Fy[T,~; A”| develops a minimum at a finite value of A", signaling the
presence of metastable states. The intuitive reason for the presence of a secondary minimum in the glass phase is the
following. At very small A", there are few configurations, so the weight is small and Fy [T, v; A”]. Upon increasing A",
the weight increases as one explores larger portions of the glass basin around R, and F, [T, v; A"] decreases. However,
if A" is increased beyond the size of the glass basins, then the configurations at distance A" are on the barriers that
surround the glassy state, therefore the weight is small and Fy[T,~; A"] increases again. Only at much larger A",
when all the configurations corresponding to other glass basins are included, the entropic contribution of all the glass
basins makes F, [T, v; A"] smaller. See [16, 17] for a more detailed discussion, and [36] for a detailed discussion of how
to construct Fy[T,~y; A"] by adding a coupling to the system, and for a generalization to this discussion to finite d by
taking into account phase coexistence.

Minimizing the constrained free energy Fy[T,~v; A"] with respect to A" is thus the way to obtain the properties of
the typical metastable states selected by the reference configuration R once followed under an external perturbation
[16, 17, 36, 37]. At the minimum, the value of A" corresponds to the configurations that have larger Boltzmann
weight in the glass basin, and F, [T, v; A"] gives the corresponding weight. The weight of configurations corresponding
to smaller A" is exponentially suppressed when d — oco. Therefore in the following we assume that A" is determined
by the minimization of the free energy. Note that if we define the constrained free energy with a “soft” constraint
(a Heaviside 6 function, as in the main text) instead of a “hard” constraint (a Dirac § function), we will get the
same value for the saddle point solution for the mean square displacement and the same properties for the metastable
states because the configurations that we are adding by considering a soft constraint have an exponentially suppressed
weight. This is why we have chosen to use the 6 function in the main text, because it is better for illustrative purposes.

We can use the replica trick to compute the logarithm. If we define

—BN Frp = 10g/dR1 o dRMAXY - dX e P Tt VIR =B, VA (XY)

(A3)
zlog/dxl---dxme—ﬂsz VX (Z2,)* =1og[Zm(Z,)%] ,
then we have, at leading order for small s
—BN Frp = log [Zm(Zg)s] ~ log [Z (14 slog(Z,) + O(s ))} =log Z, + slog Z, + O(s?) (Ad)

= —BFn — sBF[T,~] + O(s) .

Therefore we have to compute the free energy of m + s replicas; m “reference” ones and s “constrained” ones, that
are at different temperature or density. Then we have to send s — 0; the leading order gives the Monasson replicated
free energy F), [15], while the linear order in s gives the Franz-Parisi free energy Fy,[T,~] [16]. In this paper we will
only consider the case m — 1, in which F},, coincides with the liquid free energy.

In the following we consider a system of hard spheres in d — oo, hence temperature plays no role and density (or
packing fraction) is the only relevant control parameter. Furthermore, the energy is zero, therefore the free energy
contains only the entropic term —3F = s. For technical reasons, it is convenient to fix the packing fraction through the
sphere diameters, while assuming that the number density is constant, as in the Lubachevsky-Stillinger algorithm [38].
We consider that the m reference replicas have diameter D, and packing fraction ¢,, while the s constrained replicas
have the same number density but D = D,(1 + n/d). Following [20, 33] we also define a rescaled packing fraction
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@ = 2%p/d that has a finite limit when d — co. Note that the packing fraction of the constrained replicas is therefore
© = ¢y(D/Dy)? ~ pgye" and similarly § = $,e".

Following [28, 39, 40], we also apply a shear strain - to the constrained replicas, which is obtained by deforming
linearly the volume in which the system is contained. We call ,T;H with u = 1,--- ,d, the coordinates in the original
reference frame, in which the shear strain is applied. In this frame, the cubic volume is deformed because of shear
strain. To remove this undesirable feature, we introduce new coordinates x,, of a “strained” frame in which the
volume is brought back to a cubic shape. If the strain is applied along direction p = 2, then all the coordinates are
unchanged, v, = ,T;“ except the first one which is changed according to

Ty =z + 12, T =T) —yTh . (A5)

Let us call S(vy) the matrix such that ' = S(v)z. In the original frame (where the volume is deformed by strain),
two particles of the slave replica interact with the potential v(]a’ — y'|). If we change variable to the strained frame
(where the volume is not deformed), the interaction is

vy(z —y) =v(|S(V)(z —y)]) - (A6)

An important remark is that det S(y) = 1 meaning that the simple strain defined above does not change the volume
and thus the average density p = N/V of the system.

