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A solution for the paradox of the double-slit experiment

Gerrit Coddens

Laboratoire des Solides Irradiés, Université Paris-Saclay,

F-91128-Palaiseau CEDEX, FRANCE

We argue that the double-slit experiment can be understood much better by considering it as an experiment

whereby one uses electrons to study the set-up rather than an experiment whereby we use a set-up to study the

behaviour of electrons. We also show how the concept of undecidability can be used in an intuitive way to make

sense of the double-slit experiment and the quantum rules for calculating coherent and incoherent probabilities.

We meet here a situation where the electrons always behave in a fully deterministic way (following Einstein’s

conception of reality), while the detailed design of the set-up may render the question about the way they move

through the set-up experimentally undecidable (which follows more Bohr’s conception of reality). We show that

the expression ψ1 + ψ2 for the wave function of the double-slit experiment is numerically correct, but logically

flawed. It has to be replaced in the interference region by the logically correct expression ψ′
1
+ ψ′

2
, which

has the same numerical value as ψ1 + ψ2, such that ψ′
1
+ ψ′

2
= ψ1 + ψ2, but with ψ′

1
=

ψ1+ψ2√
2

eı
π
4 , ψ1 and

ψ′
2
=

ψ1+ψ2√
2

e−ı
π
4 , ψ2. Here ψ′

1
and ψ′

2
are the correct contributions from the slits to the total wave function

ψ′
1
+ ψ′

2
. We have then p = |ψ′

1
+ ψ′

2
|2 = |ψ′

1
|2 + |ψ′

2
|2 = p1 + p2 such that the paradox that quantum mechanics

(QM) would not follow the traditional rules of probability calculus disappears. The paradox is rooted in the

wrong intuition that ψ1 and ψ2 would be the true physical contributions to ψ′
1
+ ψ′

2
= ψ1 + ψ2 like in the case

of waves in a water tank. The solution proposed here is not ad hoc but based on an extensive analysis of the

geometrical meaning of spinors within group representation theory and its application to QM. Working further

on the argument one can even show that an interference pattern is the only way to satisfy simultaneously two

conditions: The condition obeying binary logic (in the spirit of Einstein) that the electron has only two mutually

exclusive options to get to the detector (viz. going through slit S1 or going through slit S2) and the condition

obeying ternary logic (in the spirit of Bohr) that the question which one of these two options the electron has

taken is experimentally undecidable.

I. INTRODUCTION

The double-slit experiment has been qualified by Feynman

[1] as the only mystery of QM. Its mystery resides in an ap-

parent paradox between the QM result and what we expect on

the basis of our intuition. What we want to explain in this ar-

ticle is that this apparent paradox is a probability paradox. By

this we mean that the paradox does not reside in some special

property of the electron that could act both as a particle and

a wave, but in the fact that we use two different definitions of

probability in the intuitive approach and in the calculations.

It is the difference between these two definitions which leads

to the paradox, because the two definitions are just incompat-

ible. In our discussion we will very heavily rely on the pre-

sentations by Feynman, even though further strange aspects

have been pointed out by other authors later on, e.g. in the

discussion of the delayed-choice experiment by Wheeler [2]

and of the quantum eraser experiment [3], which can also be

understood based on our discussion. The afore-lying paper is

an introduction to a much longer and detailed paper [4], which

itself relies heavily on a complete monograph [5].

II. FEYNMAN’S ESSENTIALS

Feynman illustrates the paradox by comparing tennis balls

and electrons. Tennis balls comply with classical intuition,

while electrons behave according to the rules of QM. There is

however, a small oversimplification in Feynman’s discussion.

He glosses over a detail, undoubtedly for didactical reasons.

When the electron behaves quantum mechanically and only

one slit is open, the experiment will give rise to diffraction

fringes, which can also not be understood in terms of a classi-

cal description in terms of tennis balls. But the hardest part of

the mystery is that in the quantum mechanical regime we get

a diffraction pattern when only one slit is open, while we get

an interference pattern when both slits are open. This means

that the single-slit probabilities even do not add up to an inter-

ference pattern when we allow for the quantum nature of the

electron in a single-slit experiment. We will therefore com-

pare most of the time the two quantum mechanical situations

rather than electrons and tennis balls.

What Feynman describes very accurately is how quantum

behaviour corresponds to the idea that the electron does not

leave any trace behind in the set-up of its interactions with

it, that would permit to reconstruct its history. (We exclude

here from our concept of a set-up the detectors that register

the electrons at the very end of their history). We cannot tell

with what part of the set-up the electron has interacted, be-

cause the interaction has been coherent. This corresponds to

“wave behaviour”. At the very same energy, a particle can

also interact incoherently with the set-up and this will then

result in classical “particle behaviour”. The difference is that

when the particle has interacted incoherently we do have the

possibility to figure out its path trough the device, because the

electron has left behind indications of its interactions with the

measuring device within the device.

A nice example of this difference between coherent and in-

coherent interactions occurs in neutron scattering. In its inter-

action with the device, the neutron can flip its spin. The con-
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servation of angular momentum implies then that there must

be a concomitant change of the spin of a nucleus within an

atom of the device. At least in principle the change of the

spin of this nucleus could be detected by comparing the sit-

uations before and after the passage of the neutron, such that

the history of the neutron could be reconstructed. Such an

interaction with spin flip corresponds to incoherent neutron

scattering. But the neutron can also interact with the atom

without flipping its spin. There will be then no trace of the

passage of the neutron in the form of a change of spin of a nu-

cleus, and we will never be able to find out the history of the

particle from a post facto inspection of the measuring device.

An interaction without spin flip corresponds to coherent scat-

tering. Note that this discussion only addresses the coherence

of the spin interaction. There are other types of interaction

possible and in order to have a globally coherent process none

of these interactions must leave a mark of the passage of the

neutron in the system that could permit us to reconstruct its

history. An example of an alternative distinction between co-

herent and incoherent scattering occurs in the discussion of

the recoil of the atoms of the device. A crystal lattice can re-

coil as a whole (coherent scattering). Alternatively, the recoil

can just affect a single atom (incoherent scattering).

In incoherent scattering the electron behaves like a tennis

ball. The hardest part of the mystery of the double-slit ex-

periment is thus the paradox which occurs when we compare

coherent scattering in the single-slit and in the double-slit ex-

periment. Feynman resumed this mystery by asking: How can

the particle know if the other slit is open or otherwise? In fact,

as its interactions must be local the electron should not be able

to “sense” if the other slit is open (see below).

III. CAVEATS

Let us now leave our intuition for what it is and turn to

QM. To simplify the formulation, we will in general use the

term probability for what are in reality probability densities.

