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We present exact kinematic consistency relations for cosmological structures that do not vanish
at equal times and can thus be measured in surveys. These rely on cross-correlations between the
density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by
long-wavelength modes, which cannot be detected at equal times by looking at density correlations
only, gives rise to a shift in the amplitude of the velocity field that could be measured. These
consistency relations only rely on the weak equivalence principle and Gaussian initial conditions.
They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain
nonstandard cosmological scenarios or the large-scale galaxy bias.

Introduction: Cosmological structures can be de-
scribed on large scales by perturbative methods while
smaller scales are described by phenomenological models
or studied with numerical simulations. This makes it dif-
ficult to obtain accurate predictions on the full range of
scales probed by galaxy or weak lensing surveys. More-
over, if we consider galaxy density fields, theoretical pre-
dictions remain sensitive to the galaxy bias (galaxies do
not exactly follow the matter density field), which in-
volves some phenomenological modeling of star forma-
tion.

This makes exact analytical results that go beyond
low-order perturbation theory and apply to biased trac-
ers very rare. However, such exact results have recently
been obtained [1–9] in the form of “kinematic consistency
relations”. They relate the (ℓ+n)-density (or velocity di-
vergence) correlations, with ℓ large-scale wave numbers
and n small-scale wave numbers, to the n-point small-
scale correlation. These relations, obtained at the lead-
ing order over the large-scale wave numbers, arise from
the equivalence principle. It ensures that small-scale
structures respond to a large-scale perturbation (which
at leading order corresponds to a constant gravitational
force over the extent of the small-sized object) by a uni-
form displacement. Therefore, these relations express a
kinematic effect that vanishes for equal-time statistics, as
a uniform displacement has no impact on the statistical
properties of the density field observed at a given time.

In practice, it is difficult to measure different-time cor-
relations and it is useful to obtain relations that remain
nonzero at equal times. This is possible by going to the
next order and taking into account tidal effects, which
at their leading order are given by the response of small-
scale structures to a change of the background density.
However, in order to derive expressions that apply to our
Universe one needs to introduce some additional approx-
imations [10–12].

In this Letter, we show that it is possible to derive ex-
act kinematic consistency relations that do not vanish at
equal times by considering cross-correlations between the
density and velocity, or momentum, fields. Indeed, the

uniform displacement due to the long-wavelength mode
also gives rise to a shift in the amplitude of the velocity
field that does not vanish at equal times and can thus
be observed. These consistency relations have the same
degree of validity as the previously derived density (or
velocity divergence) relations and only rely on the weak
equivalence principle and Gaussian initial conditions.
Correlation and response functions: The consistency

relations that apply to large-scale structures assume that
the system is fully defined by Gaussian initial condi-
tions (the primordial fluctuations that are found at the
end of the inflationary epoch). Thus, the dynamics is
fully determined by the Gaussian linear matter growing
mode δL0(x) (which we normalize today as usual) that
directly maps the initial conditions and can be observed
on very large linear scales. Then, any dependent quanti-
ties {ρ1, ..., ρn}, such as the dark matter or galaxy den-
sities at space-time positions (xi, τi), are functionals of
the field δL0(x) and we can write the mixed correlation
functions over δL0 and {ρi} as Gaussian averages,

C1,n(x) = 〈δL0(x)ρ1 . . . ρn〉

=

∫

DδL0 e−δL0·C
−1

L0
·δL0/2 δL0(x)ρ1 . . . ρn, (1)

where CL0(x1,x2) = 〈δL0(x1)δL0(x2)〉 is the two-point
correlation function of the Gaussian field δL0. Integrating
by parts over δL0 gives

C1,n(x) =

∫

dx′ CL0(x,x
′)R1,n(x′), (2)

where we introduced the mean response function

R1,n(x) = 〈
D[ρ1 . . . ρn]

DδL0(x)
〉. (3)

Equation (2) describes how the mixed correlation (1)
between the initial Gaussian field δL0 and the depen-
dent quantities {ρi} is related to the response function
of the latter to this Gaussian field. Going to Fourier
space, which we denote with a tilde, with the normaliza-
tions δL0(x) =

∫

dk eik·xδ̃L0(k) and 〈δ̃L0(k1)δ̃L0(k2)〉 =
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PL0(k1)δD(k1 + k2), equation (2) gives

C̃1,n(k) = PL0(k) R̃
1,n(−k), (4)

where we defined the Fourier-space correlation and re-
sponse functions as

C̃1,n(k) = 〈δ̃L0(k)ρ1 . . . ρn〉, R̃1,n(k) = 〈
D[ρ1 . . . ρn]

Dδ̃L0(k)
〉.

