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Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large scale structure
(LSS) as well as the fundamental relation between matter density perturbations and metric perturbations, thus
providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological
scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations
from General Relativity (GR). Employing a three-dimensional (3D) analysis based on the spherical Fourier-
Bessel (sFB) expansion, we investigate the extent to which MG theories will be constrained by a typical 3D
WL survey configuration including noise from the intrinsic ellipticity distribution σε of source galaxies. Here
we focus on two classes of screened theories of gravity: i) f(R) chameleon models and ii) environmentally
dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accu-
rately model the evolution of matter power-spectrum with redshift in these theories. Using a Fisher information
matrix based approach, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained
in the range fR0 < 5 × 10−6(9 × 10−6) for n = 1(2) with a 3σ confidence level. This can be achieved by
using relatively low order angular harmonics ` < 100. Including higher order harmonics ` > 100 can further
tighten the constraints, making them comparable to current solar-system constraints. We also employ a Principal
Component Analysis (PCA) in order to study the parameter degeneracies in the MG parameters. Our results
can trivially be extended to other MG theories, such as the K-mouflage models. The confusion from intrinsic
ellipticity correlation and modification of the matter power-spectrum at small scale due to feedback mechanisms
is briefly discussed.

PACS numbers:

I. INTRODUCTION

Numerous independent observations across a range of
scales have firmly established the accelerated expansion of
the Universe. This can be completely explained within Gen-
eral Relativity (GR) by the introduction of a finely tuned
cosmological constant Λ or by an additional smooth energy-
momentum contribution known as dark energy (DE). Alter-
natively, this could signal a deviation from GR on cosmo-
logical scales, so called modified theories of gravity (MG)
[25, 50]. Some of the simplest theories we could consider
are that of a single scalar field with a sufficiently flat po-
tential that provides the potential energy needed to drive an
accelerated expansion. Such a scalar field could arise as a
new form of matter or, as considered in this paper, as an ad-
ditional scalar degree of freedom in the gravitational sector
corresponding to some modification of GR. These scenarios
are generically plagued with problems ranging from an in-
complete understanding of the role of quantum corrections to
fine-tuning issues. For example, we often require that both
the vacuum energy and mass of the scalar must be exception-
ally small. The smallness of the vacuum energy constitutes
nothing more than a reformulation of the cosmological con-
stant problem whereas the ultra-light mass of the field posits
that there should exist a new fifth-force at very large scales.
Such fifth forces are strongly constrained by solar system ob-
servations to the extent that we typically require some form of
screening mechanism that suppresses the fifth force on these
scales [17, 28, 56, 86]. These screening mechanisms schemat-
ically arise by introducing some mechanism that changes the
nonlinear behaviour of the field at small scales whilst leaving
the scalar field to be ultra light on linear cosmological scales.

Fundamentally, the two approaches of (GR+DE) and MG
are very different. However, there is often sufficient free-
dom in both of these approaches that they may be tuned to
match any expansion history of the Universe. For the f(R)
and dilaton theories considered in this paper, the background
dynamics will be the same as in GR [12, 14, 15, 18]. How-
ever, in some models, such as the K-mouflage theories consid-
ered in [19, 20], this is not true and the background dynamics
can deviate from that of GR. On the other hand, the perturba-
tive regime often breaks degeneracies between MG and DE. It
is therefore instructive to consider observables that probe the
evolution of perturbations in screened theories of gravity, in
our case weak lensing.

Many different parameterisations for perturbations in mod-
ified theories of gravity exist in the literature. One of the sim-
plest possibilities is to consider linear cosmological perturba-
tions in the quasistatic limit, where k/a� H and we neglect
time derivatives of the fields. Under this assumption, we can
introduce two functions ν(k, a) and γ(k, a) that parameterise
deviations from GR via the modified Poisson equation [3, 22]

−k2Ψ = 4π (1 + ν) GN a
2 δρM, (1.1)

and

Φ = (1 + γ) Ψ. (1.2)

Here, γ is commonly referred to as the slip, GN is Newton’s
constant and Φ and Ψ are the metric potentials in the Newto-
nian gauge

ds2 = a2(τ)
[
− (1 + 2Φ) dτ2 + (1− 2Ψ) dx2

]
, (1.3)

where τ is the conformal time, a(τ) is the scale factor and x
comoving coordinates.
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This parameterisation is convenient for phenomenological
constraints from large scale structure as ν and γ are very gen-
eral functions of k and τ . It can be shown that this param-
eterisation works well in the linear regime but differs sig-
nificantly from the theoretical predications in the non-linear
regime, where screening effects will be important. The main
reason why the ν− γ parameterisation fails, is that it does not
correctly capture the environmental dependence of the screen-
ing mechanisms. The ν − γ type parameterisation will there-
fore not be valid in regimes ranging from mildly non-linear
scales to solar system scales. Another alternative parameteri-
sation that we could adopt is that based on effective field the-
ories for large scale structure, [10, 26, 34, 46, 47]. This for-
malism constructs an action in the Jordan frame, adopting the
unitary gauge, such that the operators are invariant under time
dependent spatial diffeomorphisms. At quadratic order, this
yields 9 free functions that may be tuned to fit a given mod-
ified theory of gravity. In this paper, however, we will adopt
the tomographic parameterisation of [13] which aims to cover
a broad class of theories that exhibit a fifth force mediated by
additional scalar degrees of freedom. The success of these
theories implicitly relies upon screening mechanisms to sup-
press the fifth force in local, high-density environments. The
tomographic approach can be shown to only require the tem-
poral dependence of the massm(a) and the coupling to matter
β(a). Once these two variables are determined, then the be-
haviour of the theory in different regimes will be completely
fixed [13].

As well as developments on the theoretical aspects of pa-
rameterising MGs, many different observational signatures
have been proposed, such as galaxy clustering [65, 71], CMB
weak lensing [2, 66], integrated Sachs-Wolfe (ISW) effect in
the CMB [2, 90, 91], galaxy-ISW cross-correlations [78, 91],
cluster abundances [48], galaxy-clustering ratios [7], redshift
space distortions [49], weak-lensing [37, 39, 76], 21cm obser-
vations [16, 35], matter bispectrum [8, 33] and many others.
The typical scales modified by the theories of gravity consid-
ered here correspond to sub-horizon scales, meaning that the
most stringent constraints come from large scale structure data
sets. For f(R) gravity, for example, one can constrain the
model parameters to |fR| ≤ 6.5 × 10−5 at 95% confidence
limit when taking a joint analysis of the CMB temperature
power spectrum, the galaxy power spectrum and the baryon
acoustic oscillation measurements. Taking the clustering ra-
tio constraints inferred from the galaxy power spectrum, one
finds that |fR| ≤ 4.6 × 10−5 at 95% confidence limit [7].
Similarly, it was shown that for a near-future 3D galaxy clus-
tering analysis we should be able to tighten these constraints
to |fR| ≤ 2× 10−5 at a 95% confidence limit [65].

With several deep, wide-field galaxy surveys in the plan-
ning stages or underway, such as DES1, Euclid2, LSST3,

1 http://www.darkenergysurvey.org/
2 http://www.euclid-ec.org/
3 http://www.lsst.org/

KiDS4 or CFHTLenS5, it is anticipated that galaxy clustering
counts and weak lensing observations will be measured to an
unprecedented level of accuracy. The relation between mat-
ter density perturbations and metric perturbations should be a
particularly sensitive probe for constraining modified theories
of gravity. Large scale structure probes, such as galaxy clus-
tering, will offer high precision, small-scale constraints but
will be strongly affected by non-linearities, galaxy biasing and
other baryonic physics [65]. This makes such galaxy cluster-
ing constraints sensitive to the detailed modelling of structure
formation. Alternatively, we can consider the weak lensing
of source galaxies induced by fluctuations in the gravitational
potential along the line of sight, leading to observable dis-
tortions in the observed images [62]. The deflection of pho-
tons by intervening structure will be the same in any metric
theory of gravity meaning that the deflection will be largely
unaltered in scalar-tensor theories. However, as scalar-tensor
theories generically induce corrections to the Newtonian po-
tential, there will be changes in the acceleration and clustering
of galaxies. In the context of weak lensing, this simply means
that the effect of the modified theories of gravity considered in
this paper is to alter the matter power spectrum, growth func-
tion and gravitational potential.

Early weak lensing observations typically adopted a 2D
flat-sky approach as the surveys only covered a small portion
of the sky and lacked redshift information [5, 42]. The next
step was to fold in redshift information by performing a to-
mographic analysis, in which the data is binned into redshift
slices [43, 44, 82]. This allows us to calculate the auto- and
cross-correlations between redshift slices to give pseudo-3D
results, meaning that less information is discarded. Instead,
we focus on an all sky 3D formalism that implicitly takes into
account photometric redshift information [38]. This formal-
ism is known as the spherical Fourier-Bessel (sFB) formalism
and, at a statistical level, includes extra information that may
be used to place tighter constraints on model parameters. This
method has been recently applied to the CFHTLenS survey
covering a 154 square degrees patch of sky with a median
redshift of z ∼ 0.7 and approximately 11 galaxies per square
arcminute suitable for weak lensing [54].

In this paper we will study the constraints that may be
placed on these screened modified theories of gravity us-
ing 3D weak lensing observations. We will focus on two
classes of modified theories of gravity: i) f(R) chameleon
models and ii) environmentally dependent dilatons. Each of
these models invokes a different mechanism for screening
gravity but both can be described via the tomographic ap-
proach of [13]. These models lead to an enhancement of
structure formation on quasi-linear and non-linear scales, i.e.
k ∼ {0.2, 20}h−1Mpc, which will be within the reach of up-
coming 3D weak lensing surveys. On non-linear scales, other
observables, such as galaxy clustering, can give rise to large
systematics due to the inherent uncertainty in galaxy bias and

4 http://kids.strw.leidenuniv.nl/overview.php
5 http://www.cfhtlens.org/
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baryonic feedback mechanisms. These are partially circum-
vented by the cleaner nature of weak lensing.

The fundamental approach that we take here is similar to
that of [37] in which the ΛCDM parameters are assumed to
be determined to the percent level by Planck [1], while our
modified theories of gravity lead to enhancements of up to
20 percent on small scales. This justifies our assumption that
there is a fixed ΛCDM background with any uncertainty in
the cosmology being treated as a systematic uncertainty. A
more complete analysis would involve a full exploration of the
parameter space using MCMC or Fisher matrix methods, we
leave such a study to a future investigation. For now, we use a
range of statistical tools to understand the constraints that may
be placed on the screened theories of gravity in prototypical
future 3D weak lensing surveys.

In Section II we introduce screened theories of gravity and
detail the model parameters and the values taken in our study.
In Section III we briefly discuss the formalism used to gen-
erate the non-linear matter power spectrum, relegating some
technical details to Appendix A. We then introduce the spher-
ical Fourier-Bessel formalism in Section IV and discuss the
machinery needed to describe 3D weak lensing observables,
impact of modified theories of gravity, noise contributions and
systematics. The bulk of the statistical analysis is presented
in Section V in which we use a χ2 analysis to constrain the
model parameters, a Fisher matrix analysis to estimate the 1σ
errors on the parameters and a principal component analysis
to determine the variance of the eigenvalues and which linear
combination of eigenvalues may be constrained to the greatest
degree. Section VI presents a summary of the key results and
some discussion on future topics of interest.

II. MODIFIED THEORIES OF GRAVITY

A. Screening Mechanisms

Modified theories of gravity are subject to many stringent
constraints, both theoretical and observational. The scalar-
tensor theories considered in this paper all aim to introduce
infra-red (IR) modifications that may be able to resolve the
dark energy problem and at least show some interesting effects
on cosmological scales. Many of these scalar field models will
have a coupling to the matter density that generally leads to a
fifth force that is dependent on the gradient of the scalar field
in dense regions. Such fifth forces are very tightly constrained
by solar system measurements, such as the Cassini probe [9]
and the Lunar Ranging experiment [88]. As a result of these
observations, the fifth force must be highly suppressed neces-
sitating some form of screening mechanism in order to ensure
compatibility of our modified theory of gravity with the solar
system constraints.