In a purely QM approach we could make the calculations for

the three configurations of the experimental set-up. We could

solve the wave equations for the single-slit and double-slit ex-

periments:

− ~2

2m
∆ψ1 + V1(r)ψ1 = − ~ı

∂
∂t
ψ1, S1 open, S2 closed,

− ~2

2m
∆ψ2 + V2(r)ψ2 = − ~ı

∂
∂t
ψ2, S1 closed, S2 open,

− ~2

2m
∆ψ3 + V3(r)ψ3 = − ~ı

∂
∂t
ψ3, S1 open, S2 open.

(1)

Here S j refer to the slits. Within this theoretical framework

we would still not obtain the result |ψ3|2 for the double-slit ex-

periment by adding the probabilities |ψ1|2 and |ψ2|2 obtained

from the solutions of the wave equations for the single-slit ex-

periments. The fact that |ψ3|2 , |ψ1|2 + |ψ2|2 is at variance

with our intuition about the rules of probability calculus in a

way that seems to defy all our logic, because we expect the

electron to have only two mutually exclusive options. It must

travel through S1 or through S2. Textbooks tell us that we

should not add up probabilities but probability amplitudes,

|ψ3|2 = |ψ1 + ψ2|2. They describe this as the “superposition

principle”. They define wave functions ψ =
∑

j c jχ j, and cor-

responding probabilities p = |ψ|2 = |∑ j c jχ j|2, whereby one

must combine probability amplitudes rather than probabilities

in a linear way (coherent summing). They compare this to the

addition of the amplitudes of waves like we can observe in a

water tank, as also discussed by Feynman.

It must be pointed out that adding wave functions is cer-

tainly algebraically feasible, but a priori incompatible with

their geometrical meaning. Wave functions are spinors or sim-

plified versions of them and spinors in representation theory

have a well-defined geometrical meaning, physicists are not

aware of. We can draw an analogy between the situation in

QM and what happens in algebraic geometry, where you have

an algebraic formalism, a geometry and a one-to-one corre-

spondence that translates the geometry into the algebra and

vice versa. In QM the algebra is perfectly known and vali-

dated as exact because it agrees to very high precision with

all experimental data. But the meaning of the algebra, i.e. its

physical interpretation in terms of a geometry and a dictio-

nary is not known. This geometrical meaning is provided by

the group representation theory itself. The point is now, that if

you knew that geometry you would discover that some of the

algebra is undefined geometrical nonsense. Nonetheless this

meaningless algebra leads to the correct final result. This way

it agrees with experimental data, while the geometrical non-

sense leads to the paradoxes. The geometrical meaning of a

spinor is that it is a notation for a group element. Spinors can

a priori not be combined linearly as vectors [5] like physi-

cists do, because in the Lorentz and rotation groups the oper-

ations g2g2 are defined, but the operations c1g1 + c2g2 are not.

Spinors belong to a curved manifold, not a vector space. As

the algebra of QM yields correct results despite this transgres-

sion, a special effort must be made to explain “why the fluke

happens” by finding a posteriori a meaning for the algebraic

procedure of making linear combinations of spinors. This can

be compared to the way we were forced to justify a posteriori

doing algebra with the quantity ı =
√
−1 in mathematics, be-

cause it brought a wealth of meaningful results. It turns then

out that we must distinguish between two principles: a true

superposition principle (which is physically meaningful) and

a Huyghens’ principle (which is physically meaningless but

yields excellent numerical results).

The true superposition principle, based on the linearity of

the equations is that a linear combination ψ =
∑

j c jχ j is a

solution of a Schrödinger equation:

− ~
2

2m
∆ψ + V(r)ψ = −~

ı

∂

∂t
ψ. (2)

when all wave functions χ j are solutions of the same

Schrödinger equation Eq. 2. This is then a straightforward

mathematical result, and one can argue [4] that it leads to

the probability rule p =
∑

j |c j|2|χ j|2 (incoherent summing),

whereby one combines probabilities p j = |χ j|2 in the classical

way, which corresponds to common sense. But telling that the

solution ψ1 of a first equation with potential V1 can be added

to the solution ψ2 of a second equation with a different poten-
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tial V2 to yield a solution ψ3 for a third equation with a yet

different potential V3 can a priori not be justified by the math-

ematics and is not exact. It has nothing to do with the linearity

of the equations. Summing the equations for ψ1 and ψ2 does

not yield the equation for ψ3. A solution of the wave equa-

tion for the single-slit experiment will not necessarily satisfy

all the boundary conditions of the double-slit experiment, and

vice versa. At the best, ψ3 = ψ1 + ψ2 will in certain physical

situations be an excellent approximation. But the fact that this

is not rigorously exact (in other words logically flawed, be-

cause flawless logic can only yield a result that is rigorously

exact) and should be merely considered as a good numerical

result rather than an exact physical truth is important. In fact,

based on textbook presentations one could believe that it is

an absolute physical truth in principle that one must replace

the traditional rules of probability calculus p3 = p1 + p2 by

substituting the probabilities by their amplitudes. This is just

not true. The belief must be vigorously eradicated because it

leads to the misconception that there could exist a deep logi-

cal principle behind ψ3 = ψ1 + ψ2, that in its proper context

would be a truth that is as unshakable as p3 = p1 + p2 in our

traditional logic and transcend all human understanding. As

discussed below, mistaking the principle of substituting p by ψ

for a deep mysterious absolute truth leads to insuperable con-

ceptual problems in the case of destructive interference where

ψ1(r) + ψ2(r) = 0. The only way to solve this paradox is fol-

lowing the track of the logical loophole. What happens here is

that the procedure of adding spinors is logically flawed but its

result numerically accurate. Of course, agreement with exper-

iment can only validate here the numerical accuracy, not the

flawed logic that has been used to obtain it.

To take this objection into account rigorously, we will de-

fine that the approximate solution ψ3 ≈ ψ1 +ψ2 of the double-

slit wave equation follows a Huyghens’ principle and note it

as ψ3 = ψ1 ⊞ ψ2 to remind that it is only numerically accu-

rate, reserving the term superposition principle for the case

when we combine wave functions that are all solutions of

the same linear equation. We make this distinction between

the superposition principle (with incoherent summing) and a

Huyghens’ principle (with coherent summing) to make sure

that we respect what we can do and what we cannot do with

spinors. This lays also a mathematical basis for justifying that

we have two different rules for calculating probabilities and

that both the incoherent rule p =
∑

j |c j|2|χ j|2 and the coherent

rule p = |ψ|2 = |∑ j c jχ j|2 are correct within their respec-

tive domains of validity. This is the mathematical essence of

the problem. QM just tells us that once we have an exact

pure-state solution of a wave equation, we must square the

amplitude of the wave function to obtain an exact probability

distribution.

