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What characterises a solid is its way to respond to external stresses. Ordered

solids, such crystals, display an elastic regime followed by a plastic one, both well

understood microscopically in terms of lattice distortion and dislocations. For

amorphous solids the situation is instead less clear, and the microscopic under-

standing of the response to deformation and stress is a very active research topic.

Several studies have revealed that even in the elastic regime the response is very

jerky at low temperature, resembling very much the one of disordered magnetic

materials. Here we show that in a very large class of amorphous solids this

behaviour emerges by decreasing the temperature as a phase transition where

standard elastic behaviour breaks down. At the transition all non-linear elastic

moduli diverge and standard elasticity theory does not hold anymore. Below the

transition the response to deformation becomes history and time-dependent.

Our work connects two different lines of research. The first focuses on the behaviour of amor-

phous solids at low temperature. With the aim of understanding the response of glasses to

deformations, there have been extensive numerical studies of stress versus strain curves ob-

tained by quenching model systems at zero temperature. One of the main outcome is that the

increase of the stress is punctuated by sudden drops related to avalanche-like rearrangements

both before and after the yielding point [1–5]. This behaviour makes the measurements, and

even the definition of elastic moduli quite involved. In a series of works Procaccia et al. have

given evidences that in some models of glasses, such as Lennard-Jones mixtures (and vari-

ants), non-linear elastic moduli display diverging fluctuations and linear elastic moduli differ

depending on the way they are defined from the stress-strain curve [6, 7]. Another indepen-

dent research stream has focused on the understanding of the jamming and glass transitions

of hard spheres both from real space and mean-field theory perspectives [8, 9]. The exact

solution obtained in the limit of infinite dimensions revealed that by increasing the pressure

a hard sphere glass displays a transition within the solid phase, where multiple arrange-

ments emerge as different competing solid phases [10, 11]. This is called Gardner transition

in analogy with previous results in disordered spin models [12, 13]. Recent simulations have

confirmed that in three dimensions these different arrangements become more and more

long-lived, possibly leading to an ergodicity breaking [14]. These mean-field analysis com-

plements and strengthens all the remarkable results found in the last two decades on jammed

hard spheres glasses. The major outcome of these real space studies was the discovery that

2



amorphous jammed solids are marginally stable, i.e. characterised by soft-modes and critical

behaviour and in consequence by properties which are very different from the ones of usual

crystalline solids [15–17]. Within mean-field theory this is a consequence of a more general

marginal stability emerging at the Gardner transition [9, 18].

Here we show that also models of structural glasses display this transition when decreasing

the temperature and that this drastically affects their elastic behaviour. In particular, we

reveal that elastic anomalies, such as the ones found in zero temperature simulations, are a

signature of this phase transition. In order to show the existence and the properties of the

Gardner transition in structural glasses we focus on a system of soft elastic spheres, which

has been studied recently in several numerical simulations and shown to behave as canonical

glass-formers [19–21]. The interaction potential between particles reads

V̂HSS(r) =
V0

2

(
1− r

D
)2

θ
(

1− r

D
)

(1)

where r is the distance between particles, V0 is the interaction strength and D the interac-

tion range. We choose this model since in the limit V0 →∞, it maps on hard spheres with

diameter D. This enables us to make connections with previous results on jamming.

In this work we want to study the elastic properties of amorphous solids created by thermal

quenches and also by compression. Theoretically, these solids are actually ultra-viscous liq-

uids observed on time-scales on which flow is absent. From the energy landscape perspective

[22], these are systems unable to escape from a given metabasin within the experimental

time-scale. The large dimensional limit (d → ∞) is particularly useful to analyse these

long-lived amorphous metastable states. Because the life-time of metastable states diverges

exponentially with d, one does not have to develop a full dynamical treatment but can in-

stead resort to a generalised thermodynamic framework able to capture the properties of

metastable states [23]. What is generically considered a weakness of mean-field theory–

the inability of describing activated dynamics in the super-cooled regime–becomes here an

advantage. In the infinite dimensional limit meta-basins become very long-lived below a

well defined temperature TMCT , corresponding to the Mode Coupling Transition (MCT).