Screening mechanisms come in three main flavours based
on how the screening mechanism is implemented. Linearising
about a field perturbation ϕ = ϕ̄ + δϕ in the presence of

matter, the Lagrangian can be written in the Einstein-frame as

L ⊃ −1

2
Z(ϕ̄) (∂δϕ)

2︸ ︷︷ ︸
Vainshtein / K-mouflage

−

Chameleon︷ ︸︸ ︷
1

2
m2

eff(ϕ̄) (δϕ)
2

+ β(ϕ̄)
δϕ

MPl
δT︸ ︷︷ ︸

Damour-Polyakov

+ . . . ,

(2.1)

whereZ(ϕ̄) is the wavefunction normalisation or kinetic term,
meff(ϕ̄) is the effective mass and β(ϕ̄) is the coupling to
the trace of the energy-momentum tensor. The first class of
screening mechanisms rely upon non-linearities in the kinetic
term such that it becomes sufficiently large in dense environ-
ments. In this case, the fifth force constraints will be negli-
gible due to a suppression of the effective coupling to mat-
ter β(ϕ̄)/

√
Z(ϕ̄) � 1. This method is used by both the

Vainshtein mechanism [86] as well as the K-mouflage mech-
anism [4, 6, 19, 20]. The next class of screening mechanisms
modify the effective mass of the field such that the field is
massive in dense environments but ultralight on cosmologi-
cal scales. This means that fifth forces will be suppressed on
solar system scales whilst allowing for modifications to GR
on IR scales. This type of screening is prototypically used by
the Chameleon mechanism [56] where the mass of the field
grows with the matter density yielding a Yukawa like sup-
pression of fifth forces. Finally, the last screening mecha-
nism aims to reduce the coupling of the field in dense envi-
ronments. The Symmetron [40] model utilises this approach
and has a light mass in all environments with a coupling of
the form β(ϕ) ∝ ϕ. The model is equipped with a Z2 sym-
metry breaking potential that gives rise to a phase transition
that drives ϕ to zero in dense environments suppressing fifth
forces. Another possibility is that the coupling β(ϕ) is driven
to zero via the Damour-Polyakov [28] mechanism in which
the coupling function is minimised in dense environments.

B. Dilaton Models

1. Theory

The dilaton models are based on a breed of scalar fields
that emerge from all versions of string theory. In the low en-
ergy limit string theory yields classical GR along with a four-
dimensional scalar partner of the spin-2 graviton, the dilaton
ϕ. The vacuum expectation value (VEV) of the dilaton de-
termines the string coupling constant gs = eϕ/2Mpl . At tree-
level, the dilaton is massless with a gravitational-strength cou-
pling to matter, placing it in conflict with current constraints
on violations of the equivalence principle. A possible way
to avoid this is to invoke mechanisms by which the dilaton
can acquire a mass mϕ ≥ 10−3eV suppressing deviations
from GR at distances beyond the millimeter scale. Alter-
natively, Damour and Polyakov [28] proposed a mechanism
that naturally allows for a massless dilaton that can be rec-
onciled with current experimental constraints. The Damour-
Polyakov mechanism invokes string-loop modifications of an
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effective low-energy action to show that the graviton-dilaton-
matter system in a cosmological setting naturally drives the
dilaton ϕ to ϕm, where ϕm extremises the coupling functions
B−1
i (ϕ) of the theory. This mechanism allows us to fix the

value of the massless dilaton such that it decouples from mat-
ter, this is the so-called least coupling principle. Under the
Damour-Polyakov scenario, the coupling vanishes for a finite
value of the dilaton whilst retaining an exponentially runaway
potential that allows the dilaton to be displaced from its min-
imum without a coupling to matter. However, this result only
holds when the string and Planck scales are of the same or-
der of magnitude. If the string scale is lower than the Planck

scale by a few orders of magnitude then the Damour-Polyakov
mechanism is only at work in high density regimes, allowing
solar system constraints to be evaded. This particular scenario
is the environmentally dependent scenario [11, 68].

In this paper we focus on the class of environmentally de-
pendent dilaton models equipped with the Damour-Polyakov
mechanism such that the coupling between the scalar field
ϕ and matter is driven to zero in dense environments. The
scalar field remains light everywhere and thereby mediates a
long-ranged screened force. The action describing this system
in the Einstein frame has the following general scalar-tensor
form

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
(∇ϕ)2 − V (ϕ)− Λ4

0

]
+

∫
d4x
√
−g̃L̃m(ψ(i)

m , g̃µν), (2.2)

whereMpl = (8πGN)−1/2 is the reduced Planck mass in natu-
ral units, g is the determinant of the metric gµν in the Einstein
frame, g̃ is the determinant of the metric g̃µν in the Jordan-
frame, R is the Ricci scalar, V (ϕ) the potential for a given
theory and Λ4

0 a cosmological constant contribution. The two
frames are related by a conformal transformation

g̃µν = A2(ϕ)gµν . (2.3)

The matter field ψ(i)
m are governed by the Jordan-frame La-

grangian density L̃m and the scalar-field ϕ by the Einstein-
frame Lagrangian density

Lϕ = −1

2
(∇ϕ)

2 − V (ϕ). (2.4)

The Klein-Gordon equation for the scalar field is modified due
to the coupling of the scalar-field to matter

2gϕ = −βT +
dV

dϕ
, (2.5)

where T is the trace of the energy-momentum tensor and the
coupling of ϕ to matter is defined by

β = Mpl
d lnA

dϕ
. (2.6)

There is no explicit coupling between the scalar and the matter
fields. The fifth force effects arise from the conformal trans-
formation in Eq. (2.3) via the gradients of A. For matter par-
ticles of massm, the fifth force is given by F = −mc2∇ lnA
[56]. This may be written as an additional contribution ΨA to
the Newtonian potential ΨN

∇2ΨN = 4πGNa
2δρ =

3ΩMH
2
0δ

2a
, (2.7)

where the additional contribution is of the form

ΨA = c2
(
A− Ā

)
. (2.8)

We have assumed that A(ϕ) ' 1, as per experimental con-
straints on the variation of fermion masses.

We have included the cosmological constant term Λ4
0 in the

Lagrangian in Eq. (2.2) such that the minimum of the poten-
tial V (ϕ) is zero for ϕ→∞. Alternatively, we could choose
to interpret this as a non-zero minimum for the scalar-field
potential.

In the original tomographic dilaton models [12], the scalar
field potential V (ϕ) and coupling A(ϕ) had the following
functional form

V (ϕ) ' V0 exp

(
− ϕ

Mpl

)
, (2.9)

A(ϕ) ' 1 +
A2

2

ϕ2

M2
pl
, (2.10)

with {V0, A2} being the free parameters of the theory. As can
be seen, for ϕ ∼ 0 the coupling to matter becomes negligible
and the theory converges to GR. This theory can be gener-
alised by retaining the form of the coupling function given
above but generalising the potential V (ϕ). We focus on mod-
els for which the effective potential

Veff(ϕ) = V (ϕ) + [A(ϕ)− 1] ρ̄, (2.11)

has a minimum ϕ(a) that depends on the scale factor due to
the time variation of the matter density. This allows us to de-
fine the scalar mass at the minimum of the effective potential

m2 =
∂2Veff(ϕ)

∂ϕ2

∣∣∣∣
ϕm

. (2.12)

For models where m2 � H2/c2, the effective potential will
be stable or quasistable and the dynamics will be completely
determined by the minimum equation [14]

dV

dϕ

∣∣∣∣
ϕm

= −β A ρm
Mpl

. (2.13)
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Knowledge of the time evolution of the mass m(a) and cou-
pling β(a) is sufficient in order to determine the bare poten-
tial V (ϕ) and the coupling A(ϕ). This tomographic recon-
struction procedure allows us to define a one-to-one corre-
spondence between the scale factor a and the value of the
field ϕ(a). Given that a is determined by ρm this also de-
fines a mapping from ρm to ϕ(ρm) using only the time evolu-
tion of m(a) and β(a) [13, 14]. Given the evolutions of these
two variables, one can completely reconstruct the dynamics of
the scalar field for densities ranging from cosmological scales
down to solar system scales.

2. Derived Functions and Tomography

Adopting the approach of [12–15, 18], we can perturba-
tively expand in powers of δρ and δϕ with respect to the uni-
form background (ρ̄, ϕ̄). We can perform an expansion of the
potential V (ϕ) and coupling function A(ϕ) such that

n ≥ 1 : βn(a) ≡ β [ϕ̄(a)] = Mn
pl
dn lnA

dϕn
(ϕ̄), (2.14)

m2(a) ≡ m2
[ ¯ϕ(a), ρ̄(a)

]
(2.15)

=
1

c2

[
d2V

dϕ2
(ϕ̄) + ρ̄

d2A

dϕ2
(ϕ̄)

]
.

In addition it will be useful to define derivatives of the effec-
tive potential

n ≥ 2 : κn(ϕ̄, ρ̄) =
Mn−2

pl

c2
∂nVeff

dϕn
(ϕ̄) (2.16)

=
Mn−2

pl

c2

[
dnV

dϕn
(ϕ̄) + ρ̄

dnA

dϕn
(ϕ̄)

]
.

where Veff is defined by Eqn. (2.11) and is the effective poten-
tial that enters the modified Klein-Gordon equation. We typ-
ically refer to these functions in terms of the scale factor a(t)
by defining βn(a) = βn [ϕ̄(a)] and κn(a) = κn [ϕ̄(a), ρ̄(a)].
As it is possible to reconstruct V (ϕ) and A(ϕ) through the
two functions β(a) andm(a), a particular scalar-tensor model
can then be defined by specifying the functional form for
{β(a),m(a)}.

We adopt the parameterisation of [18] in which the coupling
function is given by

A(ϕ) = 1 +
1

2

A2

M2
pl

ϕ2, (2.17)

and we specify the mass m(a) instead of the potential V (ϕ).
The model is determined by the parameters {m0, r, A2, β0}
that set m(a) and β(a) by

m(a) = m0 a
−r, (2.18)

β(a) = β0 exp

[
−sa

2r−3 − 1

3− 2r

]
, (2.19)

where

s =
9A2 ΩM H2

0

c2m2
0

. (2.20)

We can recover the original dilaton models of [12] by
setting r = 3/2. We consider a series of 5 models
{A,B,C,D,E} that depend on the parameters of the the-
ory {s, β0, r,m0, A2}. The models {A,B,C,E} study the
dependence on {s, β0, r,m0} respectively, keeping all other
parameters fixed. In particular, the A-series systematically
varies s, the B-series β0, the C-series r and the E-series m0.
The D-series jointly varies {m0, s} such that it probes the de-
pendence onm0 withA2 fixed. The parameters used for these
models are explicitly given in Table I.

Together, these models allow us to study the phenomeno-
logical behaviour of the dilaton models as a function of the
underlying model parameters. All models introduce devia-
tions from GR at the level of 20 % with respect to the matter
power spectrum with the background cosmology being fixed
to that of ΛCDM.

3. Cosmological Dynamics

By construction A(ϕ) ' 1 meaning that the Jordan and
Einstein frame quantities will be nearly identical. In the
adopted parameterisation |Ā−1| � 1 and Ā ' 1+β2/(2A2),
where A2 ∼ (cm0/H0)2. Solar system constraints place a
lower limit on the mass of m0 & 103H0/c implying that
A2 & 106 and hence

|Ā− 1| . 10−6. (2.21)

Consequently, we will treat the Jordan frame and Einstein
frame scale factor ã = Āa, matter density ρ̃ = Ā−4ρ̄, cos-
mic time and expansion rates as being equal in the subsequent
analysis.