The double-slit paradox is so difficult that it has the same

destabilizing effect as gaslighting. One starts doubting about

one’s own mental capabilities. But the very last thing we can

do in face of such a very hard paradox is to capitulate and

think that we are not able to think straight. We will thus cat-

egorically refuse to yield to such defeatism. If we believe in

logic, the rule p3 = p′
1
+ p′

2
, where p′

1
and p′

2
are the proba-

bilities to traverse the slits in the double-slit experiment, must

still be exact. We are then compelled to conclude that in QM

the probability p′
1

for traversing slit S1 when slit S2 is open is

manifestly different from the probability p1 for traversing slit

S1 when slit S2 is closed. We can then ask with Feynman how

the particle can “know” if the other slit is open or otherwise if

its interactions are local.

IV. LOCAL INTERACTIONS, NON-LOCAL

PROBABILITIES

The solution to that problem is that the interactions of the

electron with the device are locally defined while the proba-

bilities defined by the wave function are not. The probabilities

are non-locally, globally defined. When we follow our intu-

ition, the electron interacts with the device in one of the slits.

The corresponding probabilities are local interaction proba-

bilities. We may take this point into consideration. Following

our intuition we may then think that after doing so we are

done. But in QM the story does not end here. The probabili-

ties are globally defined and we must solve the wave equation

with the global boundary conditions. We may find locally a

solution to the wave equation based on the consideration of

the local interactions, but that is not good enough. The wave

equation must also satisfy boundary conditions that are far

away from the place where the electron is interacting. The

QM probabilities are defined with respect to the global ge-

ometry of the set-up. This global geometry is fundamentally

non-local in the sense that the local interactions of the electron

cannot be affected by all aspects of the geometry. Due to this

fact the ensuing probability distribution is also non-locally de-

fined. This claim may look startling. To make sense of it we

propose the following slogan, which we will explain below:

“We are not studying electrons with the measuring device, we

are studying the measuring device with electrons”. This slo-

gan introduces a paradigm shift that will grow to a leading

principle as we go along. We can call it the holographic prin-

ciple (see below).

In fact, we cannot measure the interference pattern in the

double-slit experiment with one electron impact on a detec-

tor screen. We must make statistics of many electron impacts.

We must thus use many electrons and measure a probability

distribution for them. The probabilities must be defined in a

globally self-consistent way. The definitions of the probabil-

ities that prevail at one slit may therefore be subject to com-

patibility constraints imposed by the definitions that prevail at

the other slit. We are thus measuring the probability distribu-

tion of an ensemble of electrons in interaction with the whole

device. While a single electron cannot “know” if the other slit

is open or otherwise, the ensemble of electrons will “know”

it, because all parts of the measuring device will eventually

be explored by the ensemble of electrons if this ensemble is

large enough, i.e. if our statistics are good enough. When this

is the case, the interference pattern will appear. Reference [6]

gives actually a nice illustration of how the interference pat-

tern builds up with time.

The geometry of the measuring device is non-local in the

sense that a single electron cannot explore all aspects of the
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set-up through its local interactions. There is no contradiction

with relativity in the fact that the probabilities for these lo-

cal interactions must fit into a global probability scheme that

is dictated also by parts of the set-up a single electron cannot

probe. We must thus realize how Euclidean geometry contains

information that in essence is non-local, because it cannot all

be probed by a single particle, but that this is not in contra-

diction with the theory of relativity. The very Lorentz frames

used to write down the Lorentz transformations are non-local

because they assume that all clocks in the frame are synchro-

nized up to infinite distance. It is by no means possible to

achieve this, such that the very tool of a Lorentz frame con-

ceptually violates the theory of relativity. But this remains

without any practical incidence on the validity of the theory.

V. A CLASSICAL ANALOGY

We can render these ideas clear by an analogy. Imagine a

country that sends out spies to an enemy country. The elec-

trons behave as this army of spies. The double-slit set-up is

the enemy country. The physicist is the country that sends out

the spies. Each spy is sent to a different part of the enemy’s

country, chosen by a random generator. They will all take

photographs of the part of the enemy country they end up in.

The spies may have an action radius of only a kilometer. Some

of the photographs of different spies will overlap. These pho-

tographs correspond to the spots left by the electrons on your

detector. If the army of spies you send out is large enough,

then in the end the army will have made enough photographs

to assemble a very detailed complete map of the country. That

map corresponds to the interference pattern. In assembling the

global map from the small local patches presented by the pho-

tographs we must make sure that the errors do not accumu-

late such that everything fits together self-consistently. This

is somewhat analogous with the boundary conditions of the

wave function that must be satisfied globally, whereby we can

construct the global wave function also by assembling patches

of local solutions. The tool one can use to ensure this global

consistency is a Huyghens’ principle. An example of such

a Huyghens’ principle is Feynman’s path integral method or

Kirchhoff’s method in optics. The principle is non-local and is

therefore responsible for the fact that we must carry out calcu-

lations that are purely mathematical but have no real physical

meaning. They may look incomprehensible if we take them

literally, because they may involve e.g. backward propaga-

tion in space and even in time [7, 8], not to mention photons

traveling faster than light.

The interference pattern presents this way the information

about the whole experimental set-up. It does not present this

information directly but in an equivalent way, by an integral

transform. This can be seen from Born’s treatment of the scat-

tering of particles of mass m0 by a potential Vs, which leads

to the differential cross section:

dσ

dΩ
=

m0

4π2
|F (Vs)(q)|2, (3)

where p = ~q is the momentum transfer. The integral trans-

form is here the Fourier transform F , which is a even a one-

to-one mapping. This result is derived within the Born ap-

proximation and is therefore an approximate result. In a more

rigorous setting, the integral transform could be e.g. the one

proposed by Dirac [9], which Feynman was able to use to

derive the Schrödinger equation [10]. The Huyghens’ prin-

ciples used by Feynman and Kirchhoff are derived from in-

tegral transforms to which they correspond. (In Feynman’s

path integral there will be paths that thread through both slits,

which shows that ψ3 = ψ1 + ψ2 is not rigorously exact). In a

double-slit experiment, Vs embodies just the geometry of the

set-up. Combined with a reference beam F (Vs)(q) yields its

hologram. The spies in our analogy are not correlated and

not interacting, but the information about the country is cor-

related: It is the information we put on a map. The map will

e.g. show correlations in the form of long straight lines, roads

that stretch out for thousands of miles, but none of your spies

will have seen these correlations and the global picture. They

just have seen the local picture of the things that were situated

within their action radius. The global picture, the global in-

formation about the enemy country is non-local, and contains

correlations, but it can nevertheless be obtained if you send out

enough spies to explore the whole country, and it will show on

the map assembled. That is what we are aiming at by invoking

the non-locality of the Lorentz frame and the non-locality of

the wave function. The global information gathered by many

electrons contains the information how many slits are open. It

is that kind of global information about your set-up that is con-

tained in the wave function. You need many single electrons

to collect that global information. A single electron just gives

you one impact on the detector screen. That is almost no infor-

mation. Such an impact is a Dirac delta measure, derived from

the Fourier transform of a flat distribution. It contains hardly

any information about the set-up because it does not provide

any contrast. This global geometry contains thus more infor-

mation than any single electron can measure through its local

interactions. And it is here that the paradox creeps in. The

probabilities are not defined locally, but globally. The inter-

actions are local and in following our intuition, we infer from

this that the definitions of the probabilities will be local as

well, but they are not. The space wherein the electrons travel

in the double-slit experiment is not simply connected, which

is, as we will see, a piece of global, topological information

apt to profoundly upset the way we must define probabilities.