Consistency relations for the density contrast: If we
consider the quantities {ρi} to be the nonlinear matter
density contrasts δ̃(ki, τi) at wave number ki and confor-
mal time τi, equation (4) writes as

〈δ̃L0(k
′)δ̃(k1, τ1) . . . δ̃(kn, τn)〉 = PL0(k

′)

×〈
D[δ̃(k1, τ1) . . . δ̃(kn, τn)]

Dδ̃L0(−k′)
〉. (5)

On large scales the density field is within the linear
regime, δ̃(k′, τ ′) → D+(τ

′)δ̃L0(k
′); then for k′ → 0

k′ → 0 : 〈δ̃(k′, τ ′)δ̃(k1, τ1) . . . δ̃(kn, τn)〉 =

D+(τ
′)PL0(k

′)〈
D[δ̃(k1, τ1) . . . δ̃(kn, τn)]

Dδ̃L0(−k′)
〉. (6)

This relation can serve as a basis to derive consistency
relations for the squeezed limit of the n+ 1 density cor-
relations (i.e. the limit k′ → 0) if we obtain an explicit
expression for the response function in the right-hand
side. It turns out that this is possible because the re-
sponse of the matter distribution to a long-wavelength
mode δ̃L0(k

′) takes a simple form in the limit k′ → 0
[1–3]. Such a change ∆δL0 of the initial condition is as-
sociated with a change of both the linear density and ve-
locity fields, because we change the linear growing mode
where the density and velocity fields are coupled [1],

δL(q, τ) → δ̂L = δL +D+(τ)∆δL0,

vL(q, τ) → v̂L = vL −
dD+

dτ
∇−1

q ·∆δL0. (7)

Then, in the limit k′ → 0 for the support of ∆δL0(k
′),

the trajectories of the particles are simply modified as [7]

x(q, τ) → x̂(q, τ) = x(q, τ) +D+(τ)∆ΨL0(q), (8)

where q is the Lagrangian coordinate of the particles and
ΨL0 is the linear displacement field,

∆ΨL0 = −∇−1
q ·∆δL0, xL(q, τ) = q+ΨL. (9)

The transformation (8) simply means that in the limit
k′ → 0 smaller-scale structures are displaced by the uni-
form translation ΨL0 as all particles fall at the same rate
in the additional constant force field ∆F ∝ ∇−1

q ·∆δL0.
In other words, in the limit k′ → 0 we add an almost
constant force perturbation (i.e., a change of the grav-
itational potential that is linear over q for small-scale

subsystems) that gives rise to a uniform displacement,
thanks to the weak equivalence principle [3, 7]. Then,
the density field δ(x, τ) at time τ is merely displaced by
the shift D+(τ)∆ΨL0, which gives in Fourier space

δ̃(k, τ) →
ˆ̃
δ(k, τ) = δ̃(k, τ) e−ik·D+∆ΨL0

= δ̃(k, τ) − iD+(k ·∆ΨL0)δ̃(k, τ), (10)

where in the last expression we expanded up to linear
order over ∆ΨL0. The reader may note that in Eq.(10)
we do not see the additive effect seen at the linear level
in the first Eq.(7). This is because, although the small
change of the mean overdensity over a small structure
also leads to a faster (or slower) collapse and distorts the
small-scale clustering, this is a higher-order effect than
the kinematic effect studied in this Letter [10, 11]. In-
deed, we shall check in Eqs.(11) and (12) that this kine-
matic effect gives rise to factors ∼ 1/k′ that diverge as
k′ → 0. This is because the linear displacement field
is proportional to the inverse gradient of the linear den-
sity field, ΨL = −∇−1

q δL. In contrast, the distortions of
the small-scale structure (i.e., changes to the shape and
amplitude of the small-scale clustering) are higher-order
effects and do not exhibit this factor 1/k′ [10, 11]. Using
the expression ΨL0(q) =

∫

dk eik·q i k
k2 δ̃L0(k), we obtain

k′ → 0 :
DΨL0(q)

Dδ̃L0(k′)
= i

k′

k′2
,

Dδ̃(k)

Dδ̃L0(k′)
= D+

k · k′

k′2
δ̃(k).