In the Einstein frame, the Friedmann equation has the form

3M2
pl H

2 = ρ̄+ ρ̄ϕ + ρ̄Λ. (2.22)

The background value of the scalar field is determined by the
minimum, i.e. Eq. (2.13), and the evolution of the background
scalar field and the background potential with respect to the
scale factor is given by

dϕ̄

da
=

3βρ̄

c2Mpl am2
, (2.23)

dV̄

da
= − 3β2ρ̄2

c2M2
pl am

2
. (2.24)

For the models considered in this paper, the scalar field den-
sity is subdominant compared to the matter density, ρ̄ϕ/ρ̄ ∼
10−6, and it is dominated by the potential term

˙̄ϕ2

2ρ̄
∼
(
H

cm

)4

∼ 10−12,
V̄

ρ̄
∼
(
H

cm

)2

∼ 10−6.

(2.25)

Consequently, the Friedmann equation is governed by the
matter density and cosmological constant ensuring that the
background LCDM cosmological expansion, i.e. 3M2

plH
2 =

ρ̄+ ρ̄Λ, is retained to an accuracy on order 10−6.
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In the quasistatic limit, the dynamics of the scalar field is
given by the Klein-Gordon equation

c2

a2
∇2ϕ =

dV

dϕ
+ ρ

dA

dϕ
, (2.26)

and the leading order perturbed Klein-Gordon equation re-
duces to [18]

δϕ

Mpl
= − 3βΩMa

2H2

c2 (a2m2 + k2)
δ. (2.27)

From this we find that [18, 37]

δρϕ
δρ
∼
(
H

cm

)2
1

1 + k2/a2m2
. 10−6, (2.28)

i.e. fluctuations of the scalar field energy density are negligi-
ble in comparison with the matter density fluctuations. Cou-
pled with the fact that |δA| . 10−6, the modifications to
the growth of structures do not arise from a different back-
ground cosmology or from perturbations to the scalar field en-
ergy density, but only from the fifth force acting on the matter
density perturbations. Scalar field perturbations do not signifi-
cantly alter the Einstein frame Newtonian potentials, such that
Φ = Ψ = ΨN to within an accuracy of 10−6 [65]. The Newto-
nian potential obeys the standard Poisson equation as per Eq.
(2.7). However, unlike GR, we must add to the Newtonian
potential a fifth-force potential ΨA = c2 lnA that is not negli-
gible and can lead to deviations in the matter power spectrum
on the level of 10 % for the models considered in this paper.
Whilst |A − 1| ≤ 10−6 is negligible as compared to unity, it
will not be negligible with respect to |ΨN|/c2 ≤ 10−5.

C. f(R) Models

1. Theory

A set of popular modifications to GR are the so-called
fourth order theories of gravity (FOG). These arise as rather
natural extensions to GR appearing in the low energy limit of
various fundamental theories. In FOG, the Einstein-Hilbert
action is modified by additional curvature functions that con-
tain second derivatives of the metric. The resulting system of
equations will be fourth order in nature∫
d4x
√
−g R→

∫
d4x
√
−g f

(
R,RabR

ab, CabcdC
abcd

)
,

(2.29)

where R is the Ricci scalar, Rab the Ricci tensor and Cabcd
the Weyl tensor. Lovelock’s theorem tells us that the field
equations for a metric theory of modified gravity in a four-
dimensional Riemannian manifold will admit higher than sec-
ond order derivatives [59, 60]. These higher order terms will
generically give rise to instabilities due to a theorem by Os-
trogradski [69]. The f(R) models are a subclass of fourth-
order theories of gravity that evade Ostrogradski instabilities

due to the fact that they are degenerate. This just means that
the highest derivative terms cannot be written as a function
of the canonical variables. The resulting degrees of freedom
can be completely fixed by a g00 constraint, preventing ghost
instabilities from arising in these theories. The f(R) models
were first introduced in [21, 80] and have subsequently been
heavily discussed in the literature [25, 79].

The action for the f(R) theories considered here is given
by

S =

∫
d4x
√
−g

[
M2

pl

2
[R+ f(R)]− Λ4

0 + Lm(ψ(i)
m )

]
,

(2.30)

where, again, we have explicitly included a cosmological con-
stant term Λ4

0. In this section, we will explicitly work in the
Jordan frame with the Einstein frame metric being denoted by
gEµν . We restrict ourselves to the high-curvature limit f(R)
theories that can be written in the following functional form
[13, 45]

f(R) = −fR0

n

Rn+1
0

Rn
, (2.31)

fR =
df(R)

dR
= fR0

Rn+1
0

Rn+1
. (2.32)

The two free parameters in this theory are the normalisation
fR0

and the exponent n > 0. These models are consistent
with both solar system and Milky-Way constraints due to the
chameleon mechanism for |fR0

| ≤ 10−5. This particular
class of models has been chosen to satisfy a number of de-
sirable observational properties. Firstly, the cosmology must
be consistent with LCDM at high redshifts due to CMB con-
straints. Secondly, there should be an accelerated expansion
at low redshift with an expansion history that is sufficiently
close to LCDM. Finally, the theory should reduce to GR as a
limiting case. These constraints demand that

lim
R→∞

f(R) = const, (2.33)

lim
R→0

f(R) = 0. (2.34)

In such a theory, the background expansion will follow that
of ΛCDM with the growth of structure deviating from GR on
quasilinear and nonlinear scales.

The class of f(R) models can be shown to be equiva-
lent to scalar-tensor theories expressed in the Einstein frame.
For example, consider the conformal transformation g̃µν =

A−2(ϕ)gµν where A(ϕ) = exp [βϕ/Mpl] and β = 1/
√

6.
Under this transformation, the f(R) theory is explicitly shown
to correspond to an additional scalar degree of freedom ϕwith
a potential [13]

V (ϕ) =
M2

pl

2

(
RfR − f(R)

(1 + fR)2

)
, (2.35)

where

fR = exp

[
−2βϕ

Mpl

]
− 1. (2.36)



7

Model m0 [hMpc−1] r β0 s

(A1,A2,A3) (0.334, 0.334, 0.334) (1.00, 1.00, 1.00) (0.50, 0.50, 0.50) (0.60, 0.24, 0.12)

(B1,B3,B4) (0.334, 0.334, 0.334) (1.00, 1.00, 1.00) (0.25, 0.75, 1.00) (0.24, 0.24, 0.24)

(C1,C3,C4) (0.334, 0.334, 0.334) (1.33, 0.67, 0.40) (0.50, 0.50, 0.50) (0.24, 0.24, 0.24)

(D1,D3,D4) (0.667, 0.167, 0, 111) (1.00, 1.00, 1.00) (0.50, 0.50, 0.50) (0.06, 0.96, 2.16)

(E1,E3,E4) (0.667, 0.167, 0.111) (1.00, 1.00, 1.00) (0.50, 0.50, 0.50) (0.24, 0.24, 0.24)

TABLE I. Parameters describing the dilaton models considered in our study. The parameters are used to define the scalar potential V (ϕ) and
the coupling function A(ϕ) through the {β(a),m(a)} parameterization.

This reformulation of the f(R) theories is particularly eluci-
dating in the sense that the screening mechanism clearly cor-
responds to the mass of the scalar field growing with the mat-
ter density with a Yukawa-like potential suppressing the fifth
force in dense environments. So wherever the scalar field is
small compared to the ambient Newtonian potential, screen-
ing will be efficient.

Adopting the tomographic approach as before [13], the
f(R) theories can be parameterised by the mass m(a) and the
coupling function β(a) in terms of a and the ambient back-
ground matter density ρ̄(a) = 3ΩMH

2
0M

2
pl/a

3. This estab-
lishes an explicit mapping from {n, fR0} to {m(a), β(a)}

m(a) = m0

(
4ΩΛ0 + ΩMa

−3

4ΩΛ0 + ΩM

)(n+2)/2

, (2.37)

m0 =
H0

c

√
ΩM + 4ΩΛ0

(n+ 1)|fR0
|
, (2.38)

β(a) =
1√
6
. (2.39)

Throughout this paper we adopt values of n = {1, 2} and
|fR0 | = {10−4, 10−5, 10−6}. Note that |fR0 | ∼ 10−4 is cur-
rently ruled out by observations and will serve as a consis-
tency check in our analysis.

2. Cosmological Dynamics

The f(R) models considered in this paper have been de-
signed to closely mimic the background ΛCDM cosmology
as |fR| � 1. From the Friedmann equation we see that

3M2
pl

[
H2 − f̄R

(
H2 + Ḣ

)
+ f̄/6 + f̄RRH

˙̄R
]

= ρ̄+ ρ̄Λ,

(2.40)

with dot derivatives denoting a derivative with respect to cos-
mic time t and fRR = d2f/dR2. In the background, we
see that R̄ = 12H2 + 6Ḣ . All the other terms are of order
|fR0 |H2 such that the ΛCDM cosmology 3M2

plH
2 = ρ̄+ ρ̄Λ

is recovered up to an accuracy of 10−4 for |fR| ≤ 10−4. We
can also check that the conformal factor A(ϕ) is given by
A = (1 + fR)−1/2 such that |Ā − 1| ≤ 10−4. This means
that we can treat the background quantities in the Einstein and

Jordan frames as being approximately equal and equal to the
ΛCDM fiducial values to an accuracy of 10−4 or better.

In terms of the Newtonian gravitational potential, ΨN, the
f(R) theories introduce corrections to the Weyl scalars de-
fined as in Eq.(1.3) which, in the small-scale sub-horizon
limit, reduce to [13]

Φ = ΨN −
c2

2
δfR, (2.41)

Ψ = ΨN +
c2

2
δfR. (2.42)

Here δfR = fR − f̄R and the subscript N denotes the New-
tonian gravitational potential as defined in GR. These rela-
tions are calculated in the Jordan frame, therefore the modifi-
cations to gravity are directly imprinted in the metric poten-
tials, unlike for the expressions obtained for the dilaton mod-
els considered previously that were derived in the Einstein
frame. Conveniently, in the weak lensing potential the op-
posite sign contributions to the metric potentials (2.41)-(2.42)
will exactly cancel.

Finally, the fluctuations of the new scalar degree of freedom
δfR are given by the Poisson equation

3
c2

a2
∇2δfR = δR− 8πGN δρ, (2.43)

and dynamics of matter particles will be given by solving
the geodesic equation where the Newtonian metric potential
is now replaced by the metric potentials in Eqns. (2.41) and
(2.42).

III. NON-LINEAR POWER SPECTRA

The dilaton and f(R) models reproduce the smooth back-
ground expansion history of ΛCDM cosmology to within a
level of accuracy that cannot be detected by observations. In
order to study the effect of these modified theories of grav-
ity we therefore need to move to the perturbative regime and
study the evolution of the matter density and metric perturba-
tions. At lowest order, modified theories of gravity typically
result in a scale and time-dependent modification to the New-
tonian gravitational constant GN. In the quasilinear and non-
linear regime the modifications become much more sensitive
to the particular screening mechanism which in turn depends
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Model m0 [hMpc−1] r β0 s

n = 1, |fR| = {10−4, 10−5, 10−6} (0.042, 0.132, 0.417) (4.5, 4.5, 4.5) (0.408, 0.408, 0.408) (0., 0., 0.)

n = 2, |fR| = {10−4, 10−5, 10−6} (0.034, 0.108, 0.340) (6.0, 6.0, 6.0) (0.408, 0.408, 0.408) (0., 0., 0.)

TABLE II. Parameters describing the f(R) models considered in our study. These parameters are used to define the scalar potential V (ϕ) and
the coupling function A(ϕ) through the {β(a),m(a)} parameterization.
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FIG. 1. The nonlinear matter power spectrum Pδδ(k) for the f(R)
models (top) with n = 1 and |fR| = {10−4, 10−5, 10−6}. The bot-
tom plot shows the redshift evolution of the nonlinear matter power
spectrum in GR between z = 0 (top most line in lower plot) and
z = 4 (bottom most line in lower plot). As can be seen in the upper
plot, the modified theories of gravity lead to enhancement in structure
formation on scales beyond k ∼ few× 10−2 hMpc−1 compared to
GR.

nonlinearly on the environment. This results in modifications
to the equations of motion, inducing modifications to the dy-
namical and statistical properties of matter density clustering.
This can be seen in Figure 1 where the mildly non-linear and
non-linear scales show an enhancement in structure formation
over that of GR. We also plot the change in the matter power
spectrum as a function of redshift between z = 0 and z = 4.
A detailed discussion of the prescription used to generate the
nonlinear matter power spectra via the single stream approxi-
mation and halo modelling is given in Appendix A.