Although in three dimensions the increase of the life-time of meta-basins is not as sharp

below TMCT (MCT becomes a cross-over), in the experimentally relevant regime we are in-

terested in, amorphous solids do become well defined metastable states. Indeed, for realistic

quenches (0.1-100 K/min), super-cooled liquids fall out of equilibrium at a temperature Tg
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well below TMCT , and their properties do not change with time (except on very large times

where ageing sets in); hence, the generalised thermodynamic framework [23] we use is par-

ticularly adapted.

In order to solve the model (5) in the d → ∞ limit and to study the properties of the

metastable amorphous solids we use the replica method, whose order parameter is the mean

square displacement between couples of replicas (x
(a)
i is the position of the particle i in

replica a):

∆ab =
d

ND2

N∑

i=1

∣∣∣x(a)
i − x(b)

i

∣∣∣
2

(2)

Roughly speaking, this order parameter allows to study the statistical properties of the

metabasins and probe their ruggedness: a breaking of replica symmetry means that that

different replicas are trapped in different minima and, hence, that an ergodicity breaking

transition has taken place within the solid phase. This method has been developed and

explained in full detail in several recent works on hard spheres [24–26]. Hence, here we

directly present our main results and refer to SM for the key technical steps (the whole

derivation will be shown elsewhere [27]).

Henceforth we consider packing fractions such that TMCT (ϕ) > 0 and focus on glass states

formed by slow quenches below it (TMCT (ϕ) raises from zero at a well defined packing fraction

ϕ which in three dimensions should correspond to ϕMCT ' 0.58). For a given cooling rate

the system follows the equilibrium line in the energy-temperature plane until it falls out of

equilibrium and becomes an amorphous solid at Tg. We have computed both the equilibrium

and the amorphous solid branches, as shown in Fig.1 for a given packing fraction. The main

results is that generically by decreasing the temperature amorphous solids undergo a Gardner

transition at a temperature TG(ϕ). The lower is the glass transition temperature Tg the more

one has to cool in order to reach TG(ϕ). By comparing the results obtained for amorphous

solids formed at the same Tg at different packing factions, we find that TG(ϕ) decreases

when ϕ is augmented, as shown in Fig. 2 (for too small densities, when Tg crosses TMCT ,

it is simply not possible to create a solid). We conclude this analysis by considering glasses

formed by compression to make a relationship with studies on hard spheres and jamming.

In this case, we find first a direct and then an inverse Gardner transition as shown in Fig. 3.

The results obtained for glasses formed at the same ϕg at different temperatures show that

the higher is the temperature the smaller is the extent of the Gardner phase, thus creating a
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FIG. 1: Energy vs temperature (in rescaled units, see SM) for ϕ̂ = ϕ2d/d = 8. EOS denotes the

equilibrium line obtained by the equation of state. The other lines correspond to amorphous solids

created by different cooling rate (slower to higher from bottom to top). Lines becomes dashed

when the Gardner transition takes place. The change in the free-energy landscape at the Gardner

transition is shown pictorially.

dome in the T −ϕ plane. This re-entrant behaviour is in agreement with very recent studies

on the spectrum of harmonic vibrations of elastic sphere glasses [18, 28].

In summary, we have shown that amorphous solids undergo by cooling the same transition

toward a marginal glass state found for hard spheres [11]. We can now turn to our main

concern which is the change in the elastic properties of the solid approaching the Gardner

transition. For a normal elastic solid, e.g. a crystal, a small shear strain γ induces a change

in free energy per unit volume equal to

Fel
V

=
µ2

2
γ2 +

µ4

4!
γ4 + . . . (3)

where V is the volume and µn is the n-th order elastic modulus: µn = dσn−1

dn−1γ
where σ is the

stress (µ2 is the usual linear shear modulus). This is also true for amorphous solids but only

above the Gardner transition. Our explicit computation in the limit of infinite dimensions
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FIG. 2: Evolution of the Gardner transition temperature (red line) obtained by cooling amorphous

solids at fixed ϕ. All amorphous solids are formed at the same T̂g = 0.12. The blue line denotes

the MCT transition temperature as a function of ϕ̂.