VI. HIGHLY SIMPLIFIED DESCRIPTIONS STILL CATCH

THE ESSENCE

The description of the experimental set-up we use to cal-

culate a wave function is conventionally highly idealized and

simplified. Writing an equation that would make it possible

to take into account all atoms of the macroscopic device in

the experimental set-up is a hopeless task. Moreover, the total

number of atoms in “identical” experimental set-ups is only

approximately identical. In such a description there is no

thought for the question if the local interaction of a neutron
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involves a spin flip or otherwise. Despite its crudeness, such a

purely geometrical description is apt to seize a crucial ingredi-

ent of any experiment whereby interference occurs. It is able

to account for the difference between set-ups with one and two

slits, as in solving the wave equation we unwittingly avoid the

pitfall of ignoring the difference between globally and locally

defined probabilities, rendering the solution adopted tacitly

global. In this sense the probability paradox we are confronted

with is akin to Bertrand’s paradox in probability calculus. It is

not sufficient to calculate the interaction probabilities locally.

We must further specify how we will use these probabilities

later on in the procedure to fit them into a global picture. The

probabilities will be only unambiguously defined if we define

simultaneously the whole protocol we will use to calculate

with them.

VII. WINNOWING OUT THE OVER-INTERPRETATIONS

It is now time to get rid of the particle-wave duality. Elec-

trons are always particles, never waves. As pointed out by

Feynman, electrons are always particles because a detector

detects always a full electron at a time, never a fraction of an

electron. Electrons never travel like a wave through both slits

simultaneously. But in a sense, their probability distribution

does. It is the probability distribution of many electrons which

displays wave behaviour and acts like a flowing liquid, not the

individual electrons themselves. This postulate only reflects

literally what QM says, viz. that the wave function is a prob-

ability amplitude, and that it behaves like a wave because it

is obtained as the solution of a wave equation. Measuring

the probabilities requires measuring many electrons, such that

the probability amplitude is a probability amplitude defined

by considering an ensemble of electrons [11] with an ensem-

ble of possible histories. Although this sharp dichotomy is

very clearly present in the rules, we seem to loose sight of

it when we are reasoning intuitively. This is due to a ten-

dency towards “Hineininterpretierung” in terms of Broglie’s

initial idea that the particles themselves, not their probability

distributions, would be waves. These heuristics have histori-

cally been useful but are reading more into the issue than there

really is. Their addition blurs again the very accurate sharp

pictures provided by QM. With hindsight, we must therefore

dispense with the particle-wave duality. The rules of QM are

clear enough in their own right: In claro non interpretatur!

Wave functions also very obviously do not collapse. They

serve to describe a statistical ensemble of possible events, not

outcomes of single events.

It is also time to kill the traditional reading of ψ3 = ψ1 ⊞ψ2

in terms of a “superposition principle”, based on the wave pic-

ture. It is is only a convenient numerical recipe, a Huyghens’

principle without true physical meaning. We can make the ex-

periment in such a way that only one electron is emitted by the

source every quarter of an hour. Still the interference pattern

will build up if we wait long enough. But if ψ1 and ψ2 were to

describe the correct probabilities from slit S1 and slit S2, we

would never be able to explain destructive interference. How

could a second electron that travels through slit S2 erase the

impact made on the detector screen of an electron that trav-

eled through slit S1 hours earlier? We may speculate that the

electron feels whether the other slit is open or otherwise. E.g.

the electron might polarize the charge distribution inside the

measuring device and the presence of the other slit might in-

fluence this induced charge distribution. This would be an

influence at a distance that is not incompatible with the theory

of relativity. But this scenario is not very likely. As pointed

out by Feynman interference is a universal phenomenon. It

exists also for photons, neutrons, helium atoms, etc... We al-

ready capture the essence of this universal phenomenon in a

simple, crude geometrical description of the macroscopic set-

up of the experiment. While this could be a matter of pure

luck according to the principle that fortune favors fools, it is

not likely that one could translate the scenario evoked for elec-

trons to an equivalent scenario in all these different situations.

E.g. how could the fact that another slit is open (in a nm-

sized double-slit experiment) affect the nuclear process at the

fm scale of the spin flip of a neutron? The generality of the

scenario based on an influence at a distance is thus not very

likely.

We must thus conclude that ψ3 = ψ1⊞ψ2 is a very good nu-

merical approximation for the true wave function ψ′
3
, whereby

the physically meaningful identity reads ψ′
3
= ψ′

1
+ψ′

2
in terms

of other wave functions ψ′
1

and ψ′
2
. The wave functions ψ′

1

and ψ′
2

must now both be zero, ψ′
1
(r) = ψ′

2
(r) = 0, in all

places r where we have “destructive interference”, because

p3 = p1 + p2 must still be valid. In other words ψ1 , ψ
′
1

and

ψ2 , ψ
′
2
.

VIII. UNDECIDABILITY

We can further improve our intuition for this by another ap-

proach that addresses more the way we study electrons with

the set-up and is based on undecidablity. The concept of un-

decidablity has been formalized in mathematics, which pro-

vides many examples of undecidable questions. Examples

occur e.g. in Gödel’s theorem [12]. The existence of such

undecidable questions may look hilarious to common sense

but this does not need to be. In fact, the reason for the exis-

tence of such undecidable questions is that the set of axioms

of the theory is incomplete. We can complete then the the-

ory by adding an axiom telling the answer to the question is

“yes”, or by adding an axiom telling the answer to the question

is “no”. The two alternatives permit to stay within a system

based on binary logic (“tertium non datur”) and lead to two

different axiomatic systems and thus to two different theories.

An example of this are Euclidean and hyperbolic geometry

[13]. In Euclidean geometry one has added on the fifth par-

allels postulate to the first four postulates of Euclid, while in

hyperbolic geometry one has added on an alternative postu-

late that is at variance with the parallels postulate. We are

actually not forced to make a choice: We can decide to study

a “pre-geometry”, wherein the question remains undecidable.