This approach is built on the techniques developed in
[27, 87] for ΛCDM cosmologies and was subsequently ex-
tended to modified theories of gravity in [15, 18, 19]. This ap-
proach combines results in 1-loop perturbation theory with re-
sults from halo models in order to extend the domain of valid-
ity of the nonlinear matter power spectrum to k ∼ 1hMpc−1.

IV. 3D WEAK LENSING

A. Weak Lensing Introduction

Weak gravitational lensing is a particularly powerful probe
of the epoch in cosmological history in which the transition
from dark matter dominance to dark energy dominance oc-
curs [62]. This makes weak lensing observables particularly
suitable for studies of DE or MG, where baryonic physics
on small scales can be neglected circumventing the need for
detailed modelling of various effects including bias between
dark matter and baryonic matter.

In the Newtonian gauge, scalar perturbations to the metric
can be completely characterised by the two Weyl potentials,
Φ and Ψ. If we take GR and neglect anisotropic stresses, an
assumption which will be very reasonable on large scales in
ΛCDM and most generic smooth DE models, we find that
Φ = Ψ = ΨN, where the Newtonian potential can be directly
related to density perturbations via the Poisson equation (2.7).
In many modified theories of gravity, these assumptions break
down. This can be seen explicitly in the Jordan-frame ex-
pressions for the metric potentials in f(R), Eqns. (2.41) and
(2.42).

However, as null geodesics are conformally invariant, the
geodesics will only depend on the conformally-invariant part
of the Riemann tensor, the Weyl part. This means that weak
lensing is not sensitive to the individual metric potentials but
instead to the linear combination of potentials given by

ΦWL =
Φ + Ψ

2
. (4.1)

Then, we find that for all the scenarios considered in this pa-
per, the ΛCDM cosmology, the Dilaton models and the f(R)
theories, we have

ΦWL = ΨN, (4.2)

where ΨN is again the Newtonian potential defined by the
standard Poisson equation (2.7).
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FIG. 2. 3D weak lensing lensing potential Cφφ` (k1, k1) in GR with r0 ∈ {1400, 1800, 2200}h−1Mpc and ` = 40. Note that we have left
c = 1 and neglected the amplitude pre-factor A = 16/π2c4, which is just some fixed scaling of the amplitude.

B. Spherical Fourier-Bessel Formalism

Spherical coordinates will be a natural choice in the anal-
ysis of future cosmological data sets as, by an appropriate
choice of coordinates, we can place the observer at the ori-
gin. Future surveys promise to yield both large (i.e. wide an-
gle) and deep (i.e. large radial coverage) coverage of the sky,
necessitating a simultaneous treatment of the extended radial
coverage and spherical sky geometry. A natural basis for such
an analysis is given by the spherical Fourier-Bessel (sFB) ba-
sis. In this section, we follow [24, 38, 65, 72, 73] and outline
the conventions used for the sFB formalism in this paper.

Let us consider a 3D random field ζ(r, Ω̂) with Ω̂ denoting
the angular coordinate on the surface of a sphere and r denot-
ing the comoving radial distance. In the 3D case, the eigen-
functions of the Laplacian will be constructed from products
of the spherical Bessel functions of the first kind j`(kr) and
spherical harmonics Y`m(Ω̂) with eigenvalues of −k2. For
simplicity, we assume a flat background Universe and the sFB
decomposition of the homogeneous 3D field reduces to

ζ(r, Ω̂) =

∫ ∞
0

dk
∑
{`m}

ζ`m(k)Zk`m(r, θ, ϕ), (4.3)

where we have introduced the orthonormal sFB basis func-
tions

Zk`m(r, θ, ϕ) =

√
2

π
k j`(kr)Y`m(θ, ϕ). (4.4)

The inverse relation is given by

ζ`m(k) =

∫ ∞
0

dr r2

∫
dΩ̂ ζ(r, Ω̂)Z∗k`m(r, θ, ϕ). (4.5)

This is something of a spherical analogue to the conventional
Cartesian Fourier decomposition. In particular, defining the

normalisation of the 3D Fourier transform and power spec-
trum as

ζ(r) =
1

(2π)3/2

∫
dk eik·r ζ(k), (4.6)

〈ζ(k)ζ∗(k′)〉 = Pζζ(k) δD(k− k′), (4.7)

the sFB coefficients and the Fourier modes can be related as

ζ`m(k) = i`k

∫
dΩ̂Y ∗`m(Ω̂) ζ(k, Ω̂), (4.8)

ζ(k, Ω̂) =
1

k

∑
{`m}

(−i)`ζ`m(k)Y`m(Ω̂), (4.9)

where we have introduced the conventional Dirac delta func-
tion δD(x). The sFB power spectrum can now be defined as

〈ζ`m(k)ζ∗`′m′(k′)〉 = Cζζ` (k) δD(k − k′) δ``′ δmm′ , (4.10)

where we see that Cζζ` (k) = Pζζ(k). This result implicitly as-
sumes all-sky coverage and neglectes any galactic cut-off, ra-
dial selection function or other discrete effects such as mask-
ing.

C. The Lensing Potential in the sFB Formalism

In gravitational weak lensing we can associate the weak
lensing potential φ for some arbitrary source at comoving po-
sition r = (r, θ, ϕ) to the underlying Weyl potential ΦWL via
a line-of-sight integral

φ(r) ≡ φ(r, Ω̂) =
2

c2

∫ r

0

dr′ FK(r, r′) ΦWL(r′, Ω̂)

(4.11)

FK(r, r′) ≡ fK(r − r′)
fK(r) fK(r′)

. (4.12)
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This expression implicitly uses the Born approximation in
which the path of null geodesics is assumed to correspond to
the unperturbed background path. Similarly, it also neglects
any coupling between lenses along the line of sight. The lens-
ing potential φ is conventionally treated as a 2D radial projec-
tion of the underlying 3D Weyl potential, e.g. [58].

The weak-lensing potential can be harmonically decom-

posed as follows:

[ΦWL]`m (k) =

∫
d3r ΦWL(r)Z∗k`m(r), (4.13)

with an inverse relation

ΦWL(r) =

∞∑
`=0

m=+`∑
m=−`

∫
dk [ΦWL]`m (k)Zk`m(r). (4.14)

Using the above decompositions, the harmonic decomposi-
tion of the lensing potential φ`m(k) and the 3D gravitational
potential [ΦWL]`m (k, r) can be related by [24]

φ`m(k) =
4k

πc2

∫ ∞
0

dk′ k′
∫ ∞

0

dr r2 j`(kr)

∫ r

0

dr′ FK(r, r′) j`(k
′r′) [ΦWL]`m (k′; r′). (4.15)

In GR and in the modified gravity models studied in this paper,
the weak lensing potential [ΦWL]`m(k; r) can be related to
the matter overdensity δ`m(k; r) via the usual Poisson relation
(2.7), using the relation (4.2),

Φ`m(k; r) = −3

2

ΩmH
2
0

k2a(r)
δ`m(k; r) (4.16)

These sets of equations explicitly determine the relationship
between φ, ΦWL and δ [24]. As the statistics of δ and ΦWL

can be explicitly calculated, then 3D weak lensing through
the lensing potential φ will allow us to probe the underlying
cosmological or modified gravity model parameters. These
expressions hold for the ΛCDM cosmology as well as for the
Dilaton and f(R) models studied in this paper, as the back-
ground is not modified (within an accuracy of 10−4) and the
weak lensing potential is still given by the standard Poisson
equation (4.2).

D. 3D Weak Lensing

Most of the discussion has focused on the weak lensing po-
tential φ whereas the actual lensing observables are the mag-
nification κ, or the isotropic convergence scalar field, and the
complex shear γ(r) = γ1(r) + iγ2(r), which corresponds to

two orthogonal modes of distortion. Weak lensing shear is a
spin-2 object and is fundamentally tensorial in nature, hence
the appropriate basis harmonics will be spin-weighted spheri-
cal harmonics [81]. In this section we briefly review the full-
sky 3D weak lensing formalism. This approach was first intro-
duced in [38] and subsequently generalised to a full tensorial
form in [24]. Our treatment will follow the presentation of
[24]. Note that weak gravitational lensing implicitly refers to
the regime in which |γ| � 1 and |κ| � 1.

The distortion of null geodesics on some 2D surface at a
comoving distance of r induced by weak gravitational lensing
via some intervening structure is given by[
∇i∇j −

1

2
gij∇2

]
φ(r) = [γ1(r)σ3 + γ2(r)σ1]ij , (4.17)

where σi are the Pauli spin matrices, gij is just the metric of
the 2-sphere and∇i are covariant derivatives on the 2-sphere.
Alternatively, we can study the isotropic convergence scalar
field which is defined by the Laplacian of the lensing potential

[κ(r)]ij = κ(r) Iij =
1

2
gij ∇2 φ(r), (4.18)

with Iij the identity matrix. In a spherical polar coordinate
system {θ, ϕ}, the weak lensing shear and convergence field
tensor are explicitly given by [24]

[γ(r)]ij =

[
1
2

[
∇θ∇θ − csc2 θ∇ϕ∇ϕ

]
∇ϕ∇θ

∇ϕ∇θ 1
2

[
∇ϕ∇ϕ − sin2 θ∇θ∇θ

]] φ(r) (4.19)

[κ(r)]ij =

[
1
2

[
∇θ∇θ + csc2 θ∇ϕ∇ϕ

]
0

0 1
2

[
∇ϕ∇ϕ + sin2 θ∇θ∇θ

]] φ(r) (4.20)

The complex shear can now be split into two complex poten- tials φE and φB such that

γ(r) = γ1(r) + iγ2(r) =
1

2
ðð [φE(r) + iφB(r)] , (4.21)

γ∗(r) = γ1(r)− iγ2(r) =
1

2
ð̄ð̄ [φE(r)− iφB(r)] , (4.22)
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where ð and ð̄ are differential operators that act as spin-raising
and spin-lowering operators. The potentials φE and φB cor-
respond to the electric (even parity) and magnetic (odd parity)
parts of the field. Weak gravitational lensing alone is sourced
by the real part of the field necessitating that φE = φ(r) and
φB = 0. As the shear field induced by weak lensing is of pure
electric type, non-zero values for φB can be a robust diagnos-
tic for systematics or foreground contamination.

The two real scalar potentials φE and φB will completely
characterise the distortion field induced by weak lensing and
can be expressed in the sFB basis as follows [24]

φE(r) = −2

∫ ∞
0

dk
∑
{`m}

√
(`− 2)!

(`+ 2)!
E`m(k)Zk`m(r, θ, ϕ),

(4.23)

φB(r) = −2

∫ ∞
0

dk
∑
{`m}

√
(`− 2)!

(`+ 2)!
B`m(k)Zk`m(r, θ, ϕ).

(4.24)

The shear field γ(r) can be decomposed into a spin-weighted
spherical Fourier-Bessel basis via

γ(r) =

∫ ∞
0

dk
∑
{`m}

2γ`m(k) 2Zk`m(r, θ, φ), (4.25)

where we have introduced the spin weighted sFB basis func-
tions

sZk`m(r, θ, ϕ) =

√
2

π
k j`(kr) sY`m(θ, ϕ). (4.26)

and the spin-weighted expansion coefficients can be related to
the electric E`m and magnetic B`m harmonics via

2γ`m(k) = − [E`m + i B`m] (k), (4.27)

−2γ`m(k) = − [E`m − i B`m] (k). (4.28)

Given that for weak lensing we require that φB = 0, then the
complex shear field can be related to the underlying lensing
potential φ(r) as via [24]

γ(r) =
1

2
ððφ(r), γ∗(r) =

1

2
ð̄ ð̄φ(r). (4.29)

By performing a sFB expansion of the lensing potential, and
acting upon this with the spin-raising and spin-lowering oper-
ators, we can relate the E`m’s and B`m’s to the lensing poten-
tial harmonics

E`m(k) = −1

2

√
(`+ 2)!