In summary, if we consider following a glass state under a compression and a strain, we have to compute the
Franz-Parisi potential where the constrained replicas have a diameter D = D,4(1 + n/d) and interact with a potential
Vy(X) = >, vy(z; — x5). The control parameter of the reference replica is their density g, while the control
parameters of the constrained replicas are compression rate n = log(y/¢,) and shear strain . The replicated entropy
of this system can be computed through a generalization of the methods of Refs. [33, 34], which we present below.

1. Replicated entropy

The replicated entropy of the system for a generic replica structure has been derived in [34]:

d d
log(2meD; /d*) + 7 log det(amFemts) — 5@?(2@) : (A7)

s[@] =1 —logp+ dlog(m + s) + w
where & = d (uq - up) /D is a (m+s) x (m+ s) symmetric matrix and ¢* is the matrix obtained from & by deleting
the a-th row and column. The matrix & encodes the fluctuations of the replica displacements u, around the center of
mass of all replicas. Because ) u, = 0, the sum of each row and column of & is equal to zero, i.e. & is a Laplacian
matrix. Here we used D, as the unit of length and for this reason D, and @, appear in Eq. (A7). We call the last
term in Eq. (A7) the “interaction term”, while all the rest will be called the “entropic term”.

Given the replica structure of the problem, the simplest replica symmetric (RS) ansatz for the matrix & is

T8 —ad - —ad —y —
—ad 89 ... —a9
—ad9 - —ad 69 —y —X
_a 6 e —a
(A8)
— 0 —a
L —X .« . —X —a e —a 6 |

0 = (m—1)a? + sx
d=(s—1a+mx

Note that the mean square displacements between the replicas are Ay, = d <(ua — ub)2> /Dg = Qga + Oy — 204p



(we scaled A by D, because we use A, as the unit of length) and therefore the matrix A has the form

0 A9 ... AI AT AT
A O - A9
AT At 0 AT AT
A=|A" .. AT 0 A A (A9)
A0 A
A 0 A
LA™ o AT A A 0]
with
A9 =2(69 + a?) = 2(ma? + sx) ,
A=200+a)=2(sa+m
(0 +a) =2 X) (A10)

A"=64+5+2x=m—-1Da? + (s—1)a+ (m+s+2)x,
A =2A" A9 —A =202y —0af —a),
where AY is internal to the block of m replicas, A to the s replicas, and A" is the relative displacement between the

m-type and s-type replicas. Finally, we introduced A/ which measures the additional fluctuations between the m and
s-type replicas. The entropy (A7) must be maximized with respect to A9, A, A".

2. The entropic term

We want to compute det @™ 55 where we recall that ¢ is the matrix obtained from & by deleting the a-th row
and column, i.e. it is the (a, a)-cofactor of &. Begin Laplacian, & has a vanishing determinant. Also, the “Kirchhoff’s
matrix tree theorem” states that for Laplacian matrices, all the cofactors are equal, hence det &@** is independent of
a. Therefore, if 1 is the identity in m + s dimensions, we have

m-+s
1
det(& 4 €1) = det G Edt””a O(?) = deta™® = lim ———— det(& + 1) . All
et(& +€1) ea—l—aa:l et & 4+ O(e”) et & slg(l)g(m—i—s) et(& +e¢l) (A11)

We then define B(s) = & + €1 and we note that
5 A B
60 = (g 1) (A12)

where A is a mxm matrix with components A, = (09+a9+4¢)dap—a?, D is a sx s matrix with Dy, = (0+a+€)dap—,
and B is a m X s matrix with By, = x.
We can use the following general formula

det B(e) = (det A)det(D — BTA™'B) | (A13)

recalling that a m x m matrix My, = My, + Mo has determinant det M = Mlm_l(Ml + mM>) and its inverse is
M= (M~Y) 164 + (M~1)2 with

1
(Mil)l = 37
1 My M, (A14)
(M~ )2 =— :
My (M + mMs)
The matrix A~! has this form, with
1
ANy = ————
S ad+894¢’
g
(A1) = - , (A15)

(9(l—m)+09+¢)(ad+d9+¢)
det A= (69 +af + &)™ (69 + (1 —m)a? +¢) .