shows that in this regime all elastic moduli are well defined (up to fluctuations of the order

1/
√
V ) and that they depend on the glass state only through the value of Tg, i.e. the speed

of the quench used to form the glass, and of the applied temperature and packing fraction

[32]. The situation changes drastically approaching the Gardner transition line at which

the fluctuations of all elastic moduli blow up. Although averages remain featureless, the

fluctuations from one glass state to another, rescaled by their typical value 1/
√
V , diverge

as:

(δµn
√
V )2 ∼ 1

(T − TG)2n−3
, (δµn

√
V )2 ∼ 1

|ϕ− ϕG|2n−3
(4)

where the right and left expressions correspond to different protocols to induce the transition

(cooling and compression). This increase leads to giant fluctuations at the Gardner tran-

sition. Finite size (mean-field) scaling implies that at the transition (δµn
√
V )2 ∼ V 2n/3−1.

For n = 2 fluctuations are subleading, hence the linear elastic shear modulus is regular and

well defined: µ2 ' µ2 + O(V −1/6). Instead all non-linear moduli are not: their fluctuations

diverge as V n/3−1 and completely overwhelm the average, which remains finite but is not

representative of the typical behaviour. Note, moreover, that all odds moduli, that vanish
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FIG. 3: Gardner critical packing fractions ϕG obtained by compressing amorphous solids at fixed

temperature. All amorphous solids are formed at the same ϕ̂g = 8. The location of the jamming

point is denoted by ηJ .

by symmetry in ordered solids, can be neglected above TG only. At TG they also blow up

and instead of being of the order of 1/
√
V (and zero in average) they diverge as V n/3−1

and fluctuate. All these results signal that standard elastic behaviour breaks down at TG.

Below TG, even an infinitesimal deformation leads in the thermodynamic limit to ageing and

time-dependent shear moduli. In this regime, elastic moduli depend on the history and on

the protocol used to measure them. Only strains whose amplitude scales to zero with V do

not lead to ageing and irreversible behaviour [7]. The elastic moduli computed in this way,

called quenched in [7] and zero-field cooled in [29], are a property of the meta-basin to which

the system belongs. They are characterised by the same divergent fluctuations found at TG.

This is a consequence of the marginal stability of glasses within the whole Gardner phase.

We derived our results in a specific realistic model in the limit of infinite dimensions. How-

ever, our findings go beyond the specific d→∞ computation we presented. Indeed one can

obtain them using a Landau theory as shown in the supplementary material. Similarly to

the existence of diverging magnetic responses at a ferromagnetic transition, the breakdown
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of elastic behaviour and the divergence of non-linear elastic moduli are the generic signature

of the Gardner transition [33].

In conclusion, our results unveil that the jerky elastic behaviour displayed by amorphous

solids at low temperature could be related to the existence of a phase transition within

the glass phase. Our exact solution in the limit of infinite dimensions characterises the

dependence of this transition on the control parameters (T , ϕ) and protocols (cooling, com-

pression), providing guidance for experimental tests both in structural, colloidal and possibly

granular glasses. In order to substantiate our predictions, it is impelling to extensively study

by experiments and by simulations whether standard elastic behaviour breaks down at a well

defined temperature in the way identified in this work. The simulations of model systems

quenched at zero temperature by Procaccia et al. display very promising results: the linear

elastic intra-state modulus is found to be well defined, whereas µ3 has fluctuations of O(1)

and µ4 shows diverging fluctuations as we found. On the theoretical side, it is important to

go beyond the Landau theory in order to obtain more quantitative predictions on the value

of the critical exponents controlling the divergence of the elastic moduli. All that opens

the way toward new research directions aimed at revealing the true nature of glasses. As

suggested by several recent research results on jamming and amorphous plasticity, glasses

might not be just liquids having stopped to flow but an entirely different new kind of solids

[9, 30, 31].
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Supplementary material