The axiom one has to add can be considered as information

that was lacking in the initial set of four axioms. Without

adding it one cannot address the yes-or-no question which re-
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veals that the axiomatic system without the parallels postulate

added is incomplete. As Gödel has shown, we will almost al-

ways run eventually into such a problem of incompleteness.

On the basis of Poincaré’s mapping between hyperbolic and

Euclidean geometry [13], we can appreciate which informa-

tion was lacking in the first four postulates. The information

was not enough to identify the straight lines as really straight,

as we could still interpret the straight lines in terms of half

circles in a half plane.

When the interactions are coherent in the double-slit ex-

periment, the question through which one of the two slits the

electron has traveled is very obviously also experimentally un-

decidable. Just like in mathematics, this is due to lack of in-

formation. We just do not have the information that could

permit us telling which way the electron has gone. This is

exactly what Feynman pointed out so carefully. In his lec-

ture he considers three possibilities for our observation of the

history of an electron: “slit S1”, “slit S2”, and “not seen”.

The third option corresponds exactly to this concept of un-

decidability. He works this out with many examples in ref-

erence [1], to show that there is a one-to-one correspondence

between undecidability and coherence. Coherence already oc-

curs in a single-slit experiment, where it is at the origin of the

diffraction fringes. But in the double-slit experiment the lack

of knowledge becomes all at once amplified to an objective

undecidability of the question through which slit the electron

has traveled, which does not exist in the single-slit experiment.

What happens here in the required change of the definition

of the probabilities has nothing to do with a change in local

physical interactions. It has only to do with the question how

we define a probability with respect to a body of available

information. The probabilities are in a sense conditional be-

cause they depend on the information available. As the lack

of information is different in the double-slit experiment, the

body of information available changes, such that the probabil-

ities must be defined in a completely different way (Bertrand’s

paradox). Information biases probabilities, which is why in-

surance companies ask their clients to fill forms requesting

information about them.

We have methods to deal with such bias. According to

common-sense intuition whereby we reason only on the lo-

cal interactions, opening or closing the other slit would not

affect the probabilities or only affect them slightly, but this is

wrong. We may also think that the undecidability is just ex-

perimental such that it would not matter for performing our

probability calculus. We may reckon that in reality, the elec-

tron must have gone through one of the two slits anyway. We

argue then that we can just assume that half of the electrons

went one way, and the other half of the electrons the other

way, and that we can then use statistical averaging to simu-

late the reality, just like we do in classical statistical physics

to remove bias. We can verify this argument by detailed QM

calculations. We can calculate the solutions of the three wave

equations in Eq. 1 and compare |ψ3|2 with the result of our

averaging procedure based on |ψ1|2 and |ψ2|2. This will repro-

duce the disagreement between the experimental data and our

classical intuition, confirming QM is right.

To make sense of this we may argue that we are not used

to logic that allows for undecidability. Decided histories with

labels S1 or S2 occur in a theory based on a system of axioms

A1 (binary logic), while the undecided histories occur in a

theory based on an all together different system of axiomsA2

(ternary logic). In fact, the averaging procedure is still correct

in A2 because the electron travels indeed either through S1

or through S2 following binary logic. But the information we

obtain about the electron’s path does not follow binary logic.

It follows ternary logic.

Due to the information bias the probabilities |ψ′
1
|2 and |ψ′

2
|2

to be used inA2 are very different from the probabilities |ψ1|2
and |ψ2|2 to be used inA1. The paradox results thus from the

fact that we just did not imagine that such a difference could

exist. Assuming ψ′
j
= ψ j, for j = 1, 2 amounts to neglecting

the ternary bias of the information contained in our data and

reflects the fact that we are not aware of the global character

of the definition of the probabilities. To show that the intu-

ition ψ′
j
= ψ j, for j = 1, 2 is wrong, nothing is better than

giving a counterexample. The counterexample is the double-

slit experiment where clearly the probability is not given by

p3 = |ψ1|2 + |ψ2|2 but by p3 = |ψ′1|
2 + |ψ′

2
|2 ≈ |ψ1 ⊞ ψ2|2, where

the index 3 really refers to the third (undecidable) option. It is

then useless to insist any further.

The undecidability criterion corresponds to a global con-

straint that has a spectacular impact on the definition of the

probabilities. The probabilities are conditional and not abso-

lute. They are physically defined by the physical information

gathered from the interactions with the set-up, not absolutely

by some absolute divine knowledge about the path the elec-

tron has taken. The set-up biases the information we can ob-

tain about that divine knowledge by withholding a part of the

information about it. Einstein is perfectly right that the Moon

is still out there when we are not watching. But we cannot find

out that the Moon is there if we do not register any of its inter-

actions with its environment, even if it is there. If we do not

register any information about the existence of the Moon, then

the information contained in our experimental results must be

biased in such a way that everything looks as though the Moon

were not there [14]. Therefore, in QM the undecidability must

affect the definition of the probabilities and bias them, such

that p′
j
, p j, for j = 1, 2. The experimental probabilities must

reflect the undecidability. In a rigorous formulation, this un-

decidability becomes a consequence of the fact that the wave

function must be a function, because it is the integral trans-

form of the potential, which must represent all the informa-

tion about the set-up and its built-in undecidability. As the

phase of the wave function corresponds to the spin angle of

the electron, even this angle is thus uniquely defined.

IX. THE CORRECT ANALYSIS OF THE EXPERIMENT

This idea is worked out in reference [5], pp. 329-333, and

depends critically on the fact that the space traversed by the

electrons that end up in the detector is not simply connected.

It is based on the simplifying ansatz that the way the elec-

tron travels through the set-up from a point r1 to a point r2

has no incidence whatsoever on the phase difference of the
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wave function between r1 and r2. The idea is based on an

Aharonov-Bohm type of argument: For two alternative paths

Γ1 and Γ2 between r1 and r2, we have [
∫
Γ1

Edt − p·dr ] −
[
∫
Γ2

Edt − p·dr ] = 2πn, where n ∈ Z. The union of the two

paths defines a loop. In a single-slit experiment this loop can

be shrunk continuously to point which can be used to prove

that n = 0. In a double-slit experiment the loop cannot be

shrunk to a point when Γ1 and Γ2 are threading through differ-

ent slits, such that n , 0 becomes then possible. Each interfer-

ence fringe corresponds to one value of n ∈ Z. A phase differ-

ence of 2πn occurs also in the textbook approach where one

argues that to obtain constructive interference the difference in

path lengths behind the slits must yield a phase difference 2πn.

But this resemblance does not run deep and is superficial. The

textbook approach deals with phase differences between ψ1

and ψ2 in special points r2, while our approach deals with dif-

ferent phases built up over paths Γ1 and Γ2 within ψ3 = ψ1⊞ψ2

for all points r2.