The matrix = D — BT A~ B has the same form with
Ql = 5 + e+« y
Q2 = —a—x2[m(A™ ) +m*(431)] (A16)
det Q= (0 +a+e) Ho+a(l —s)+e—sx*m(A™ 1) +m? (A7)} .
Using Egs. (A15), (A16), (A13) and (A11), we obtain the final result

det & FSMES) =y (mad + sx)™ Hsa +mx)* L. (A17)

3. The interaction term

Here we compute the interaction function F(2&). This function has been computed in [33], but only for n = 0 and
v = 0. Here we need to generalize the calculation to non-zero perturbations.

a. General expression of the replicated Mayer function

We follow closely the derivation of [33] which has been generalized in [28] to the presence of a strain. The replicated
Mayer function is

m m-+s
fla) = /dX{—1+ [T100X +ual =Dy) T 61SONX +w)l —D)}

a=1 b=m-+1 (A18)

—— [axo( max (D, 1560 +ul) |

where we introduced D, = Dy(1+1,/d) with g = v, = 0for 1 <a < m, andn, =nand v, = for m+1 < a < m+s.

The u, are m+ s vectors in d dimensions and define a hyperplane in the d-dimensional space. It is then reasonable
to assume that this (m + s)-dimensional plane is orthogonal to the strain directions p = 1,2 with probability going
to 1 for d — 0o > m + s. Hence, the vector X can be decomposed in a two dimensional vector {X7, X2} parallel to
the strain plane, a (d — m — s — 2)-component vector X | , orthogonal to the plane g = 1,2 and to the plane defined
by u,, and a m + s-component vector X parallel to that plane. Defining (24 as the d-dimensional solid angle and
recalling that V; = Qg4/d, and following the same steps as in [33, Sec. 5], we have, calling k =m + s

F@) = — /XmdX2 Xy d? 2 0 (max{D2 — (X1 +7aX2)® — X3 = |X) + ual* = X1}

- —Qd_k_g/Xmng d* X, / dz 2939 (max{Dg —2? = (X1 +7aX2)? — X2 — |X| + ua|2})
0 a

(A19)

/\/maxa{Dg—(X1+VaX2)2—X22—X+ua|2} d—k—3

= —Qq_j_2 / dX1dX, d" X
0

= Vi s / dX1dXs d"X| Og_p—2 (mgx{Dg — (X1 4+ 7.X2)* — X5 — | X + ua|2})

where we defined the function O, (x) = 27/26(z).

It has been shown in [33] that the region where f(@) has a non-trivial dependence on the u, is where u, ~ 1/V/d.
Here we use D, as the unit of length, hence we define u, = v,D,/vd, X12 = (1 2D,/V/d and X = eD,/\/d. Using
that lim,, o ©,(1 +y/n) = e¥/2, and that for large d and finite k we have Vy_,/Vy ~ d*/?/(2r)¥/2, we have

- Vi VdDd 1 .

flu) = —- de : d(k+2)g/2 /dcld@dke Od—k—2 (1 = gmin{—27 + (C1 + YaC2)® + G5 + e + Ia|2})
d ‘ A20)

d d<1d<2dk€ 1 s 2, +2 2 d (

~ VD [ G et GG el = DI ()

where the function F has been introduced following [33, 34].
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We can then follow the same steps as in [34, Sec.V C] and in [28] to obtain

. G dGod®e 1 i, {—oma (GG e al?)
Hm)‘/m“ Tt

k k "
= /% lim (Z e;n[2na+(<1+va<2>2+<§+|e+za2])
2 n—0

! k n
— n dG1dCad™e 5 2 on,+(Citvace) +CE+letaa ]
a0 nil...n (27r)(k+2)/26
—k o 1 k
Nl,eeny NE;Yn_q Na=n
| nan
= lim E 7’” Z’; T DO |z +3 Zl 5 n bma-wb/Me— o zi (G F7aC2) 4¢3
| |
n—0 = Nyt Mg 2m
Nlyeeny NE;Yn_q Na=n
. Zk E Jk "a"b I —x 2 dc ﬁ[l-‘rlz nagng ( ) ]
— 11m g ﬁ a=1"n e Ma— 1 a,b  p2 a b 2 2 ab "z \YaTTb .
n—0 nyt...Ng: V2

. k _
Nlyeeny NE;Y e_q Na=n

(A21)
We now introduce the matrix A of mean square displacements between replicas
2 d 2
Aoy = (g — 23)° = ﬁ(ua —up)® . (A22)

g

We should now recall that the Mayer function is evaluated in @ — v, hence after rescaling the function F is evaluated in
7 —17. For d — oo, the interaction term is dominated by a saddle point on % and ¥, such that (z, —23)? = (Yo —yp)? =
Agp and x4 - yp = 0 [33-35], hence (24 — Yo — 2o+ Yp)? = (Ta — ) + (Yo — y»)? = 2A4p. This is also why the function
F is evaluated in 2& in Eq. (A7). The contribution of the interaction term to the free energy (A7) is [33]