(`− 2)!
φ`m(k) B`m = 0. (4.30)

Deviations from B`m = 0 should be a good discriminator of
systematic effects. The 3D spin-weight 2 shear coefficients
are related to the lensing harmonics via an `-weighted prefac-
tor [24]

2γ`m(k) =−2 γ`m(k) =
1

2

√
(`+ 2)!

(`− 2)!
φ`m(k). (4.31)

This final expression will allow us to relate the shear
lensing spectra Cγγ` (k1, k2) to the lensing potential spectra
Cφφ` (k1, k2).

E. 3D Weak Lensing Power Spectra

1. Lensing Potential and Lensing Shear Spectra

The full 3D sFB decomposition of the Weyl potential Φ and
the lensing potential φ can be used to define power spectra for
via the harmonics in the usual way

〈Φ`m(k; r) Φ∗`′m′(k′; r)〉 = CΦΦ
` (k; r) δD(k − k′) δK``′ δKmm′ ,

(4.32)

〈φ`m(k)φ`′m′(k′)〉 = Cφφ` (k, k′) δK``′ δ
K
mm′ , (4.33)

where δKab are the Kronecker delta functions. Note that the
lensing potential is not homogeneous and isotropic in 3D
space but rather a 2D projection at a source of comoving dis-
tance r of the underlying gravitational potential Φ between us
and the source. This means that it will be homogeneous and
isotropic on the 2-sphere but this will not hold in the radial di-
rection [24], hence the difference in the structure of the power
spectra.

Using the harmonic decomposition of the lensing potential,
the power spectrum can be written as [24]

Cφφ` (k1, k2) =
16

π2c4

∫ ∞
0

dk′ k′2 Iφ` (k1, k
′) Iφ` (k2, k

′),

(4.34)

Iφ` (ki, k
′) = ki

∫ ∞
0

dr r2 j`(kir) (4.35)

×
∫ r

0

dr′ FK(r, r′) j`(k
′r′)

√
PΦΦ(k′; r′).

In both GR and modified theories of gravity we assume that
the correlations of the Weyl potential Φ are significantly non-
zero such that we assume the potential power spectrum is ap-
proximately [24]

PΦWL
(k; r, r′) '

√
PΦWL

(k; r)PΦWL
(k; r′). (4.36)

As the correlations of δ are restricted to very small scales
|r − r′| ≤ 100h−1Mpc, we simply replace PΦWL

(k; r, r′)
by PΦWL

(k; r).
The lensing power spectrum can be written as

PΦWL(k; z) = D2
+(k; z)PΦWL(k; 0), (4.37)

which, in the GR limit, can also be expressed in terms of the
matter power spectrum via the Poisson equation as per Eqns.
(2.7) and (4.16)

PΦWL(k; z)
GR
=

(
3Ωm0H

2
0

2ak2

)2

Pδδ(k; z). (4.38)
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The shear lensing spectrum is related to the lensing potential
spectrum via Eq. (4.31)

Cγγ` (k1, k2) =
1

4

(`+ 2)!

(`− 2)!
Cφφ` (k1, k2). (4.39)

This result again assumes perfect sky coverage and neglects
finite survey, selection function and sky mask effects. These
may be accounted for using a pseudo-C` approach as de-
tailed in [64], where the method was used to reduce the data.
We show typical sFB weak lensing spectra for ` = 40 and
r0 ∈ {1400, 1800, 2200}h−1Mpc in Figure 2. The typical
deviations from GR for the f(R) models are shown in Figure 3
and for dilaton models in Figure 4.

2. Noise Contributions and Systematics

In reality, the data that we have access to are estimates of
the shear field at given 3D positions in space. The radial co-
ordinates are usually not known precisely but are estimated
by some photometric redshift which implicitly has an error at-
tached to it, typically of the order σz ∼ 0.02−0.1. These pho-
tometric redshift estimates lead to a smoothing of the distri-
bution in a radial direction. A more complete analysis would
take this effect into account [38]. We neglect these contri-
butions but do include effects from shot noise under the as-
sumption that galaxies are a Poisson sampling of an underly-
ing smooth field [38, 70]. The variance of the shear estimate
for a single galaxy will be dominated by the variance in in-
trinsic ellipticity σ2

ε rather than by lensing [38, 52, 53]. This
leads to a shot-noise term of the form

〈γαγ∗β〉 =
σ2
ε

2
δKαβ . (4.40)

The intrinsic ellipticity signal can be difficult to separate and
remains a poorly understood noise contribution.

Fundamentally, the choice of non-linear matter power spec-
trum used in our analysis depends on the underlying cosmol-
ogy. In this paper we aim to constrain deviations from General
Relativity with respect to a fixed ΛCDM background. How-
ever, deviations induced by a modified theory of gravity are
degenerate with a cosmology that incorporates baryonic feed-
back and/or massive neutrinos. In a 2D analysis, where we
used Limber’s approximation to perform a projection, we mix
up the k and the ` modes making any discrimination between
the various non-linear effects much harder. In 3D, we can
study the non-linearities mode-by-mode as a function of k and
` such that it may be possible to disentangle the various non-
linear contributions. The tomographic projections and their
correlators can always be constructed from the 3D spherical
Fourier-Bessel analysis, as the required information is already
present.

We have ignored the effect of baryonic feedback and mas-
sive neutrino in our study. However, the effect of these on
modification of matter power spectrum are degenerate espe-
cially at smaller wave numbers k < 10−1hMpc−1 with that
of MG theories. The impact of both effects can be included

as a multiplicative redshift and scale dependent bias. The
feedback effect, which includes the effects of cooling, heat-
ing, star-formation and evolution, chemical enrichment, su-
pernovae feedback. The modelling of such processes is diffi-
cult and involve running hydrodynamic simulations [75]. The
effect of massive neutrinos can similarly be incorporated us-
ing an effective multiplicative bias (see [37] for results in pro-
jection). Our formalism can readily be used to incorporate
such effects. For example, we could schematically write [37]

Ptot(k, z) = PMG(k, z)b2f (k, z)b2ν(k, z), (4.41)

and use this in the approximation given Eq.(4.36). This would
simply serve to renormalise Eq.(4.35) meaning that feedback
mechanisms can be transparently folded into the analysis. A
discussion of the impact of massive neutrinos on the 3D spher-
ical Fourier-Bessel power spectrum can be found in [29, 51].

Unless otherwise specified, the canonical survey configu-
ration that we adopt for the 3D weak lensing spectra has a
survey depth of r0 = 1400h−1 Mpc and takes multipoles in
the range ` ∈ {10, 80} to ensure that we are in the regime that
probes large scales. In this regime, we can assume contami-
nation effects from feedback etc will be subdominant.

V. STATISTICAL ANALYSIS

A. Comparison with Previous Studies

In this section we briefly discuss the plethora of constraints
on modified theories of gravity and how competitive we ex-
pect 3D weak lensing to be. The constraints use multiple
probes that fold in information from a wide range of astro-
physical processes covering a very broad range of scales. Cur-
rent tests of GR on cosmological scales are still not at the lev-
els of precision offered by small scale experiments. Some of
these constraints, such as weak lensing, redshift space distor-
tions and galaxy clustering, require us to fix a particular model
in order to estimate and reconstruct the growth rate of large
scale structure from data. In addition, many of the observable
effects are vexed by a poor understanding of baryonic physics,
such as the role of non-linear galaxy bias or feedback mech-
anisms in both standard GR and modified theories of gravity,
necessarily introducing uncertainty into the constraints. Here
we show how 3D weak lensing at low multipoles, ` < 100,
is likely to be a relatively clean probe of modified theories of
gravity with systematic effects and constraints only becoming
significant at higher multipoles.

1. f(R) Models

Amongst the largest scales we can probe, CMB lensing
from Planck offers the deepest line of sight constraints on
modified theories of gravity but only places a relatively weak
constraint of |fR| ≤ 10−2 for z . 6 [2]. On similarly large
scales, it is highly anticipated that a joint analysis of 21cm in-
tensity mapping and the CMB could yield much tighter con-
straints of |fR| ≤ 10−5 for z ∼ 0.7 − 2.5 due to the greater
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FIG. 3. In this plot we show the 3D weak lensing spectra for the f(R) models assuming a survey depth of r0 = 1400h−1. The left plots
show the total ` = 20 (top) and ` = 40. The plots on the right show the difference between the fiducial GR model and |fR| = 10−4 (solid),
10−5 (dashed) and 10−6 (dotted). All plots have been scaled by k4 in order to enhance the differences. As can be seen, the signatures of a
deviation from GR are most prominent in the range k ∼ 10−2−10−1hMpc−1. Scales on the order k > 0.1hMpc−1 will be probed by higher
multipoles ` > 80, where systematic effects and noise render our analysis and modelling insufficient and the spectra tend towards that of GR.

number of useful Fourier modes [35]. Constraints from the
galaxy power spectrum as measured by WiggleZ yielded a rel-
atively good constraint on the order of |fR| ≤ 1.4×10−5 95%
at z ∼ 0.2−1 [30]. A recent galaxy clustering ratio η was pro-
posed as a means to avoid a number of systematic uncertain-
ties associated to scale-dependent growth rates. This ratio ap-
plied to SDSS data yielded a constraint of |fR| < 4.6× 10−5

at the 95% confidence limit [7]. Redshift space distortions
measured in the range z ∼ 0.16 − 0.47 yield |fR| ≤ 10−4

[89]. Recent CFHTSLenS 2D weak lensing results lead to
relatively weak constraints of |fR| ≤ 10−4 [37].

On smaller scales, Coma gas measurements yield |fR| ≤
6× 10−5 for z ∼ 0.02 [85], strong lensing of galaxies on kpc
scales places a constraint of |fR| ≤ 2.5× 10−6 [77] and solar
system scales typically introduce constraints on the order of
|fR| ≤ 8× 10−7 [45].

2. Dilaton Models

CFHTSLenS weak lensing places rather broad constraints
on the dilaton models with the data preferring lower values
of s, r and β0 [37]. The analysis of the diagonal direction
in the {m0, s} plane prefers lower values of m0. A recent

study by [41] using LSST, weak lensing, galaxy clustering
and Planck CMB data was able to place 1σ constraints on
ξ0 = H0/(cm0) and β0 = 1 of 2.7 × 10−5 and 2.3 × 10−1

respectively. When β0 = 5, it was found that ξ0 < 3 × 10−3

at 95% CL. It was also shown that if β0 ∼ 1 then current
data cannot place any meaningful constraints on ξ0, how-
ever when folding in LSST data the constraint tightens to
ξ0 ∼ few× 10−5 and it should be possible to measure β0 ∼ 1
to within 20% accuracy.

B. χ2 Analysis

1. Overview

Following [65], we can define a likelihood L for an ar-
bitrary set of parameters θα specifying our modified theory
of gravity, i.e. we implicitly assume a fixed background
cosmology. For f(R) theories the parameter vector is just
θα = {n, fR0

}. For the dilaton theories, the parameter vector
is given by θα = {s, β0, r,m0}. Given a noisy data vector
C̃`(k) the likelihood is given by
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FIG. 4. Here we plot the 3D weak lensing spectra for the dilaton models assuming r0 = 1400h−1Mpc and ` = 20. These plots show the
deviations from GR induced by systematically varying the model parameters {m0, r, s, β0}. The top left plot varies r, the top right s, the
bottom left m0 and the bottom right β0. As before these plots are scaled by k4. The fiducial model A2 for the dilaton spectra is characterised
by β0 = 0.5, m0 = 0.334, r = 1.00 and s = 0.24. The variations in β0 are given by the B-series, in m0 by the E-series, in r by the C-series
and in s by the A-series. As discussed previously, deviations are most significant between k ∼ 10−2 − 10−1hMpc−1 probed by multipoles
` < 100.