We can approach this somewhat differently. We will show

that the textbook quantum mechanics prescription ψ3 = ψ1 ⊞

ψ2 belongs to “pre-geometry” in the analogy we discussed

above. We accept that the question through which slit the elec-

tron has traveled is undecidable and accept ternary logic. We

should then play the game and not attempt in any instance to

reason about the question which way the electron has trav-

eled, because this information is not available. But we can

also add a new axiom, the axiom of the existence of a divine

perspective, rendering the question decidable for a divine ob-

server who can also observe the information withheld by the

set-up. We must then also play the game and accept the fact

that the probabilities we will discuss can no longer be mea-

sured, such that the conclusions we draw will now no longer

be compelled by experimental evidence but by the pure bi-

nary logic imposed by the addition of the axiom. We take the

exact solution ψ′
3

of the double-slit experiment and try to de-

termine the parts ψ′
1

and ψ′
2

of it that stem from slits S1 and

S2. We can mentally imagine such a partition without mak-

ing a logical error because each electron must go through one

of the slits, even if we will never know which one. We have

thus ψ′
3
= ψ′

1
+ ψ′

2
. We expect that ψ′

1
(r) must vanish on slit

S2 and ψ′
2
(r) on slit S1, but we must refrain here from jump-

ing to conclusions by deciding that ψ′
1
= ψ1 and ψ′

2
= ψ2.

We can only attribute probabilities |ψ′
1
|2 and |ψ′

2
|2 to the slits,

based on the lack of experimental knowledge. We will use

ψ′
3
= ψ3 = ψ1⊞ψ2 in our calculations, as we know it is a good

numerical approximation. Let us call the part of R3 behind

the slits V . Following the idea that ψ′
1
(r) would have to vanish

on slit S2 and ψ′
2
(r) on slit S1, we subdivide V in a region Z1

where ψ′
1
(r) = 0 and a region N1 where ψ′

1
(r) , 0. We define

Z2 and N2 similarly. In the region N1 ∩ Z2 we can multiply

ψ′
1

by an arbitrary phase eıχ1 without changing |ψ′
1
(r)|2. In the

region Z1 this is true as well as |ψ′
1
(r)|2 = 0. Similarly ψ′

2
(r)

can be multiplied by an an arbitrary phase eıχ2 in the regions

Z2 and Z1 ∩ N2. Let us now address the region N1 ∩ N2. We

must certainly have |ψ′
1
(r)|2 + |ψ′

2
(r)|2 = |ψ3(r)|2, because the

probabilities for going through slit S1 and for going through

slit S2 are mutually exclusive and must add up to the total

probability of transmission. We might have started to doubt

about the correctness of this idea, due to the way textbooks

present the problem, but we should never have doubted. Let

us thus put ψ′
1
(r) = |ψ3(r)| cosα eıα1 , ψ′

2
(r) = |ψ3(r)| sinα eıα2 ,

∀r ∈ N1 ∩ N2 = W. In fact, if ψ′
j

is a partial solution for

the slit S j, ψ
′
j
eıα j will also be a partial solution for the slit S j.

We must take here α, α1 and α2 as constants. If we took a

solution whereby α, α1 and α2 were functions of r, the result

obtained would no longer be a solution of the Schrödinger

equation in free space, due to the terms containing the spatial

derivatives of α, α1 and α2 which are not zero. In first in-

stance this argument shows also that we must take χ1 = α1 and

χ2 = α2. We do not have to care about the phases χ1 and χ2

in the single-slit experiments, but this changes in the double-

slit experiment, because we must make things work out glob-

ally. Over N1 ∩ Z2, we must have ψ′
1
(r) = ψ3(r) = ψ1(r), as

ψ2(r) = 0. Similarly, (∀r ∈ N2 ∩Z1 ) (ψ′
2
(r) = ψ3(r) = ψ2(r) )

as ψ1(r) = 0. Then
∫

W
|ψ′

1
(r)|2 dr = cos2 α

∫
W
|ψ′

3
(r)|2 dr

and
∫

W
|ψ′

2
(r)|2 dr = sin2 α

∫
W
|ψ′

3
(r)|2 dr. Due to the sym-

metry, we must have
∫

W
|ψ′

2
(r)|2 dr =

∫
W
|ψ′

1
(r)|2 dr, such

that α = π
4
. We see from this that not only

∫
W
|ψ′

2
(r)|2 dr =∫

W
|ψ′

1
(r)|2 dr = 1

2

∫
W
|ψ′

3
(r)|2 dr, but also |ψ′

2
(r)|2 = |ψ′

1
(r)|2 =

1
2
|ψ′

3
(r)|2. In each point r ∈ W the probability that the electron

has traveled through a slit to get to r is equal to the probabil-

ity that it has traveled through the other slit. This is due to the

undecidability. The choices α1 , 0, α2 , 0 we have to impose

on the phases, are embodying here the idea that a solution of a

Schrödinger equation with potential V j, for j = 1, 2 cannot be

considered as a solution of a Schrödinger equation with po-

tential V3. The conditions we have to impose on α1 and α2

are thus a kind of disguised boundary conditions. They are

not true boundary boundaries, but a supplementary condition

(a logical constraint) that we want ψ′
1

and ψ′
2

to obey “divine”

binary logic.

We can summarize these results as ψ′
1
= 1√

2
|ψ1 ⊞ ψ2| eıα1

and ψ′
2
= 1√

2
|ψ1 ⊞ψ2| eıα2 . Let us write ψ1 ⊞ψ2 = |ψ1 ⊞ψ2| eıχ.

We can now calculate α1 and α2 by identification. This yields

on W:

ψ′
1
=
|ψ1⊞ψ2 | eı(χ+

π
4

)

√
2

= 1√
2

(ψ1 ⊞ ψ2) e+ı
π
4 , ψ1

ψ′
2
=
|ψ1⊞ψ2 | eı(χ−

π
4

)

√
2

= 1√
2

(ψ1 ⊞ ψ2) e−ı
π
4 , ψ2

(4)

What this shows is that the rule ψ3 = ψ1 ⊞ ψ2 is logically

flawed, because the correct expression is ψ′
3
= ψ′

1
+ ψ′

2
. We

were able to get an inkling of this loophole by noticing that

ψ3 = ψ1 ⊞ ψ2 is not rigorously exact, even if it is an excel-

lent approximation. The differences between ψ′
j

and ψ j, for

j = 1, 2, are not negligible. The phases of ψ′
1

and ψ′
2

always

differ by π
2

such that they are fully correlated. The difference

between the phases of ψ1 and ψ2 can be anything. They can

be opposite (destructive interference) or identical (construc-

tive interference). In fact, in contrast to ψ1 and ψ2, ψ′
1

and

ψ′
2

reproduce the oscillations of the interference pattern. In

this respect, the fact that α1 and α2 are different by a fixed
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amount is crucial. It permits to make up for the normalization

factor 1√
2

and end up with the correct numerical result of the

flawed calculation ψ1 ⊞ ψ2. The phases of ψ′
1

and ψ′
2

conspire

to render ψ′
1
+ ψ′

2
equal to ψ1 ⊞ ψ2.