IN- NVaDy _ ) g
Sy =)= LF(@—g) = 20, F(20) = —= L F(28) (423)

With an abuse of notation, we now call F(A) = F(24).
We therefore obtain at the saddle point

N . k 1, k na"b Aub dc ﬁ[l-{-l Z nanb( _ )2]
f(A) = lim Z EEE— Za D O ) 3 2 2uab 2 Ya™7b
n—0 n ! ol V2
Ny s Y na=n ! F
dC _ﬁ 1 ’I’L' ZZ: %77@ El v nanb Aab+ﬁ(7a_Vb)2
= e Tlim ) et (Bt ) (A24)
ﬂ17~~~,nk»zﬁ 1 Na=nN
i e ¢ .
= T F Aa 5 Ula — )
\/ﬁe 0 ( bt 9 (Ya =)
where Fo(A) is the interaction function in absence of strain and is given by
R ! nan
]:O(A) = lim Z L ey ten.—3 ilz: ) 72 Aap . (A25)

n—0 nl'nk'

k —
N1,.n, NE;Dn_q Na=n

b.  Computation of the interaction term for a RS displacement matrixz

m. - nae

We now compute the function Fo(A). for the replica structure encoded by the matrix (A8). Defining ¥, = Doa1
and Xy = Emﬁ keeping in mind that ¥, + ¥ = 1, and recalling that n, = n for m+1 < a < m+ s and

a= m+1 n
1o = 0 otherwise, we can then write with some mampulatmns

ISV

Fo(A) = Tim 3 nl (B ma- (g et T S T
n—0 nyl. ngys! - (A26)

&

N mts _
L3 RERE nm+572a:1 Na="n
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We now introduce Gaussian multipliers to decouple the quadratic terms and introduce the notation D\ =
Note that A9 > 0 and A > 0. Under the assumption that 2AT >0 (to be discussed later on), we get

dX e—,\2/2
V2 :

m g m-—+s n
Fo(A) :/mam lim lze_%(%+%“ WVATHVAT) | e—i(%—"“a@}
n—

a=1 a=m+1 (AQ?)
_ /D)\ D,Uz e— miﬂ{ATg'f‘ATf"‘(minagm ka)m+ﬂmv%_n+(mina>m ka)\/z}
Now we use that for any function f(x),
oo m—1 d /\ m
/D)\af min A, :m/D)\f()\) / DN z—/d/\f(/\)—G e E/ﬁm[/\]f()\)
a<m A d\ \/5 (A28)
Du[N = —dA d (C] AN
e dA V2
and we obtain
:/5 \D )\,Due—min{%g+%f+,\\/ﬁ+m/ﬁ,%—n+/\’\/ﬁ} (A29)

The integral over x4 can be done and we obtain

) [l o 1)

287

$4n-VAN g (’7+ ATEAA 4 VAN - VAN A9 /2-VEIAG —p 4 ALATEA /R9N 4 VAN
V2AS VoAS
(A30)

Now by integrating by parts we can write
Fo(A) = /d/\% :1 -0 (—%)m /d)\’d;i\/ [1 -0 (—3—%)] K(\N)

(ol lice(-2) K\N =o00)— [dN [1-© EEA 8—K,()\,/\’)
fogl-e(5) fli-e(55) |50}
foal-a(R) | forfeo(-5)] fod boe(A) o

— VA _o (-] emarse-van

/dA : 65 :ﬁ)af_{ A\ 92K

oo () e - [u[-o(-5) |sae0 1}

< fafi-o(g)

+ \/Z/d/\’ {1 -0 (—iﬂ e~ A/2En=VAN

2
o[-0 (- 2V -0 (<L) 25 o).

We also have

Sl >

(A31)

_ _Af 2
— ok (-~ 2=a=Al VAT VAN)

02K /
S M) = VAIA =B/ VAN € — . (A32)
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An important remark is that the function K does not depend explicitly on m and s, therefore the derivatives with
respect to m and s can be computed straightforwardly. Also, using Eq. (A32) one can write

Fo(A) = \/E/d/\ {1 e <_L>m} - A7 /23— VAN

V2

/ S , m _2%(_77-"_#_@)\4-&)\')2
+\/Z/d,\/ {1_@ <_/\_> :|8A/2+77\/Z>\ /d/\e <_i> SR A
V2 V2 2nAS

We can also change to variables y = —A9/2 — /A9 and v/ =n — A/2 — /AN, and x = ' — . Then we have

m s ——L (z—AT 2)2
+ A9/2 r+y—n+A/2\ e zar (1=27/
]—‘Ag,A,Af:/d v 1—@(1’7) /d @( . A34
o ) ve { V2AI * V2A N (A34)