Breakdown of elasticity in amorphous solids

Giulio Biroli and Pierfrancesco Urbani

I. INTRODUCTION

We consider a system of spheres interacting through a central potential V̂ (r). A typical

example is the Harmonic Soft Sphere interaction potential

V̂HSS(r) =
V0

2

(
1− |r|D

)2

θ

(
1− |r|D

)
(5)

whereD is the diameter of the sphere that fixes the interaction range and V0 is the interaction

strength. Taking the limit V0 → ∞ one gets back the Hard Sphere model. A glassy state

α can be characterized by few control parameters such as the packing fraction ϕ and the

inverse temperature β at which it is created, i.e. at which the super-cooled liquid fell out of

equilibrium. We shall denote it α(ϕ, β). It can be thought as a metabasin of configuration

of phase space that is explored ergodically for timescales shorter than the α-relaxation time.

More precisely, we shall say that we prepare the system in a glass state α(ϕg, βg) when

the configurations that are sampled by the dynamics are equilibrium configurations of the

metabasin to which the state α belongs to. Once a glassy state is prepared at a given point

(ϕg, βg), we can look at how it changes when the control parameters are changed towards

another state point (ϕ, β). In particular we can compute the free energy of the glassy state

once followed to this new state point and it is given by

f [α(ϕg, βg), β, ϕ] = − 1

βV
ln

∫

X∈α(ϕg ,βg)

dXe−βV[X;ϕ] (6)

where V [X;ϕ] =
∑

i<j V̂ (|xi−xj|). The sum over the configurations X is done in such a way

that they all belong to the same ergodic component characterizing the glass state α(ϕ̂g, β̂g).

The packing fraction can be changed by changing the diameter of the spheres in (5), [1].

In order to compute the elastic response of the system we need to couple it to an external

strain γ. In this way the interaction potential is changed due to the change in the shape of

the box in which the system is placed. We denote the interaction potential in presence of

the strain as Vγ[X;ϕ]. If the shear strain is small, the change in the free energy (6) is given
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by

V (f [α(ϕg, βg), β, ϕ; γ]− f [α(ϕg, βg), β, ϕ; 0]) = V σγ + V
µ2

2
γ2 + V

µ3

3!
γ3 + V

µ4

4!
γ4 + . . .

(7)

Since the amorphous state is a random structure we expect the elastic coefficients σ, µ2, µ3

and µ4 to be random variables characterized by a proper probability distribution. From the

expansion (7) it is clear that the shear stress is given by df [α(ϕg, βg), β, ϕ; γ = 0] /dγ = σ

while the shear modulus is µ2. The scaling in V in (7) can be deduced from extensivity.

Moreover we expect that once we average the free energy over all glassy states α(ϕg, βg), we

get a function that is symmetric under γ → −γ. This implies that

σ = 0 µ3 = 0 (8)

where we have denoted with an overline the average over different glassy states α(ϕg, βg).

Conversely, the first moment of µ2 and µ4 is expected to be different from zero. If the glassy

state α(ϕg, βg) is followed up to a point that is close to a second order phase transition, like

the Gardner point [2], we expect a dramatic change in the probability distribution of the

elastic moduli, due to the presence of the soft modes developed at the transition.

II. FREE REPLICA SUM EXPANSION

Since we want to average over all glassy states α that can be found at (ϕg, βg) we need to

introduce replicas to handle the logarithm that appears in (6). In order to compute all the

different cumulants it is very useful to consider each replica being subjected to a different

strain γ. In this way we get s systems, each one subjected to a different shear strain γa. We

thus define a replicated free energy

W [ϕ, β|ϕg, βg; {γa}] = − 1

βV
ln

s∏

a=1

∫

X(a)∈α(ϕg ,βg)

dX(a)e−βVγa [X(a);ϕ] . (9)

Once the average over the glassy states α(ϕg, βg) is taken, we end up with a replicated

system of s+1 replicas [1, 3, 4] the first one being a representative configuration of the glass

state planted at (ϕg, βg); at the end we will consider the limit s → 0. Note that the initial

glass state at (ϕg, βg) is unstrained so that γ1 = 0.