L(θα|C̃`(k)) =
1

(2π)Npix/2 |detC|1/2
exp

[
−1

2

∑
``′

∫
dk

∫
dk′ δC`(k)C−1

``′ (k, k
′) δC`′(k′)

]
. (5.1)

Here δC̃` = C̃` − C̃GR
` , Npix is the size of the data vector and

C``′(k, k′) is the covariance matrix defined by

C``′(k, k′) =
2

2`+ 1

[
C̃`(k, k′) +N`(k, k

′)
]2
δK``′ δ

K
mm′ ,

(5.2)

where we have made use of the Gaussian approximation and
N`(k, k

′) is a noise term. If we have all-sky coverage then
the covariance matrix reduces to a block-diagonal form with
the matrix being diagonally dominated in the {k, k′} space.
Introducing a sky-mask or assuming partial sky-coverage will
induce mode-coupling terms between the harmonics that re-
sults in off-diagonal terms. The χ2 statistic is given by

χ2 =
∑
``′

∫
dk

∫
dk′ δC`(k)C−1

``′ (k, k
′) δC`′(k′). (5.3)

In order to constrain the parameters of the modified theory
of gravity, we assume a perfect knowledge of the background

LCDM cosmology. We assume multipoles in the range ` ∈
{20, 80} which corresponds to probing the scales correspond-
ing to k ∈ {10−2, 10−1}hMpc−1. In Figure 5 we demon-
strate how the χ2 constraints vary with multipoles ` used, sur-
vey depth r0 and ellipticity variance σε. By folding in more
multipoles we can naturally gain tighter constraints. Increas-
ing the survey depth allows us to probe a greater range of red-
shifts, also tightening the constraints. Similarly, increasing the
ellipticity variance naturally degrades our constraints due to
the increased noise. We only consider the multipoles ` ≤ 80
as high multipoles probe scales k > 0.1hMpc−1, where the
spectra tend to GR quickly and systematic effects can become
substantial. The assumed galaxy number density is fixed at
N̄ = 10−4Mpc−3 in order to compare our results to those of
[65].
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2. Constraints From χ2

Our constraints are derived assuming a prototypical 3D
weak lensing survey of r0 = 1400h−1 Mpc, taking multi-
poles ` ∈ {10, 80} and taking wavenumbers in the range
k ∈ {10−2, 10−1}hMpc−1. We assume an ellipticity vari-
ance of σε = 0.2.

For the f(R) models, the 3σ limits are |fR| . 5×10−6 for
the n = 1 models and |fR| . 9× 10−6 for the n = 2 models.
The results are shown in Figure 5.

The total 3σ constraints for the dilaton model with
parameters {m0, r, β0, s} about a fiducial model of
{0.334, 1.0, 0.5, 0.24} are {0.47, 0.85, 0.38, 0.39} as shown
in Figure 6. This means that should we observe a 3D weak
lensing spectra consistent with GR, the fiducial model A2 can
be excluded at the 3σ level and the data should be capable
of ruling out variations of the fiducial model with values of
m0 < 0.47, β0 > 0.38 and s < 0.39. The analysis seems
to be indiscriminate towards r with the χ2 values being
relatively flat across the parameter space.

C. Fisher Matrix Analysis

1. 3D Fisher Matrix

The Fisher information matrix is a useful, though limited,
tool in modern cosmology. Assuming that the likelihood
surface near the peak is sufficiently well approximated by a
multivariate Gaussian, the Fisher matrix (FM) will inform us
about the Gaussian uncertainties at a given point in parameter
space. At a basic level, it allows us to place a theoretical lower
limit on the parameter space uncertainties. There is, however,
no good way to include prior information and nor is there a
means to perform a global exploration of a parameter space
that may contain multiple peaks or other features, such as
walls. Consequentially, the Fisher information matrix can oc-
casionally yield some rather suspect cross-correlations. Some
of these issues may be solved by resorting to a full MCMC
sampling of the parameter space, though we leave such an im-
plementation to the future. In this paper, we focus on placing
a naive theoretical 1σ bound on the model parameters for the
modified theories of gravity considered here. In particular, we
will focus on how the 1σ bound varies as a function of the sur-
vey configuration, multipoles used and ellipticity variance. A
useful discussion of Fisher matrix forecasting in the sFB for-
malism may be found in [57, 67]. Our discussion will closely
follow the methods outlined in these papers. The Fisher ma-
trix (FM) is defined to be the inverse covariance matrix of the
posterior distribution

Fαβ =

〈
∂2L

∂θα∂θβ

〉
, (5.4)

where L = − lnL is the log-likelihood. If all parameters bar
one are fixed, then the fixed uncertainty will be bounded by

∆θα ≥
1√
Fαα

. (5.5)

However, if several parameters are estimated from our data
then the minimum standard deviation is given by

∆θα ≥
(
F−1

)1/2
αα

, (5.6)

this is called the marginalised uncertainty. The Fisher matrix
for the sFB spectra may be computed via a number of different
implementations. The calculation of the FM typically begins
by assuming a Gaussian likelihood for the sFB harmonics but
quickly becomes complicated due to the complex correlations
between the various k-modes induced by both finite survey
and masking effects as well as by the intrinsic time-evolution
of the underlying random field. In our case, this will be the
time evolution of the lensing potential.

The non-diagonal correlations can be dealt with via two dif-
ferent approaches: 1) we choose a finite grid in k space and
compute the FM on the discrete grid or 2) we approximate
the full FM by a diagonal data covariance matrix evaluated
at discrete points ki [67]. If the covariance matrix can be
well approximated as diagonally dominant, then care must
be taken in the choice of bin size as bins that are too small
would overestimate the information content as we neglect cor-
relations between neighbouring wavenumbers. For a discrete
grid, smaller bin sizes ∆ki mean that the covariance matrix
becomes increasingly complex to invert whereas larger bin
sizes would be tantamount to discarding information [57]. As
discussed in [57], care must also be taken when choosing the
largest scale kmin to include in the analysis, as at small k the
sFB spectra can become extremely small but it is possible that
they can still contribute to the Fisher information.

Another problem that arises when calculating the Fisher
matrices is that the condition number6 of the covariance ma-
trices can be quite high, making the matrices ill-conditioned.
This means that if the bin size is taken to be too small then the
matrix can become singular. Care must also be taken in bin-
ning the data in order to avoid numerical instabilities in the
highly oscillatory regime at large k.

Assuming a likelihood with covariance matrix C and mean
µ, the FM will be given by [38, 57, 67, 83, 84]

Fαβ =
fsky

2
Tr
[
C−1 ∂C

∂θα
C−1 ∂C

∂θβ

]
+
∂µT

∂θα
C−1 µ

∂θβ
.

(5.7)

If there is no angular mask, the sFB coefficients will remain
uncorrelated between different multipoles ` and the covari-
ance matrix C reduces to a block diagonal form. A further
simplification arises as µ = 〈ζ`m(k)〉 = 0, where ζ is defined
in Eq. (4.5), and the FM reduces even further to the following
form

Fαβ = fsky

∑
`

(2`+ 1) ∆`

2
Tr
[
C−1
`

∂C`

∂θα
C−1
`

∂C`

∂θβ

]
.

(5.8)

6 κ(A) = |λmax(A)/λmin(A)|.
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FIG. 5. Here we show a χ2 analysis for the f(R) models as a function of multipole `, survey depth r0 and ellipticity variance σε. We use all
multipoles up to ` ∼ 70, take survey sizes r0 ∈ {1400, 1800, 2200}h−1Mpc and assume an ellipticity variances in the range σε = {0.1, 0.4}.
In the top two plots we set r0 = 1400h−1Mpc and σε = 0.2 and demonstrate how individual multipoles (30, 50, 70) contribute to χ2 compared
to the sum of all the multipoles in the range ` ∈ {30, 70} (top, green curve). The top left plot is for n = 1 and the top right for n = 2. In
the bottom left plot we adopt fiducial values of ` = 40, σε = 0.2 and vary the survey depth r0 ∈ {1400, 1800, 2200}h−1Mpc (top curve to
bottom curve). For bottom right plot, we adopt a fiducial survey of ` = 40 and r0 = 1400h−1Mpc for varying σε. As anticipated, stronger
noise degrades the constraints. The data is binned in the range k ∼ 0.01 − 0.1hMpc−1. At the 3σ level we find constraints on the n = 1
models to be ∼ |fR| < 5× 10−6 and for the n = 2 models this is degraded to ∼ |fR| < 9× 10−6.

Schematically, the data covariance matrix for the sFB spectra
measured at a set of discrete radial wavenumbers ki can be
written as [57, 67]

C` =


C̃`(k0, k0) C̃`(k0, k1) . . . C̃`(k0, kmax)

C̃`(k1, k0) C̃`(k1, k1) . . . C̃`(k1, kmax)
...

...
. . .

...
C̃`(kmax, k0) C̃`(kmax, k1) . . . C̃`(kmax, kmax)

 ,

(5.9)

where, as before,

C̃`(ki, kj) = C`(ki, kj) +N`(ki, kj). (5.10)

2. Constraints from Fisher Matrix

For a survey of depth r0 = 1400h−1Mpc, ellipticity vari-
ance of σε = 0.2 and at a fixed multipole of ` = 20, the 1σ frac-
tional error on |fR| is typically ∆|fR|/fR ∼ 0.0214 (0.0240)
for n = 1 (n = 2). This means that an optimistic weak lens-
ing survey should be able to measure |fR| to the percent level

accuracy, with accuracies below 10% at the 3σ confidence
limit.

The 1σ fractional errors ∆θα/θα on the dila-
ton parameters {m0, β0, r, s} are on the order of ∼
{0.0383, 0.0790, 0.4480, 0.3267} for ` = 20 and σε = 0.2.
The dependence of the 1σ errors estimated from the Fisher
matrix on the ellipticity variance is shown in Figure 7 for the
dilaton models.

As discussed in [38], the 3D modes themselves are gener-
ally noisy but by improving the survey characteristics we can
include more effective 3D modes with good signal-to-noise
ratios. Data compressions techniques, such as the Karhunen-
Loève analysis used in [38] would be a step towards reducing
the size of the data sets whilst having as little impact on esti-
mated errors of the model parameters.

These constraints derived here assume a sky-fraction of
fsky = 1, with the errors scaling as f−1/2

sky . Improvements to
these constraints will typically depend on the characteristics
of the survey. For instance, reducing the ellipticity variance,
increasing the number density of source galaxies or a large sky
fraction will all improve the constraints. Likewise, may also
fold in higher multipoles in order to improve the constraints.
We leave a detailed study of optimal survey configurations to
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FIG. 6. A χ2 analysis for the dilaton models parameterised by {m0, β0, r, s}. Here we take multipoles up to ` = 60, a survey depth of
r0 = 1400h−1Mpc and assume an ellipticity variance of σε = 0.2. The 3σ constraints on the various parameters are: m0 ∼ 0.4, β0 ∼ 0.425
and s ∼ 0.37. For r we cannot place a useful constraint on the parameter. For ellipticity variances on the order ∼ 0.3 and including
photometric redshift smoothing, it is very likely that we would lose any statistical significance on r.

a future paper.
It should be noted that the results presented here are op-

timistic as we have neglected noise contributions, such as
photometric redshift errors, sky masking and sky fractions.
However, the general results suggest that 3D weak lensing
should be a powerful tool for upcoming large scale struc-
ture surveys, in agreement with recent studies in the literature
[23, 38, 39, 51–55, 63, 64].

D. Principal Component Analysis

In this section we implement a principal component analy-
sis (PCA) of the Fisher matrices in order to assess the accu-
racy to which linear combinations of model parameters may
be determined from a prototypical 3D weak lensing survey. A
PCA is an efficient method for determining the degeneracy di-
rections and linear combinations of parameters, ranking them
according to how accurately we may determine them from the
data. This method has been applied to various cosmological
data sets [31, 32, 61] and this section will closely follow the
treatment presented in [61].