From Eq. (A24), recalling that v, = v for m + 1 < a < m + s and zero otherwise, we have

dg
Vor

(A33)

F(AI, A AT = e T Fo (A, A, A + ) (A35)

4. Final result for the internal entropy of the planted state

The final result for the replicated entropy is obtained collecting Eqs. (A7), (A17) and (A34)-(A35). To obtain the
Franz-Parisi entropy, we have to develop the entropy for small s and take the leading order in s. For s — 0 we obtain
the Monasson 1RSB entropy [20, 33]:

lim s[@] = s, (AY) =1 —logp + g(m -1)+ glogm + g(m — 1) log(mwAY/d?)

s—0
d . y+A9/2\™
_Z vol1— Jr=7/2
2@g/dye {1 @< SAs > ] .

These determine, for each m and @, the cage radius A? of the reference configuration.
The linear order in s gives the internal entropy of the glass state sampled by the constrained replicas (Franz-Parisi
entropy):

(A36)

g f
é + diA mAL e A d?)
mh 2
(2-84(0)/2)? (A37)

N

2
where A, (¢) = AF 4+ (2~? and we recall that D¢ = %6_%. It will be often convenient to make a change of variable

' = (x — A(¢)/2)//A4(¢) in the integral, which leads to (dropping the prime for convenience):

hm Os{sla]} = s4 =

_d dAI +mAf  d 9
Sg—§+§T+—10g(7TA/d)
dpy v (YT A2 / Ay(Qz+A4(0)/2+y—n+A/2
+ 5 dye 6(7_ D(Dx log |© oA

From this expression of the internal entropy, we can obtain the equations for A and Af and study the behavior of
glass states.

(A38)

5. Derivation from the Gaussian replica method

As a side remark, we note that following the general strategy outlined in [33, 35|, the same results can be also
derived in the replica scheme directly from a Gaussian assumption for the cage shape. The starting point is the
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expression of the replicated entropy as a functional of the single-molecule density p(Z) [33, 35]. The appropriate
ansatz that corresponds to the replica structure in Eq. (A9) has the form

m m-+s
p(T) = P/dXdYVDf /2(X -Y) (H Yoo /2(Ta — X)) ( H Yo s2(@6 — Y)) ; (A39)

b=m-+1

where v4(z) is a normalized Gaussian of variance A, and the coefficients A = d*> D / Ds. The Gaussian approximation
is exact in d — oo [33] and it is useful to derive approximate expressions in finite dimensions [35].

6. Stability of the RS solution

In this section we discuss the stability of the replica symmetric ansatz (A9) for the calculation of the Franz-Parisi
entropy. We want to compute the stability matrix of the small fluctuations around the RS solution and from that
extract the replicon eigenvalue [34]. This calculation is very close to the one given in Ref. [34] and we will use many
of the results reported in that work.

a. The structure of the unstable mode

The general stability analysis of the RS solution can be done on the following lines. We have to take the general
expression (A7) and compute the Hessian matrix obtained by varying at the second order the replicated entropy with
respect to the full matrix &. We can then compute the Hessian on the RS saddle point. The task here is complicated
by the fact that the entropy (A7) is not symmetric under permutation of all replicas. The symmetries are restricted
to arbitrary perturbations of the m replicas and the s replicas separately. Hence the structure of the Hessian matrix
is more complicated than the one studied in [34].

However, here we are mostly interested in studying the problem when the m replicas are at equilibrium in the
liquid phase, hence m = 1, and in that case we already know that the RS solution is stable in the sector of the m
replicas [34]. Moreover, the m reference replicas evolve dynamically without being influenced by the constrained ones.
Hence, on physical grounds, we expect that replica symmetry will be broken in the sector of the s replicas and that
the unstable mode in that sector will have the form of a “replicon” mode similar to the one studied in [34]. In fact,
the s replicas have the task to probe the bottom of the glassy basins identified by the reference replicas, and they
may thus fall in the Gardner phase when the glassy state identified by the m replicas is followed at sufficiently large
pressures or low temperatures. Based on this reasoning, we conjecture the following form for the unstable mode:
OAI(IT — bap) OATI®

a

0A = SATI™ SARTa |

(A40)

where I™ is a m x m matrix and " is a m X s matrix with all elements equal to 1, and 7 is a s X s “replicon” matrix
such that >~ _, 7qp = 0 [34, 35]. In other words, we look for fluctuations around the RS matrix (A9) where the matrix
elements of the m replicas A and the matrix elements connecting the m and s replicas A" are varied uniformly, while
in the s block we break replica symmetry following the replicon mode.