If we expand this function aroung {γa = 0} we get a free replica sum expansion [5, 6]
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W [ϕ, β|ϕg, βg; {γa}]−W [ϕ, β|ϕg, βg; {γa = 0}] =
µ2

2

s+1∑

a=2

γ2
a −

V σ2
c

2

(
s+1∑

a=2

γa

)2

− V 3σ4
c

4!

(
s+1∑

a=2

γa

)4

− V σµ3
c

3!

(
s+1∑

a=2

γa

)(
s+1∑

a=2

γ3
a

)
− 1

8
V µ2

2

c

(
s+1∑

a=2

γ2
a

)2

+ σ2µ2V 2
c

(
s+1∑

a=2

γa

)2( s+1∑

a=2

γ2
a

)
+
µ4

4!

(
s+1∑

a=2

γ4
a

)
+ . . . .

(10)

Due to extensivity, we have that σ2
c ∼ 1/V , σ4

c ∼ 1/V 3, µ2
2

c ∼ 1/V , σµ3
c ∼ 1/V and

σ2µ2
c ∼ 1/V 2. Moreover, due to the symmetry {γa → −γa} we must have σµ2

c = 0.

The replicated free energy (9) can be computed exactly in the infinite dimensional limit

[1, 7] where we can carefully define metastable glassy states since nucleation and non-

perturbative effects are highly suppressed. This is given in terms of an order parameter

that is nothing but the distance between different replicas. If we denote as x
(a)
i the position

of the sphere i in replica a, we can define the mean square displacement (MSD) between

couples of replicas as

∆ab =
d

ND2

N∑

i=1

∣∣∣x(a)
i − x(b)

i

∣∣∣
2

(11)

where d is the spatial dimension and it has been added in order to have a finite MSD matrix

in the large dimensional limit. The matrix ∆ab must be fixed by a saddle point equation

∂W/∂∆ab = 0. This means that the calculation of the cumulants in (10) can be done by

expanding in powers of {γa} the saddle point replicated free energy W . This is given by

W [ϕ, β|ϕg, βg; {γa}]−W [ϕ, β|ϕg, βg; {γa = 0}] =
1

2

s+1∑

a,b=2

µabγaγb +
1

4!

s+1∑

a,b,c,d=2

χabcdγaγbγcγd + . . .

(12)

where

µab =
dW

dγadγb
=

∂W

∂γa∂γb
(13)

χabcd =
d4W

dγadγbdγcdγd

∣∣∣∣
{γa=0}

= −
∑

α 6=β

∑

µ 6=ν

[M−1]αβ;µν

[
V ab
αβV

cd
µν + V ac

αβV
bd
µν + V ad

αβV
bc
µν

]

+
∂4W

∂γa∂γb∂γc∂γd

∣∣∣∣
{γa=0}

(14)

and where

V ab
αβ =

∂3W

∂γa∂γb∂∆αβ

∣∣∣∣
{γa=0}

(15)
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Mαβ;µν =
∂2W

∂∆αβ∂∆µν

∣∣∣∣
{γa=0}

. (16)

All the derivative are computed setting the order parameter ∆ab to its saddle point value

at {γa = 0}. From Eq.s (13-14) we see that the coefficients µab are always regular while the

quartic coefficients χabcd can develop divergencies due to the fact that the operator Mαβ;µν

can develop zero modes. This happens at the Gardner transition point [2]. The Gardner

instability has been found in the context of the Hard Sphere model in [1, 2] and in the next

section we will generalize these results to thermal systems. What we have done up to now

is nothing but a Landau theory for the Gardner transition point.

In the normal glass phase, before reaching the Gardner instability, the saddle point MSD

matrix has a 1-step replica symmetry breaking (1RSB) fashion (see the next section) and

thus the form of the tensors M and V is simple. The tensor M has been discussed in [1, 2]

while V is given by

V ab
αβ = δab

[
G̃Ωa

αβ + H̃Γaαβ

]
+ (1− δab)

[
P̃ T 1

ab;αβ + Q̃T 2
ab;αβ + R̃T 3

ab;αβ

]
(17)

where the tensors Ω, Γ, T 1, T 2 and T 3 are defined by

Ωa
αβ =

δaα + δaβ
2

Γaαβ = 1 T 1
ab;αβ =

δaαδbβ + δaβδbα
2

T 2
ab;αβ =

δaα + δbβ + δaβ + δbα
4

T 3
ab;αβ = 1 .