(11)
Using this result in the relation (6) gives

〈δ̃(k′, τ ′)δ̃(k1, τ1) . . . δ̃(kn, τn)〉
′
k′→0 = −PL(k

′, τ ′)

×〈δ̃(k1, τ1) . . . δ̃(kn, τn)〉
′

n
∑

i=1

D+(τi)

D+(τ ′)

ki · k
′

k′2
, (12)

which is the density consistency relation in the subhori-
zon Newtonian regime [1–9]. Here the prime in 〈. . . 〉′ de-
notes that we removed the Dirac factors δD(

∑

ki). The
remarkable property of Eq.(12) is that it does not require
the wave numbers ki to be in the linear or perturbative
regimes. In particular, it still applies when ki are in the
highly nonlinear regime governed by shell-crossing effects
and affected by baryonic and galactic processes such as
star formation and cooling. In fact, under the approxima-
tion of the “squeezed limit”, the long wavelength fluctu-
ation δ̃L0(k

′) merely transports the small-scale structure
of the system. This also leads to an another key prop-
erty of Eq.(12), namely that it vanishes at equal times,
τ1 = .. = τn.
Consistency relations for velocity and momentum

fields: The leading-order effect of a long wavelength per-
turbation is to move smaller structures by an uniform
shift and single-time statistics that only probe the den-
sity field cannot see any effect. However, it is clear that
we may detect an effect if we consider the velocity field,
as the latter is again displaced but also has its amplitude
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modified. Thus, the transformation law (10) becomes

ṽ(k, τ) → ˆ̃v(k, τ) = ṽ(k, τ) − iD+(k ·∆ΨL0)ṽ(k, τ)

+
dD+

dτ
∆ΨL0 δD(k), (13)

where the last factor is the new term, as compared with
Eq.(10), that is associated with the shift of the ampli-
tude. This yields

k′ → 0 :
Dṽ(k)

Dδ̃L0(k′)
= D+

k · k′

k′2
ṽ(k) +

dD+

dτ
i
k′

k′2
δD(k).

(14)
Using again the general relation (4), as in Eq.(6) but
where the quantities {ρ1, .., ρn} are a combination of den-
sity contrasts and velocities, we obtain

〈δ̃(k′, τ ′)
n
∏

j=1

δ̃(kj , τj)
n+m
∏

j=n+1

ṽ(kj , τj)〉
′
k′→0 = −PL(k

′, τ ′)

×

{

〈

n
∏

j=1

δ̃(kj , τj)

n+m
∏

j=n+1

ṽ(kj , τj)〉
′

n+m
∑

i=1

D+(τi)

D+(τ ′)

ki · k
′

k′2

+

n+m
∑

i=n+1

〈

n
∏

j=1

δ̃(kj , τj)

i−1
∏

j=n+1

ṽ(kj , τj)×

(

(dD+/dτ)(τi)

D+(τ ′)
i
k′

k′2
δD(ki)

) n+m
∏

j=i+1

ṽ(kj , τj)〉
′

}

. (15)

If we take ki 6= 0, as usual for studies of Fourier-space
polyspectra, the last term vanishes and we recover the
same form as for the consistency relation (12) of the
density field. However, this new Dirac term will give a
nonzero contribution in configuration space. Therefore,
real-space correlation functions will obey consistency re-
lations that differ from those of the density field if we in-
clude cross-correlationswith the velocity field. The corre-
lation functions in Eq.(15) are 3m-component quantities,
as the velocity field is a 3-component vector. One may
obtain scalar relations by taking for instance the diver-
gence of the velocity field or considering the components
along cartesian coordinates. The divergence θ = ∇·v was
considered in [2, 5]. We recover the fact that it obeys re-
lations similar to the density field because the new Dirac
term δD(ki) disappears as θ̃i = iki · ṽi. We will rather
focus on the divergence of the momentum field in this
Letter, as it yields new terms in the consistency relations
and it satisfies a direct relationship with the density field
which may provide useful checks.

One simple way to make the last term in Eq.(13) rel-
evant in Fourier space at nonzero wave numbers is to
consider composite operators, that is, products of the
velocity field with other fields. Therefore, we define the
momentum p as

p = (1 + δ)v, (16)

which reads in Fourier space as

p̃(k) = ṽ(k) +

∫

dk1dk2 δD(k1 + k2 − k)δ̃(k1)ṽ(k2).