Let us write the variation of the entropy (A7) around the RS solution, along the unstable mode (A40). We have

1 1
0s = - Z Mab;cd(SAab(SAcd + 6 Z Wab;cd;Ef(SAabéAcdéAef o (A41)
a#b,c£d a#b,c#£d,e#f

The mass matrix Mgp,cq and the cubic term Woyp.cq.er are derivatives of the entropy s (which is replica symmetric)
computed in a RS point and therefore they must stasify certain symmetries which are simple extensions of the ones
discussed in [34]. Let us call (ab)™ a pair of indeces a # b that both belong to the m block. Similarly (ab)® belong to
the s block, and (ab)" are such that one index belong to the m block and the other to the s block. At the quadratic
order, we obtain

1 1
55 - (5Ag)2 Z Mab;cd + 5(6AT)2 Z Mab;cd + §5A?{ Z Mab;cdrabrcd
(ab)™,(cd)™ (ab)r,(cd)” (ab)®,(cd)*
+OAIGA" N Mapea +0A%AR Y Mapearca+SA0AR Y Mapeared -
(ab)™,(cd)” (ab)™,(cd)* (ab)r,(cd)*

N =

(A42)
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It is easy to show that the cross-terms involving the replicon mode vanish. In fact, the sum Z(ab)m Myp;cq must be a

constant independent of the choice of indeces (¢d)®, which are all equivalent due to replica symmetry in the s-block.
Hence E(ab)M,(cd)s Map;edrea = const. Z(cd)s re.q = 0 because of the zero-sum property of the matrix 7. The same
property applies to the other cross-term. The quadratic term has therefore the form

552 = %A(&A-‘JF + %B(&ATF + COAISA™ + %m% S Magearaprea (A43)
(ab)* (cd)?

and the stability analysis of the replicon mode in the s-block can be done independenty of the presence of the m
replicas.
A similar reasoning can be applied to the cubic terms. Let us write only the terms that involve the replicon mode:

1 1
55(3) = g(sA% Z Wab;cd;ej'TachdTej' + §5A2R5Ag Z Wab;cd;efTabTCd

(ab)*,(cd)*®,(ef)* (ab)s,(cd)s,(ef)™
1
+ §5A%{5AT Z Wab;cd;efrabrcd + 5AR6AT6A(] Z Wab;cd;efrab
(ab)*,(cd)®,(ef)" (ab)*,(cd)",(ef)™

1 1
+ §5AR(5AT)2 Z Wab;cd;ej'Tab + §5AR(5A(])2 Z Wab;cd;ej'Tab + terms without dAg
(ab)®,(cd)™,(ef)" (ab)*,(cd)™,(ef)™
(Add)

Clearly, all terms that are linear in §Ag vanish. In fact, for example

Z ab cdsefTab = Z Tab Z Wab cd;ef — const. X Z Tab = 0 (A45)

(ab)*,(cd)7,(ef)™ (ab)* (cd)7,(ef)™ (ab)*

because once again ) (ed) (e f)m Wabsed;ef must be a constant independent of the choice of (ab)® which are all equivalent
thanks to replica symmetry in the s-block. Collecting all non-vanishing terms that involve the replicon mode, we
obtain

1 1 1
bs = SABAY)? + SBOAT) + CSAISA™ + 54, ( bzd) Mab;cdTabTed

1 3 1 2

65AR Z Wabicdse fTabTedTef + §5AR5AQ Z WabiedsefTabTed (A46)
(ab)®,(cd)*,(ef)* (ab)=,(cd)*,(ef)™

1

2

SOARSA™ > WapedsefTabTed -
(ab)#,(cd)*,(ef)"

+

The resulting entropy should be optimized over §A9, A", §Ag. The above equation clearly shows that for a fixed
§AR, the optimization over §AY, JA” given A9 ~ §A” ~ §A%. Hence we conclude that all the terms that involve
§AY and JA" are at least of order §A% and can be neglected in the linear stability analysis. We finally obtain at the
leading order