(18)

At the Gardner transition point the operator M develops a zero eigenvalue, the replicon,

that we denote by λR. The corresponding eigenvector is a matrix δR∆ab that satisfies the

conditions
∑

a(6=b)

δR∆ab =
∑

b(6=a)

δR∆ab = 0 a, b = 2, . . . s+ 1

δR∆1a = 0 ∀a = 2, s+ 1 .

(19)

This means that the first term on the right hand side of (14) can be divergent due to the

zero mode. In order to evaluate the divergent parts of the cumulants in (10) we define the

projector on the replicon subspace

P
‖
ab;cd =

1

2

(
T 1
ab;cd + T 2

ab;cd + T 3
ab;cd

)
a, b, c, d = 2, . . . s+ 1 (20)

and it is zero whenever one of the replica index is equal to 1. From the quartic derivatives

we get that the singular part of the quartic derivative of the replicated free energy is given

14



by

d4W

dγadγbdγcdγd

∣∣∣∣
singular

= − 1

λR

s∑

(α 6=β)(µ 6=ν)

P
‖
αβ;µν

[
V ab
αβV

cd
µν + V ac

αβV
bd
µν + V ad

αβV
bc
µν

]
(21)

From this expression we finally get that the divergent part of the quartic cumulants of (10)

is given by

V σµ3
c = −3P̃ 2

2λR

V µ2
2

c
=

3P̃ 2

2λR

V 3σ4
c

=
3P̃ 2

2λR

(22)

The averages µ4 and V 2σ2µ2
c

have no diverging contribution, i.e. they are finite at the

transition. This is true for all µn. However, by going to higher orders in the free replica

sum expansion we can get higher order correlation functions of the elastic moduli and in

particular we can obtain the variances of the non-linear elastic moduli. These diverge as

discussed in the text. The average finite values µn are therefore not representative of the

typical behaviour, which is dominated by the diverging fluctuations. As written in the main

text, we have verified that these divergences, due to the vanishing of the replicon eigenvalue,

also hold in the low temperature phase below TG. All the detailed calculations will be

presented elsewhere [8].

III. THE GARDNER TRANSITION IN THERMAL SYSTEMS

The Gardner transition that is responsible for the breakdown of the theory of elasticity

in amorphous solids has been firstly detected in [1, 2] in the case of the Hard Sphere model.

Here we want to generalize the theory to thermal systems. Let us consider a system of

spheres that interact through an interaction potential of the following kind

V̂ (r) = ṽ

(
d

( |r|
D − 1

))
(23)

where ṽ is a generic potential that decreases sufficiently fast at infinity [9]. The Harmonic

Soft Sphere potential is exactly of this form. Indeed, in that case we have (we set V0 = 1

without loss of generality)

ṽHSS(h) =
h2

2d2
θ(−h) =

1

d2
vHSS(h) vHSS(h) =

h2

2
θ(−h) . (24)

15



It is convenient to define a reduced temperature β̂ = β/d2 so that the Boltzmann factor

becomes

e−βV̂HSS(r) = e−β̂vHSS(h) . (25)

For a generic potential we will define v(h) such that

e−βV̂ (r) = e−β̂v(h) (26)

where β̂ is an inverse temperature properly rescaled with the dimension.