The inverse of the Fisher matrix yields the covariance of the
parameter vector at the maximum likelihood

F−1 = 〈∆θ∆θT 〉 = 〈θθT 〉 − 〈θ〉〈θT 〉. (5.11)
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FIG. 7. An example of the 1σ fixed uncertainty on the dilaton pa-
rameters as estimated from the full non-diagonal Fisher matrix Fαβ ,
∆θα ≥ (Fαα)−1/2 for a single multipole ` = 20 with a survey
depth of r0 = 1400h−1Mpc. We vary the ellipticity noise σ2

ε . As
expected, decreasing the noise leads to a decrease in the uncertainty
in the terms we are sensitive to, i.e. m0 and β0, and a smaller de-
crease in uncertainty on the terms to which we have less sensitivity,
i.e. r and β0. The lines correspond to r (top), s, β0 and m0 (bottom)
respectively.

The standard deviation of the i-th parameter is obtained from
the inverse Fisher matrix via ∆θα =

[(
F−1

)
αα

]1/2
, this
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is the minimum variance bound (MVB). According to the
Cramér-Rao inequality, the variance of any unbiased estima-
tor is always larger or equal to the MVB.

Any real matrix W is known as a decorrelation matrix if it
obeys

F = WT Λ W, (5.12)

where Λ is the diagonal matrix. The quantities Φ = W θ
are said to be decorrelated as their covariance matrix will be
diagonalised [36]

〈∆Φ ∆ΦT 〉 = W 〈∆θ ∆θT 〉WT = Λ−1. (5.13)

We can always scale the quantities Φ to unity variance by in-
troducing W̃ = Λ1/2 W without loss of generality . The
Fisher matrix in terms of W̃ reduces to [61]

F = W̃T W̃. (5.14)

However, the choice of W̃ is not unique. In particular, for any
matrix W̃ that satisfies Eq. (5.14), the same will be true for
any orthogonal rotation OW such that O ∈ SO(n) [36]. This
implicitly means that there are infinitely many decorrelation
matrices that satisfy Eq. (5.14).

Given that W is an orthogonal matrix, its rows will be
eigenvectors pα of F and the diagonal matrix of the corre-
sponding eigenvalues will be given by Λ = diag(λα). In this
case, the decomposition given by Eq. (5.12) is known as a
principal component decomposition (PCD) [61]. The princi-
pal components of the system are given by

µα =
∑
β

Λαβ θβ . (5.15)

In a PCD, the eigenvectors of F will determine the princi-
pal axes of the n-dimensional error ellipsoid in the parame-
ter manifold. The eigenvectors correspond to orthogonal lin-
ear combinations of the physical parameters that may be de-
termined independently from the data. If these vectors are
aligned with the parameter axes, then they are said to be less
degenerate between those parameters. The accuracy to which
the linear combination of these parameters may be determined
can be quantified by the variance σα = σ(pα) = λ

−1/2
α . A

given principal component of the Fisher matrix tells us how
accurately a specific linear combination of parameters may be
determined from the data. By convention, we will take the
eigenvalues to be in descending order such that the first eigen-
vector p1 will have the smallest variance and will therefore
be the best constrained parameter combination. Similarly, the
last eigenvector pn will be the direction with the greatest un-
certainty. A caveat to the analysis in this section is that we
implicitly assume a fixed ΛCDM background and vary the
modified theory of gravity parameters about this background.
In reality, it is likely that a number of the parameters intro-
duced by a modification to gravity will be degenerate with the
ΛCDM parameters. We leave a more complete analysis of this
point to future work.

The MVB may be estimated from the eigenvectors and
eigenvalue of the Fisher matrix via [61]

∆θα =

(
n∑
i=1

W 2
αβ λ

−1
α

)1/2

. (5.16)

For the dilaton models, we will consider the Fisher matrix
F corresponding to all four model parameters {m0, β0, r, s}.
We will study how the variance of the linear combination of
parameters is sensitive to ellipticity dispersion σε, the survey
depth r0 and the multipoles ` used in the analysis. As would
be anticipated, the noise variance induces a scaling of the pa-
rameter variance. If we neglect boundary and discretisation
effects, then the covariance will be anti-proportional to the
sky fraction. Although we typically set fsky to unity for con-
venience, we note that the variance σ scales as approximately
f
−1/2
sky .

In Figure 8, we show the variance σ(pα) associated to the
principal components of the Fisher matrix for the dilaton mod-
els. The first eigenvector can be seen to be dominant with the
first principal component reading

µ1 ∝ −0.9394m0 + 0.02694 r + 0.3051β0 − 0.1538 s,
(5.17)

as per Appendix B. The PCA essentially finds that the best
measured quantities are dominated by the mass m0 and the
coupling β0, in agreement with the χ2 analysis.

VI. CONCLUSIONS

In this paper we have studied the two classes of screened
theories of gravity using 3D weak lensing. The focus of this
paper has been on understanding the impact of survey con-
figuration and basic noise sources on the constraints that we
may place on these theories. The individual spherical Fourier-
Bessel spectra can themselves be relatively noisy but by fold-
ing in numerous multipoles will place competitive constraints
on modified theories of gravity. In Section IV we outlined the
framework used for 3D weak lensing and the construction of
the shear lensing spectra. We have not restricted the analysis
to survey specific noise curves, which may be dealt with in
future studies. We did, however, include ellipticity variance
σ2
ε in the analysis as this is likely to be a major noise source.

Due to the fact that the Weyl lensing potential ΦWL is iden-
tical to that predicted in GR, it was shown that the effects in
weak lensing from modified theories of gravity only enter the
equations through the non-linear matter power spectrum and
growth function, simplifying the resulting analysis.

In order to constrain the model parameters, we imple-
mented a χ2 analysis for a series of typical surveys with
depths r0 ∈ {1400, 1800, 2200}h−1Mpc. In addition, we
detailed the impact of varying σ2

ε and the multipoles used `
on the parameter constraints. Increasing the multipole num-
ber allows us to probe deeper into the nonlinear regime, where
the deviations from GR can become more prominent. How-
ever, this also demands that we accurately model the nonlin-
ear matter power spectrum on small scales where systematic
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FIG. 8. The variance σ(pα) = λ
−1/2
α associated with the princi-

pal components of the 4x4 Fisher matrix F for the dilaton models.
The different curves show the variation of σ(pα) with increasing el-
lipticity variance σε. As expected, increasing the noise contribution
leads to a greater variance in the eigenvalues. Similarly, increasing
the multipole allows us to probe more of the nonlinear features of
the power spectra, increasing constraints. However, systematics and
un-modelled noise will degrade these values.

and feedback effects, which are poorly understood, will also
start to become more prominent. Our approach uses one-loop
corrections along with halo modelling in order to extend the
domain of validity of the nonlinear matter power spectrum to
k ∼ 1hMpc−1. This places an upper bound on the multipoles
used in the analysis. We take an upper limit of ` ∼ 80 to our
studies in order to restrict ourselves to a regime in which the
systematics should be understood and should play a subdom-

inant role.

Our 3σ constraints on the f(R) models are |fR| < 5×10−6

for the n = 1 models and |fR| < 9 × 10−6 for the n = 2
models. The Fisher forecasts suggest that these parameters
should optimistically be measurable to within a percent level
accuracy for upcoming large scale structure surveys. The dila-
ton constraints at the 3σ level are found to be m0 < 0.4,
β0 < 0.425 and s > 0.37. The constraints on r are much
weaker, with 3D weak lensing seeming to have little sensi-
tivity to the variations in r considered in this paper. The
Fisher forecasting typically suggests that the optimistic errors
on these parameters are likely to be in the range 10−3 − 10−1

with r again showing much more spread with errors in the re-
gion of∼ few×10−1−100. We have not modelled a number
of error sources, such as photometric redshift errors, that are
likely to degrade our constraints. However, a detailed investi-
gation into optimal binning strategies and optimal weightings
should help limit the degradation of parameter constraints in
more realistic surveys.

In this paper we have focussed on the 3D cosmic shear ex-
clusively. A companion paper on testing modified theories of
gravity using a 3D analysis of magnification, intrinsic ellip-
ticity distributions and various cross-correlations will be pre-
sented elsewhere.

Finally, we note that the methods presented in this paper
may be extended to the K-mouflage models [4, 19]. These
models use the non-linear kinetic functions in order to provide
a screening mechanism that converges to GR on small astro-
physical scales and at high redshifts. In contrast to the f(R)
and dilaton models presented in this paper, linear cosmolog-
ical structures are unscreened and exhibit deviations from Λ-
CDM up to the Hubble scale and the background evolution
of dark energy in the K-mouflage models only behaves like
a cosmological constant contribution at low redshifts. This
can already be seen at the level of the equations of motion in
which we find a modified Euler equation, containing an ex-
tra friction term and an extra fifth-force potential term, and a
modified Poisson equation, containing a time dependent ef-
fective Newton constant. These results will be presented in a
later paper.
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Appendix A: Non-Linear Matter Power Spectrum

1. Modified Gravitational Potential

In this Appendix we schematically outline the formalism
used to generate the non-linear matter power spectra. The for-
malism used is based on standard perturbation theory at one-
loop level with a partial resummation of the perturbative series
coupled with a halo model [15, 18]. The one-loop corrections
allow us to extend the domain of validity of the linear pertur-
bative analysis to k ≤ 0.15hMpc−1 at the perturbative level
while the addition of the halo-model terms further extends the
domain of validity to approximately k ≤ 1hMpc−1, justify-
ing their use in this paper where the scales of most importance
are typically less than ∼ 1hMpc−1.

The scalar-tensor theories in this paper are explicitly cou-
pled to matter via the Jordan-frame metric, which is confor-
mally related to the Einstein-frame metric via A2(ϕ) as in
Eqn. (2.3). This leads to an additional fifth force acting on
matter particles of mass m, F = −mc2∇ lnA. The impor-
tance of this term is that it constitutes an additional contribu-
tion to the Newtonian term ΨN in the total gravitational po-
tential

Ψtot = ΨN + ΨA. (A1)

where we assume that A(ϕ) ' 1 due to observational bounds.
The dynamics of matter particles will implicitly depend on
this modified potential. Assuming that the timescale for the
evolution of the field perturbations is far below that of cosmo-
logical timescale, we can adopt the quasistatic approximation
(i.e. the scalar field instantaneously follows the evolution of
the matter perturbations) . Care must be taken when using the
quasistatic approximation to ensure that we have not intro-
duced significant errors under this assumption. As shown in
[18], the quasistatic approximation will be valid for the scales
of interest in 3D weak lensing. The modified gravity potential
Ψtot will be only a functional (i.e. it does not depend on the
past history) of the matter density fluctuation δρ in the qua-
sistatic approximation, simplifying the analysis. Solving for
Ψtot[δρ], we can then solve for the equations of motion of
matter particles in the single-stream approximation (the Euler
and continuity equations).

In a scalar-tensor theory, the modified potential Ψtot will
explicitly depend on the scalar field ϕ, demanding that we
first solve the Klein-Gordon equation to yield a functional for
the field perturbations δϕ[δρ]. By subtracting the background
from the KG equation and expanding in δϕ using the tomo-
graphic derivatives in Eqns. (2.14-2.16), the KG equation re-
duces to(
∇2

a2
−m2

)
· δϕ =

βδρ

c2Mpl
+

β2δρ

c2M2
pl
δϕ (A2)

+

∞∑
n=2

(
κn+1

Mn−1
pl

+
βn+1δρ

c2Mn+1
pl

)
(δϕ)

n

n!
.

This admits a perturbative solution in the nonlinear matter

density fluctuations

δϕ =

∞∑
n=1

∫
dk1 . . . dkn δD(k1 + · · ·+ kn − k) (A3)

× hn(k1, . . . ,kn) δρ(k1) . . . δρ(kn)

where the kernels hn can be recursively obtained by noting
that the left hand side in Eqn. (A2) is a linear operator that
is diagonal in Fourier space and therefore admits an inversion
[18]. This expression is then substituted into the expression
for the modified gravity potential A1

Ψtot(k) =

∞∑
n=1

∫
dk1 . . . dkn δD(k1 + . . .kn − k) (A4)

×Hn(k1, . . . ,kn) δρ(k1) . . . δρ(kn).