1 1
0s = §6A%{ Z Mab;cdrabrcd + E(SA?{ Z Wab;cd;efrabrcdref (A4~7)
(ab)®,(cd)® (ab)s,(cd)®,(ef)*

and all the couplings between the s-block and the m-block disappear. This shows that the stability analysis of
the replicon mode can be performed by restricting all the derivatives to the s-block, both at the quadratic and
cubic orders. The Gardner transition corresponds to the appearance of a negative mode in the quadratic term for
a particular choice of the matrix r,; that corresponds to a 1RSB structure in the s-block, characterized by a Parisi
parameter sq, as discussed in [35, Sec. VII]. The unstable quadratic mode is stabilized by the cubic term leading to a
fullRSB phase [35, 41]. Note that, according to the analysis of [35, 41], in the “typical state” calculation done with m
replicas with m € [0, 1] taken as a free parameter, the fullRSB phase can only be stabilized if the parameter m; > m,
and this only happens at low enough temperature or large enough densities, hence the fullRSB phase can only exist
at sufficiently low temperatures and high densities [35, 41]. However is situation is crucially different here because
the state following construction requires s — 0. The perturbative analysis gives s1 = A(s), where A(s) > 0 is the
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MCT parameter discussed in [34, 35], hence one always have s1 = A(s) > s = 0 and the fullRSB phase exist at all
temperatures and densities when the RS phase becomes unstable.
In summary, we have shown that we can define the following stability matrix

2 525[65] o 5ac5bd + 5ad5bc 5ac + 5ad + 5bc + 5bd
E(Saa<b5ac<d = ( 2 > A ( 4

Ma;éb;c;éd = > + M3 (A48)
where the indices a, b, ¢, d run between m + 1 and m + s. The fact that the replica structure of this stability matrix
is the one defined in Eq. (A48) is due to replica symmetry under permutation of the s replicas. When a zero mode
appears in this matrix, the replica solution becomes unstable and transform continuously in a fullRSB phase, signaling
that the glass state sampled by the s replicas undergoes a Gardner transition.

In the following, we divide the problem of computing that stability matrix in the part coming from the derivatives
of the entropic term and the part relative to the interaction term. We will first derive the stability matrix in the case
of absence of shear and we will discuss the generalization of the method only at the end.

b.  Entropic term part of the stability matriz

We want to compute first the contribution of the entropic term to the stability matrix. Note that under a variation
of dagp, we have an identical variation of dap, = dagp, and the diagonal terms vary by minus the same amount,
0qq = dapp, = —dgp to maintain the Laplacian condition of &. Hence we have

1) ) ) ) 1)

5aa<b 504ab 504ba 504(1(1 5abb

(A49)

From Eq. (A11), recalling that 3(c) = & + €1, we have logdet @™ +*m+s = logdet 3 — log(e) — log(m + s) + O(e),
therefore, using (for symmetric matrices)

0 log det B = bel , 572 log det 3 = (w“_bl = —Ba_ClBZ;il , (A50)
5ﬂab “ 5ﬂab5ﬂcd 5ﬂcd
we obtain
M(f)d = 72 log det @™ ™S — lim 72 log det 3
Wed T Sag<pdoe<d e=0 0B4<p0Bc<d
= lim [28,2 ;.0 — 28,1 By + 2B 8o + 28,1 Bk + 281 Bad + 28,01 B (A51)

—(Ba)? = By ) = (B2q)* = By ] -
Based on the discussion above, we are only interested in the matrix elements corresponding to a, b, ¢, d belonging to
the block of s replicas. The matrix B has the form (A12), and using the block-inversion formula, its inverse in the s
block is Q7! = (D—BA~*BT)~!. Hence, for a,b € [m+1,m+s] we have 8} = Q! = (Q271)14+ (271)2 where the
coefficients are obtained from Eq. (A16) and Eq. (A14). In particular we have (Q71); = 1/(§+a+¢) =1/(A/2+¢).
Plugging this form of B,;' in Eq. (A51), one can check that all terms involving (271), disappear (as it should,

because this term is divergent when ¢ — 0), so the correct result is obtained by inserting in Eq. (A51) the form
B! = (2/A)dap, and we get (recalling that a # b and ¢ # d):

E E 5ac5bd + 5ad5bc E 5ac + 5ad + 5bc + 5bd E
Mg, = (P (ettt} 4 o) ( M)

2 4

(A52)

o _E 5ac5bd + 5ad5bc _ E 5ac + 5ad + 5bc + 5bd

A2 2 A2 4 '
c.  The interaction part term of the stability matriz
We define the interaction part of the stability matrix in absence of shear as
82 Folv Sach 0adObe Oac + ad + Ope + 6
M(é)d _ Fol0] _ Ml(l) bd T 0adOb +M2(1) + Oad + Obc + Obd +M§1) (A53)
avie 5Ua<b5vc<d =24 Rrs 2 4
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so that the expression for the matrix coefficients M; of the full stability matrix is given by
M; = M) —apm?) (A54)

The calculation of the derivatives of the interaction term can be done on the same lines and following the same tricks
of [34]. Let us start by writing the general expression for the derivatives using the representation (A25) of the function
Fo. We have