However, at the boundaries of N1 ∩ Z2 and N2 ∩ Z1 with

W there are awkward discontinuities. In N1 ∩ Z2, we must

have ψ′
1
(r) = ψ1(r), while in N1 ∩ N2, we have ψ′

1
(r) =

1√
2

(ψ1(r) ⊞ ψ2(r)) e+ı
π
4 . The difference between the solutions

is
ψ3(r)√

2
eı(χ−

π
4

). This is the value ψ′
2
(r) would take over N1 ∩Z2

if we extrapolated it from W to N1 ∩ Z2. We can consider

that we can accept this discontinuity at the boundary, because

over N1 ∩ Z2, the question through which slit the electron has

traveled is decidable, while over W it is undecidable, such

that there is an abrupt change of logical regime at this bound-

ary. In reality, the boundary between W and N1 ∩ Z2 could be

more diffuse and be the result of an integration over the slits,

such that the description is schematic and the abruptness not

real. The main aim of our calculation is to obtain a qualita-

tive understanding rather than a completely rigorous solution.

The same arguments can be repeated at the boundary between

N2 ∩ Z1 and W. If we accept this solution, then ψ′
1
(r) will

vanish on slit S2 and ψ′
2
(r) will vanish on slit S1. [15] We

can also consider these discontinuities as a serious issue. We

could then postulate that we must assume that N1 ∩ Z2 = ∅ &

N1 ∩ Z2 = ∅, in order to avoid the discontinuities. The fact

that we have to choose N1 ∩ Z2 = ∅ & N1 ∩ Z2 = ∅ would

then be a poignant illustration of the possible consequences

of undecidability. Contrary to intuition, the value we have to

attribute in a point of slit S1, to the probability that the particle

has traveled through slit S2 is now not zero as we might have

expected but 1
2
|ψ′

3
(r)|2. The experimental undecidability bi-

ases thus the probabilities such that they are no longer the “di-

vine probabilities”. The two different approaches correspond

to Einstein-like and Bohr-like viewpoints. Both approaches

are logically tenable when the detector screen is completely

in the zone W, because the quantities in N1 ∩ Z2 and N2 ∩ Z1

are then not measured quantities. Of course we could try to

measure them by putting the detector screen close to the slits,

but this would be a different experiment, leading to different

probabilities, as Feynman has pointed out in his analysis.

In analyzing the path integrals, one should recover in prin-

ciple the same results. However, the pitfall is here that one

might too quickly conclude that ψ′
j
= ψ j like in the textbook

presentations, which leads us straight into the paradox. We see

thus that the Huyghens’ principle is a purely numerical recipe

that is physically meaningless, because it searches for a cor-

rect global solution without caring about the correctness of the

partial solutions. It follows the experimental ternary logic and

therefore is allowed to mistreat the phase difference that exists

between the partial solutions ψ′
1

and ψ′
2

which always have the

same phase difference, such that they cannot interfere destruc-

tively. The rule ψ3 = ψ1 ⊞ψ2 is perfectly right in ternary logic

where we decide that we do not bother which way the particle

has travelled, because that question is empirically undecid-

able. It is then empirically meaningless to separate ψ′
3

into

two parts. This corresponds to Bohr’s viewpoint. It is ten-

able because it will not be contradicted by experiment. This

changes if one wants to impose also binary logic on the wave

function, arguing that conceptually the question about the slits

should be decidable from the perspective of a divine observer.

We do need then a correct decomposition ψ′
3
= ψ′

1
+ ψ′

2
. We

find then out that ψ′
j
, ψ j and we can attribute this change

between the single-slit and the double-slit probabilities to the

difference between the ways we must define probabilities in

both types of logic. If we were able by divine knowledge to

assign to each electron impact on the detector the correspond-

ing number of the slit through which the electron has traveled,

we would recover the experimental frequencies |ψ′
j
|2. This is

Einstein’s viewpoint. Having made this clear, everybody is

free to decide for himself if he prefers to study geometry in

binary logic or pre-geometry in ternary logic. But refusing

Einstein’s binary logic based on the argument that ψ′
1

and ψ′
2

cannot be measured appears to us a stronger and more frustrat-

ing Ansatz than the one that consists in introducing variables

that cannot be measured. The refusal is of course in direct line

with Heisenberg’s initial program of removing all quantities

that cannot be measured from the theory. It is Heisenberg’s

minimalism which preserves the experimental undecidability

and ternary logic within the theory. To this we can add a sup-

plementary logical constraint which enforces binary logic. As

Eq. 4 shows, the difference between the fake partial ternary

solutions ψ j and the correct partial ternary solutionsψ′
j
(where

j = 1, 2) is much larger than we ever might have expected on

the basis of the logical loophole that ψ3 = ψ1 ⊞ ψ2 is not

rigorously exact. In the approach with the additional binary

constraint, whereby we follow the spirit of Bohr, we even do

not reproduce ψ′
1
(r) = 0 on slit S2 and ψ′

2
(r) = 0 on slit S1,

because these quantities are not measured if we assume that

they are only measured far behind the slits. In the Bohr-like

approach, the conditions ψ′
1
(r) = 0 on slit S2 and ψ′

2
(r) = 0 on

slit S1 are thus not correct boundary conditions for a measure-

ment far behind the slits, because they violate the Ansatz of

experimental undecidability. The bias in the experimentally

measured probabilities due to the undecidability cannot be re-

moved by the divine knowledge about the history. If we want

a set-up with the boundary conditions that correspond to the

unbiased case whereby ψ′
1
(r) = 0 on slit S2 and ψ′

2
(r) = 0 on

slit S1, we must assume that the detector screen is put imme-

diately behind the slits, and the interference pattern can then

not be measured, while everything becomes experimentally

decidable. Otherwise, we must assume that ψ′
1
(r) and ψ′

2
(r)

are not measured on the slits such that they can satisfy the un-

decidable solution in Eq. 4. The partial probabilities given

by ψ′
1
(r) and ψ′

2
(r) are thus extrapolated quantities, and they

are only valid within one set-up with a well-defined position

of the detector screen. Even in the pure Heisenberg approach

whereby one postulates that we are not allowed to ask through

which slit the electron has traveled, the wave function contains

extrapolated quantities that are not measured, despite the orig-

inal agenda of that approach. We see also that there is always

an additional logical constraint that must be added in order to

account for the fact that the options of traveling through the

slits S1 or S2 are mutually exclusive. This has been systemat-

ically overlooked, with the consequence that one obtains the

result p , p1 + p2, which is impossible to make sense of. It is
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certainly not justified to use p , p1 + p2 as a starting basis for

raising philosophical issues. Moreover, imposing the bound-

ary condition that ψ′
1
(r) = 0 on slit S2 and ψ′

2
(r) = 0 on slit

S1 remains a matter of choice, depending on which vision one

wants to follow. If we do not clearly point out this choice, then

confusion can enter the scene and lead to paradoxes, because

adding this boundary condition amounts to adding informa-

tion and information biases the definition of the probabilities.