(17)
Using Eqs.(11) and (14) we obtain

k′ → 0 :
Dp̃(k)

Dδ̃L0(k′)
= D+

k · k′

k′2
p̃(k)

+
dD+

dτ
i
k′

k′2
[δD(k) + δ̃(k)]. (18)

The first term, which is common with Eqs.(11) and (14),
corresponds to the translation of the system, whereas
the second term corresponds to the additional velocity
generated by the long-wavelength mode. Thanks to the
convolution in Eq.(17) it is now nonzero for k 6= 0. How-
ever, in contrast to the translation term, it transforms
the field because the functional derivative of the momen-
tum p̃ now gives rise to a factor that is proportional to
the density contrast δ̃. In a fashion similar to Eqs.(12)
and (15), we obtain the consistency relation

〈δ̃(k′, τ ′)

n
∏

j=1

δ̃(kj , τj)

n+m
∏

j=n+1

p̃(kj , τj)〉
′
k′→0 = −PL(k

′, τ ′)

×

{

〈

n
∏

j=1

δ̃(kj , τj)

n+m
∏

j=n+1

p̃(kj , τj)〉
′

n+m
∑

i=1

D+(τi)

D+(τ ′)

ki · k
′

k′2

+

n+m
∑

i=n+1

(dD+/dτ)(τi)

D+(τ ′)
〈

n
∏

j=1

δ̃(kj , τj)

i−1
∏

j=n+1

p̃(kj , τj)

×

(

i
k′

k′2
[δD(ki) + δ̃(ki, τi)]

) n+m
∏

j=i+1

p̃(kj , τj)〉
′

}

. (19)

The first term, which has the same form as the density
and velocity consistency relations (12) and (15), is due
to the translation of smaller-scale structures by the long
wavelength mode k′. The new second term is due to the
additional velocity and arises from the second term in
Eq.(18). This term has a different form as it transforms
one small-scale momentum mode, p̃(ki), into a small-
scale density mode, δ̃(ki). Moreover, this new term no
longer automatically vanishes at equal times. This leads
to a nontrivial consistency relation at equal times, when
τ ′ = τ1 = .. = τn+m,

〈δ̃(k′)

n
∏

j=1

δ̃(kj)

n+m
∏

j=n+1

p̃(kj)〉
′
k′→0 = −iPL(k

′)
d lnD+

dτ

×
n+m
∑

i=n+1

〈
n
∏

j=1

δ̃(kj)
i−1
∏

j=n+1

p̃(kj)

(

k′

k′2
[δD(ki) + δ̃(ki)]

)

×

n+m
∏

j=i+1

p̃(kj)〉
′ (20)

where we did not write the common time τ of all fields.
We can also obtain a consistency relation that involves
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both the density and velocity fields δ̃ and ṽ, together with
the momentum field p̃, and it shows the same behaviors.
To obtain a scalar quantity from the momentum field

p we consider its divergence,

λ ≡ ∇ · [(1 + δ)v] , λ̃(k) = ik · p̃(k). (21)

Then, the consistency relation for the divergence λ̃ fol-
lows from Eq.(19). This gives

〈δ̃(k′, τ ′)

n
∏

j=1

δ̃(kj , τj)

n+m
∏

j=n+1

λ̃(kj , τj)〉
′
k′→0 = −PL(k

′, τ ′)

×

{

〈
n
∏

j=1

δ̃(kj , τj)
n+m
∏

j=n+1

λ̃(kj , τj)〉
′

n+m
∑

i=1

D+(τi)

D+(τ ′)

ki · k
′

k′2

−

n+m
∑

i=n+1

〈δ̃(ki, τi)

n
∏

j=1

δ̃(kj , τj)

n+m
∏

j=n+1
j 6=i

λ̃(kj , τj)〉
′

×
(dD+/dτ)(τi)

D+(τ ′)

ki · k
′

k′2

}

. (22)

At equal times this gives the relation

〈δ̃(k′)

n
∏

j=1

δ̃(kj)

n+m
∏

j=n+1

λ̃(kj)〉
′
k′→0 = PL(k

′)
d lnD+

dτ

×

n+m
∑

i=n+1

ki · k
′

k′2
〈δ̃(ki)

n
∏

j=1

δ̃(kj)

n+m
∏

j=n+1
j 6=i

λ̃(kj)〉
′, (23)

where we did not write the common time τ of all fields.
We can easily check the relation (22) by noticing that
the divergence λ is related to the density field through
the continuity equation, ∂δ