(I . n!
MY, = lim ) () (1)
ni: ... Nm+s-
n17~~~;n7n+S:Z;n:+15 MNa="N

A9 AT A AS A9 A TS p2
=+ = ), - (== pI 22 — a4 = -l
XGXP[<2+2) <2 ”> Ty +2;n2+2zn2]

a=m-+1

(A55)

where the function f is defined in [34, Eq. (45)]. As a variant of [34, Eq.(46)] we can introduce the following notation

) n! A9 AS A
<O>:7111L% Z . nl'iOeXp[ <7+7)2m—<5—n>25

nm-i—s

(A56)
+A_f22 +gmn_i+é m+5_§
2 ™ 2 n? 2 n?
a=1 a=m-+1

The stability matrix can thus be rewritten as [34, Eq.(47)] where the replica indices run from m + 1 to m + s. Then
we have to compute monomials of the form (n,, ...n,, /n*), which can be done in the following way

Ngy -+ - Nay, li n! Na, - Nay [7 dp —u?/2 T d e Na/?
( oy >—n1£}) Z nil ngpys! ok Loo \/27Te / H )

m+s
N1y, Mmtst Na=n

xexp[—(£+A—j)Zm—<é—n)25—u\/ﬂx \/_"Z \/_mi e a]_

2 2 2 a=1 a=m-+1 (A57)
m-+s k
6 1 m+s 2
DA —3 2a—mi1Na
Am/ / (H )/w<a1;[+1 )8)\@...8)\%6 ’
e mm{ Ad A +(ming <, Aa )\/_-l-u\/_ —n+(ming s, )xa)\/Z} '
If O is a function that depends only on the A\, with a € [m + 1, m + s, then we can define
00 0o m+s
0) = / Dﬂ/ < H D)\“) Oe min{ATngATer(min“Sm Aa) VAT /AT, 5 =t (minasm A“)‘/Z} =
m+s m+s (A58)
:/ <H’D/\>OK mln/\a,mln/\) / < H DA) (min/\a) ,
0 \a=m+1 azm
where
G(\) :/ D AK(A\N) . (A59)
In this way we obtain a generalization of [34, Eq.(48)], in the form
1 1 m+s 2 8k m+s
EDDHRIED S AP D DR

The interaction part of the stability matrix is then given by the same reasoning as in [34, Eq.(50, 51, 53, 54, 56)]
where the replica indices must be all shifted by m. The only difference with respect to [34] is the definition of the
measure used to take the average over the variables As. In fact instead of having [34, Eq.(52)] we have

(O(X)) = /jo DN G(XN)O(N) = /jO DNDAK (A N)O(N) . (A61)

This completes the calculation of the stability matrix.



17
d. The stability matriz in presence of the shear

The result of the previous section is valid when v = 0. Here we generalize the calculation in the case in which also
the shear is present. The presence of a non vanishing v is detectable only in the interaction part of the replicated
entropy. This means that the form of the part of the stability matrix coming from the entropic term does not change
(even if the actual value of the elements of the matrix changes due to the change of the solution of the saddle point
equations in presence of the shear) and we need to compute only the new interaction part of the stability matrix.
This can be done using the following line of reasoning. The interaction part of the stability matrix can be written in
this case as

2

2
0 / DCFo[ Ay + &

I °p, A62
abicd OVa<pOVe<d 7 Tar] ( )

2

U=2&Rs

where the matrix I'yp = 1 if @ belongs to the m-block and b to the s-block or viceversa, and zero otherwise. Recalling
that Agp = Qaa + app — 2043, we have that the relation between A and & is linear, therefore a constant shift of A
induces a constant shift in &, which does not affect the derivatives. We deduce that

ab cd - /DC ab; ;Yd 0 A + <_7 ab /D< b’y 0)[Aq A Af +<2 2] . (A63)

Because Af appears only in the kernel K, shifting A/ amounts to change the measure for the average of monomials
of A\, by using a modified kernel

KT\ X)) = /DgK()\, NA9 AN 4 (24
= /DC e~ 2T1—VAXN g n AerCQ'Y;JFAgiA + VAIN - VAN
2(AS +¢%42)

Fye242_A9
L ar/a VA (TN S — VA VAN
2(AT + (292 ’

(AG4)

and the functional expression of the interaction part of the stability matrix has the same form of the v = 0 case.

e. The replicon eigenvalue

Following the results of [34], the replicon eigenvalue is given by
1 .
Ar =5z (F16-8PALA)) . ALA) = (O L) | (A65)

where the functions ©;()) are defined in [34, Eqs.(42), (43)], the 