We now consider the limit d→∞. In order to do that we need to consider scaled control

parameters that are β̂ and ϕ̂ = 2dϕ/d. By extending the calculations of [1, 10] we obtained

the expression of the free energy of a glass state prepared at (ϕ̂g, β̂g) and followed up to

(ϕ̂ = ϕ̂ge
η, β̂). Within a fullRSB ansatz [7, 10], the order parameter ∆ab is given by

∆1a = ∆r ∀a = 2, . . . , s+ 1

∆ab → {0,∆(x)} ∀a, b = 2, . . . , s+ 1 x ∈ [0, 1]
(27)

and the free energy of the glass state prepared at (ϕ̂g, β̂g) and followed up to (ϕ̂ = ϕ̂ge
η, β̂)

is given in by

−βf [α(ϕg, βg), β, ϕ] =
d

2
+
d

2
log

(
π 〈∆〉
d2

)
− d

2

∫ 1

0

dy

y2
log

(〈∆〉+ [∆](y)

〈∆〉

)
+
d

2

∆R

〈∆〉

+
dϕ̂g
2

∫ ∞

−∞
dh ehg∆R

(1, h+ ∆R/2)f(0, h− η + ∆(0)/2, β̂).

(28)

where

〈∆〉 =

∫ 1

0

dx∆(x) [∆](x) = x∆(x)−
∫ x

0

dy∆(y) (29)

and where ∆R = 2∆r −∆(0). Moreover

gΛ(1, x; β̂) =

∫ ∞

−∞

dy√
2πΛ

exp

[
− y

2

2Λ
− β̂v(x− y)

]
(30)
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while the function f together with ∆(x) and ∆r satisfy the following saddle point equations

f(1, h, β̂) = g∆(1)(1, h, β̂)

∂f

∂x
=

1

2

Ġ(x)

x

[
∂2f

∂h2
+ x

(
∂f

∂h

)2
]

P (0, h) = eh+η−∆(0)/2g∆R

(
1, h+ η − ∆(0) + ∆R

2
, β̂g

)

Ṗ (x, h) = −Ġ(x)

2x
[P ′′(x, h)− 2x(P (x, h)f ′(x, h))′]

1

G(0)
= − ϕ̂g

2

∫ ∞

−∞
dhP (0, h) (f ′′(0, h) + f ′(0, h))

∆R

G(0)2
=
ϕ̂g
2

∫ ∞

−∞
dhP (0, h) (f ′(0, h))

2

κ(x) =
ϕ̂g
2

∫ ∞

−∞
dhP (x, h) (f ′(x, h))

2

1

G(x)
=

1

G(0)
+ xκ(x)−

∫ x

0

dyκ(y) x > 0

G(x) = x∆(x) +

∫ 1

x

dz∆(z) ⇐⇒ ∆(x) =
G(x)

x
−
∫ 1

x

dz

z2
G(z) .

(31)

Before reaching the Gardner transition point, in the normal glass phase where standard

elasticity holds, these equations are solved by a 1RSB ansatz that corresponds to putting

∆(x) = ∆ where ∆ satisfies the much simpler set of equations

2∆r

∆2
− 1

∆
= ϕ̂g

∫ ∞

−∞
dh eh

∂

∂∆

[
g2∆r−∆

(
1, h+ ∆r −∆/2; β̂g

)
log g∆

(
1, h− η + ∆/2; β̂

)]

0 =
2

∆
+ ϕ̂g

∫ ∞

−∞
dh eh

[
∂

∂∆r
g2∆r−∆

(
1, h+ ∆r −∆/2; β̂g

)]
log g∆

(
1, h− η + ∆/2; β̂

)

(32)

The Gardner transition corresponds to the point where

0 = −1 +
ϕ̂g
2

∆2

∫ ∞

−∞
dheh+η−∆

2 g∆R

(
1, h+ η − ∆(0) + ∆R

2
, β̂g

)[
∂2

∂h2
ln g∆(1, h, β̂)

]2

(33)

where the replicon eigenvalue vanishes. The rescaled energy of the system (in the infinite

dimensional limit) at the 1RSB level is given by

ε̂ = − ϕ̂g
2

∫ ∞

−∞
dhehg∆R

(
1, h+

∆R

2
, β̂g

)
∂

∂β̂
ln g∆

(
1, h− η +

∆

2
, β̂

)
(34)

Formulas (32), (33) and (34) have been solved and computed numerically to obtain the
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phase diagrams of the main text. Their complete derivation with an extension of the theory

with shear strain will be given elsewhere [8].
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