∂τ + ∇ · [(1 + δ)v] = 0, which
implies λ = −∂δ/∂τ . Therefore, Eq.(22) can be directly
obtained from the density consistency relation (12) by
taking partial derivatives with respect to the times τj .
Applications: As for the density contrast relation (12),

the new consistency relations that we have obtained in
this Letter are valid beyond the perturbative regime, af-
ter shell crossing, and also apply to baryons, gas and
galaxies, independently of the bias of the objects that are
used. Indeed, they only use the property (8), which states
that at leading order the effect of a long-wavelengthmode
is to move smaller scale structures without disturbing
them. This relies on the equivalence principle, which
states that all particles (and astrophysical objects) fall
at the same rate in a gravitational potential well (the
inertial mass is also the gravitational mass) [3, 7, 8].
After shell crossing we enter a multi-streaming regime

where the velocity field is multi-valued: at a given po-
sition there are several streams with different velocities
as they cross each other and build a nonzero velocity
dispersion, as within virialized halos. Nevertheless, our
results remain valid. In that case, v can be taken as
any of these streams or as any given linear combination

of them, because all stream velocities are modified in
the same way. In multi-streaming regions, such as high-
density non-linear environments like clusters or filaments,
it is more practical to work with the mean momentum
p, where Eq.(16) reads in the case of several streams i
as p =

∑

streams
(1 + δi)vi, or in terms of a phase-space

distribution function as p =
∫

dvf(x,v)v . This is also
more convenient for observational purposes as we only
observe velocities where there is baryonic matter, so that
it is easier to build momentum maps than velocity maps,
which are difficult to measure in voids. The expression
(18) remains valid in these multi-streaming regions, as
the first term simply expresses the translation of the
smaller-scale system while the second term expresses the
large-scale constant additive term that is added to all
velocities. Thus, these consistency relations only rely on

1. Gaussian initial conditions (Eq.(4));

2. The weak equivalence principle (Eq.(8)).

Therefore, a detection of a violation would be a signature
of non-Gaussian initial conditions or of a modification of
gravity (or a fifth force). In practice, we also need to
make sure the large-scale wave number k′ is within the
linear regime and far below the other wave numbers ki,
so that the limit k′ → 0 is reached.

The simplest relation that does not vanish at equal
times is the bispectrum with one momentum field. From
Eqs.(20) and (23) we obtain for k 6= 0

〈δ̃(k′)δ̃(k)p̃(−k)〉′k′→0 = −i
k′

k′2
d lnD+

dτ
PL(k

′)P (k)

〈δ̃(k′)δ̃(k)λ̃(−k)〉′k′→0 = −
k · k′

k′2
d lnD+

dτ
PL(k

′)P (k).

Here P (k) is the non-linear density power spectrum and
these relations remain valid in the nonperturbative non-
linear regime. For galaxies these relations are

〈δ̃(k′)δ̃g(k)p̃g(−k)〉′k′→0 = −i
k′

k′2
d lnD+

dτ
PL(k

′)Pδgδg (k)

(24)

〈δ̃(k′)δ̃g(k)λ̃g(−k)〉′k′→0 = −
k · k′

k′2
d lnD+

dτ
PL(k

′)Pδgδg (k)

(25)
where δ̃ and PL are again the matter density field and
linear power spectrum, δ̃g and p̃g the galaxy density con-
trast and momentum, and Pδgδg the galaxy density power
spectrum. In Eqs.(24)-(25) we kept the long mode k′ as
the matter density contrast δ̃ because the actual consis-
tency relation is with respect to the initial condition δL0,
as in Eq.(5), and δ(k′) merely stands for D+(τ

′)δL0(k
′)

in the limit k′ → 0. If we wish to write Eqs.(24)-(25) in
terms of galaxy fields only, we need to assume that the
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matter and galaxy density fields are related by a finite
bias b1 in the limit k′ → 0. Then, Eq.(25) becomes

b1〈δ̃g(k
′)δ̃g(k)λ̃g(−k)〉′k′→0 = −

k · k′

k′2
d lnD+

dτ
Pδgδg (k

′)

×Pδgδg (k), (26)

where we assumed a deterministic large-scale limit b1 for
the galaxy bias, k′ → 0 : δg(k

′) = b1 δ(k
′) . Then,

Eq.(26) can be used as a measurement of the large-scale
bias b1.

Conclusions: We have obtained in this Letter very
general and exact consistency relations for cosmological
structures that do not vanish at equal times by taking
cross correlations with the velocity or momentum fields.
These relations, which are nonperturbative and also ap-
ply to galaxy fields, could be useful to constrain the Gaus-
sianity of the initial conditions, deviations from General
Relativity, or the large-scale galaxy bias.
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