This method directly applies to the Dilaton models introduced
in section II B, where the scalar field ϕ obeys the Klein-
Gordon, Eqn. (2.26), and the coefficients βn and κn of A2
were defined in Eqns. (2.14-2.16). For the f(R) theories
introduced in section II C, instead of the fluctuations of the
scalar field δϕ we need to solve for the fluctuations of the
Ricci scalar δR. From the constraint equation 2.43 we obtain
the functional δR[δρ], as a perturbative expansion over δρ in
a fashion similar to A3. Using Eqn. (2.41) this provides, in
turn, the perturbative expansion of the total potential as in A4.

In the case of GR, the Poisson equation is linear and only
the first kernel H1 is non-zero. For the modified-gravity sce-
narios, the expansion A4 exhibits terms at all orders because
the non-linear Klein-Gordon equation A2 generates terms of
all orders for the functionial δϕ[δρ], see A3, and the non-
linear fifth-force potential A(ϕ) generates further non-linear
terms for A[δρ] ≡ A[δϕ[δρ]].

2. Single Stream Approximation

The next key step is to propagate the modified gravitational
potential through the hydrodynamical equations of motion in
the perturbative regime. Using the single-stream approxima-
tion [18, 19], which is valid on large scales, the dynamics of
the matter fluid is given by the continuity and Euler equations

∂δ

∂τ
+∇ · [(1 + δ) v] = 0, (A5)

∂v

∂τ
+Hv + (v · ∇) v = −∇ ·Ψtot, (A6)

where H the conformal Hubble expansion rate and v the pe-
culiar velocity. Introducing a time variable η = ln a and a
two-component vector [27]

ψ =

[
ψ1

ψ2

]
=

[
δ

−(∇ · v)/H

]
(A7)

the equations of motion can be greatly simplified in the
Fourier domain to [18]

∂ψ1

∂η
− ψ2 =

∫
dk1 dk2 δD(k1 + k2 − k) (A8)
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× α̂(k1,k2)ψ2(k1)ψ1(k2),

∂ψ2

∂η
+

k2

a2H2
Ψtot +

1 + 3 ΩΛ

2
ψ2 =

∫
dk1 dk2 (A9)

× δD(k1 + k2 − k)β̂(k1,k2)ψ2(k1)ψ2(k2),

where the coupling kernels are explicitly given by [18]

α̂(k1,k2) =
(k1 + k2) · k1

k2
1

, (A10)

β̂(k1,k2) =
|k1 + k2|2 (k1 · k2)

2k2
1k

2
2

. (A11)

In GR, the Newtonian gravitational potential is linear in the
density field and therefore the Euler and continuity equations
are quadratic. As detailed in [15, 18], however, in the modified
theories of gravity considered in this paper, the potential Ψtot

of Eq. (A4) is nonlinear and contains terms at all orders in
δρ. This necessitates that we include vertices to all orders.
Schematically, this can be done by re-expressing Eqns. (A8-
A9) as

O(x, x′) · ψ(x′) =

∞∑
n=2

Ks
n(x;x1, . . . xn) · ψ(x1) . . . ψ(xn),

(A12)

where x = (k, η, i) and i ∈ {1, 2} denotes the index of ψ.
The matrix O is written in terms of a function ε(k, η) that
measures the deviation from the Newtonian gravitational po-
tential at linear order

O(x, x′) = δD(η′ − η)δD(k′ − k) (A13)

×

[
∂
∂η −1

− 3
2Ωm(η)(1 + ε(k, η)) ∂

∂η + 1+3ΩΛ(η)
2

]
.

The vertices Ks
n are equal-time vertices with the schematic

form

Ks
n(x, x1, . . . , xn) = δD(η1 − η) . . . δD(ηn − η) (A14)

× δD(k1 + · · ·+ kn − k)

× γsi;i1...in(k1, . . . ,kn; η).

The vertices γsi;i1...in for GR, f(R) and the scalar-tensor the-
ories may be found in [15, 18, 19].

3. One-Loop Matter Power Spectrum

Given the equation of motion incorporating vertices at all
orders in Eqn. (A12), it is possible to calculate the power
spectrum up to the required order in perturbation theory. This
paper uses power spectra that only incorporate the one-loop
diagrams, corresponding to corrections that are third order in
the fields [15, 18, 19]. This proceeds by looking for a solution
of the nonlinear equation of motion as a perturbative expan-
sion in powers of the linear growing mode ψL

ψ(x) =

∞∑
n=1

ψ(n)(x) such that ψ(n) ∝ ψnL. (A15)

2

31
=

P =22=treeP

P 31
Ψ

=8 6P

FIG. 9. Contributions at orderP 2
L to the matter power spectrum from

loop-diagrams. Schematically we find P (k) = Ptree(k) +P22(k) +
P31(k) + PΨ

31(k). The black dots are vertices for Ks
n and the lines

with an arrow denote the retarded propagator RL. Lines without an
arrow correspond to the linear correlatorCL. Figure taken from [18].

The linear order equation of motion is simply O · ψL = 0,
leading to the usual two growing modes D±(k, η) with the
concomitant evolution equation

∂2D

∂η2
+

1 + 3ΩΛ

2

∂D

∂η
− 3

2
ΩM (1 + ε)D = 0, (A16)

where the initial conditions are set by

t→ 0 : D+ → a = eη, D− ∝ a−3/2 = e−3η/2. (A17)

In GR, the modes D± are k-independent. However, in modi-
fied theories of gravity, the modes will be k-dependent due to
the presence of the new ε(k, η) term. As the decaying modes
typically become negligible, the first-order solution simplifies
nicely to

ψ(1) = ψL = δL0(k)

[
D+(k, η)
∂D+

∂η (k, η)

]
, (A18)

with the linear density field δL0(k) fully determining the ini-
tial conditions.

The higher order terms ψ(n) are obtained via recursion of
Eqn. (A12) in terms of the retarded Green’s function RL [18]

O(x, x′) ·RL(x′, x′′) = δD(x− x′′), (A19)

implicitly demanding that

RL(x1, x2) = 0 for η1 < η2. (A20)

This leads to the second and third order fields

ψ(2) = RL ·Ks
2 · ψ(1)ψ(1), (A21)

ψ(3) = 2RL ·Ks
2 · ψ(2)ψ(1) +RL ·Ks

3 · ψ(1)ψ(1)ψ(1).
(A22)

Up to order ψ(4)
L , the 2-point correlation function can be writ-

ten as

C2(x1, x2) = 〈ψ(x1)ψ(x2)〉 (A23)

= 〈ψ(1)ψ(1)〉+ 〈ψ(2)ψ(2)〉+ 〈ψ(3)ψ(1)〉 (A24)

+ 〈ψ(1)ψ(3)〉+O(ψ
(6)
L ).
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Substituting the expressions for ψ(1), ψ(2) and ψ(3) into the 2-
point correlation function and defining the equal-time matter
density power spectrum

〈δ(k1, η)δ(k2, η)〉 = δD(k1 + k2)P (k1, η), (A25)

we can obtain the power spectrum up to order P 2
L via Wick’s

theorem

P (k) = Ptree(k) + P1−loop(k) (A26)
Ptree = PL(k) (A27)

P1−loop = P22 + P31 + PΨ
31, (A28)

where P31 terms encapsulate contributions from the 31 and
13 terms above. Both P22 and P31 are present in GR whereas
PΨ

31 is a genuinely new effect generated by the modified the-
ory of gravity [18]. The 1-loop diagrams that contribute to the
power spectrum are explicitly shown in Figure 9. Note that
the contributions to P31 in GR will have different vertices and
linear propagators to modified theories of gravity. In partic-
ular, the linear propagator will become momenta dependent
and the vertices time dependent. Explicit expressions for P31

and PΨ
31 can be found in [18] as momenta integrals over the

propagators RL, the vertices γs and the correlators CL

4. Halo Model Matter Power Spectrum

Standard 1-loop perturbation theory breaks down relatively
quick as we enter the nonlinear regime. In order to extend
the domain of validity of this perturbative approach, we can
combine perturbation theory with halo models to generate a
matter power spectrum down to the smaller, highly nonlinear
scales. The halo model schematically provides a matter power
spectrum of the form

P (k) = P1h(k) + P2h(k), (A29)

where P1h models the contribution to the matter power from
pairs within the same halo and P2h models contributions from
pairs in two separate halos. The key quantities that enter the
halo model are the normalised halo mass function f(ν) and a
variance weighted density threshold ν defined by

n(M)
dM

M
=

ρ̄

M
f(ν)

dν

ν
, where ν =

δL(M)

σL(M)
. (A30)

The 1-halo contribution is given by [18]

P1h(k) =

∫ ∞
0

dν

(2π)3
f(ν)

M

ρ̄ν
[uM (k)−W (kqM )] ,

(A31)

with uM (k) the normalised Fourier transform of the halo ra-
dial profile and W (kqM ) the normalised Fourier transform of
the top hat of Lagrangian radius qM . The 2-halo term is de-
fined by [18]

P2h(k) =

∫
d∆q

(2π)3
F2h(∆q) 〈eik·∆x〉vir

∆q

1

1 +A1
(A32)

× e− 1
2k

2(1−µ2)σ2
⊥

{
e
−ϕ‖(−ikµ∆qσ2

k‖
)

+A1

+

0++i∞∫
0+−i∞

dy

2πi
e
−ϕ‖(y)/σ2

k‖

(
1

y
− 1

y + ikµ∆qσ2
k‖

)}
.

This is a rather complicated expression and explicit details on
its derivation can be found in [18]. Here, we just note that
this expression relates the power spectrum to the statistics of
the Eulerian separation, ∆x = x2 − x1, of pairs of particles
with initial Lagrangian separation ∆q = q2 − q1. The fac-
tor F2h encapsulates the probability that a pair of particles of
separation ∆q are in separate halos. The exponential average
〈eik·∆x〉vir

∆q is the contribution due to internal motions within
each virialised halo. The Gaussian pre-factor e−

1
2k

2(1−µ2)σ2
⊥

describes the contribution from large-scale longitudinal mo-
tions with σ2

k‖
the variance of the longitudinal relative dis-

placement. The factor A1 and the complex integral arise from
adhesion-like regularisation that aims to capture the formation
of pancakes.

Appendix B: Principal Component Analysis: Eigenvalues of the
Fisher Matrix

Here we give an example of the Fisher matrix, decorrelation
matrix and eigenvalues for the ` = 20 and σε = 0.2 config-
uration. The Fisher matrix Fαβ is given in Table III and the
decorrelation matrix Wαβ by Table IV. The Fisher matrix is
related to the decorrelation matrix via F = WTΛW, where
Λ is the diagonal matrix constructed from the eigenvalues λα

λ1 = 6.869× 10+3, λ2 = 5.014× 10−2,

λ3 = 2.036× 10−4, λ4 = 7.104× 10−5. (B1)

The condition number of the matrix κ is particularly large at
9.67× 109. The 1σ MVB is reconstructed by a weighted sum
over the eigenvalues as per Eqn. (5.16)

∆θα =

 n∑
β=1

W 2
αβλ

−1
β

1/2

. (B2)

We can check how ∆θα varies as a function of the number of
eigenvalues included in the analysis. This is shown in Figure
10.
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Fαβ m0 r β0 s

m0 +6.062× 103 −1.739× 102 −1.969× 103 +9.926× 102

r −1.739× 102 +4.991× 100 +5.647× 101 −2.848× 101

β0 −1.969× 103 +5.647× 101 +6.393× 102 −3.224× 102

s +9.926× 102 −2.848× 101 −3.224× 102 +1.626× 102

TABLE III. Fisher matrix Fαβ for the dilaton parameters
{m0, r, β0, s}.

Wαβ β = 1 2 3 4

α = 1 −0.9394 +0.02694 +0.3051 −0.1538

2 −0.3330 −0.3072 −0.7894 +0.4141

3 −0.05843 +0.6421 −0.5194 −0.5608

4 −0.00562 +0.7019 +0.1179 +0.7002

TABLE IV. Decorrelation matrix Wαβ for the dilaton Fisher matrix
Fαβ .

1 2 3 4
10-3

10-2

10-1

100

101

102

FIG. 10. The minimum variance bound ∆θα as a function of the
eigenvalues λβ included, as per Eqn. (5.16).
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