In summary, ψ3 = ψ1 ⊞ ψ2 is wrong if we cheat by wanting

to satisfy also binary logic in the analysis of an experiment

that follows ternary logic by attributing meaning to ψ1 and

ψ2. But it yields the correct numerical result for the total wave

function if we play the game and respect the empirical unde-

cidability by not asking which way the particle has traveled.

We can thus only uphold that the textbook rule ψ3 = ψ1 ⊞ ψ2

is correct if we accept that the double-slit experiment experi-

mentally follows ternary logic. Within binary logic, the agree-

ment of the numerical result with the experimental data is mis-

leading, as such an agreement does not provide a watertight

proof for the correctness of a theory. If a theory contains log-

ical and mathematical flaws, then it must be wrong despite its

agreement with experimental data [16].

Eq. 4 shows that interference does not exist, because the

phase factors eı
π
4 and e−ı

π
4 of ψ′

1
and ψ′

2
always add up to

√
2.

We may note in this respect that χ itself is only determined

up to an arbitrary constant within the experiment. The wave

function can thus not become zero due to phase differences

between ψ′
1

and ψ′
2

like happens with ψ1 and ψ2 in ψ1 ⊞ ψ2.

When ψ′
3

is zero, both ψ′
1

and ψ′
2

are zero. Interference thus

only exists within the purely numerical, virtual reality of the

Huyghen’s principle, which is not a narrative of the real world.

We must thus not only dispose of the particle-wave duality,

but also be very wary of the wave pictures we build based on

the intuition we gain from experiments in water tanks. These

pictures are apt to conjure up a very misleading imagery that

leads to fake conceptual problems and stirs a lot of confusion.

The phase of the wave function has physical meaning, and

spinors can only be added meaningfully if we get their phases

right.

While this solves the probability paradox, we may still ask

also for a better understanding of the reasons why the inter-

ference pattern occurs in ternary logic. In fact, up to now,

we have only discussed the phases. We must also discuss

the amplitudes of the wave functions. Let us observe in this

respect that ψ
′∗
1

(r)ψ′
2
(r) + ψ′

1
(r)ψ

′∗
2

(r) = 0,∀r ∈ V , such

that ψ′
1
(r) and ψ′

2
(r) are everywhere in V orthogonal with re-

spect to the Hermitian norm. This result actually ensures that

|ψ′
1
+ψ′

2
|2 = |ψ′

1
|2+|ψ′

2
|2 such ψ′

1
and ψ′

2
are describing mutually

exclusive probabilities. To obtain this orthogonality condition

we must have actually that ψ′
1
= ψ′

2
e±ı

π
2 . When this condition

is fulfilled, and ψ′
1

is zero in slit S2 and ψ′
2

is zero in slit S1

the functions ψ′
1

and ψ′
2

become exact wave functions for the

double-slit experiment. They can then actually be summed

according the superposition principle. Let us now assume that

there exists a wave function ζ for the double-slit experiment.

We do not assume here that we know that ζ = ψ1 ⊞ ψ2 must

be true, such that we do not know that it corresponds to an

interference pattern. But it must be possible to decompose it

into unknown functions ζ1 and ζ2 according to binary logic as

described for ψ′
1

and ψ′
2

above. We can consider a continu-

ous sweep over the detector screen from the left to the right,

whereby we are visiting the points P. Let us call the source S,

and the centres of the slits C1 and C2 and reduce the widths

of the slits such that only C1 and C2 are open. The phase dif-

ferences over the paths SC1P through ψ1 and SC2P through

ψ2 will then continuously vary along this sweep. To be unde-

cidable and obey ternary logic, the total wave function would

have to be completely symmetrical with respect to ζ1 and ζ2,

such that it would have to be ζ1+ζ2. This is the reason why we

have to do QM and calculate |ζ1 + ζ2|2. But simultaneously, ζ1

and ζ2 would have to be mutually exclusive and satisfy binary

logic because “God would know”. All points were the phase

difference is not ± π
2
(mod 2π) should therefore have zero am-

plitude and not belong to the domain of ζ where ζ , 0. This

shows that ζ must correspond to an interference pattern. From

this point of view, an interference pattern (with its quantiza-

tion of momentum p = hq) appears then as the only solution

for the wave function that can satisfy simultaneously the re-

quirements imposed by the binary and the ternary logic. The

real experiment with non-zero slit widths would not yield the

Dirac comb but a blurred result due to integration over the

finite widths of the slits. A different point D2 , C2 might in-

deed provide an alternative path SD2P that leads to the correct

phase difference π
2

with SC1P. Let us call the width of the slits

w and the wavelength λ. The smaller the ratio λ/w the eas-

ier it will be to find such points D2. We can achieve this by

increasing the energy of the electron, but this will eventually

render the interactions incoherent such that we end up in the

classical tennis ball regime. A far more interesting way is to

change λ/w by fiddling with the geometry of the set-up. Fi-

nally note that the phase difference of ± π
2
(mod 2π) over the

paths SS1P through ψ′
1

and SS2P through ψ′
2

is not in contra-

diction with the phase difference 2πn over the paths SS1P and

SS2P through ψ3 we discussed above, because ψ3 = ψ
′
1
+ ψ′

2
.

The true reason why we can calculate ψ′
3
= ψ′

1
+ ψ′

2
as

ψ3 = ψ1 ⊞ ψ2 can within the Born approximation also be ex-

plained by the linearity of the Fourier transform used in Eq.

3 [4], which is a better argument than invoking the linearity

of the wave equation. The path integral result is just a more

refined equivalent of this, based on a more refined integral

transform. The reason for the presence of the Fourier trans-

form in the formalism is the fact that the electron spins [4, 5].

One can derive the whole wave formalism purely classically,

just from the assumption that the electron spins. Eq. 3 hinges

also crucially on the Born rule p = |ψ|2. There is no rigor-

ous proof for this rule but there exists ample justification for it

[4]. The undecidability is completely due to the properties of

the potential which defines both the local interactions and the

global symmetry.

The different fringes in the interference pattern are due to

the fact that one of the electrons has traveled a longer path

than the other one such that it has made n ∈ N turns more. It

is thus an “older” electron. This idea could be illustrated by

making the experiment with muons in an experiment wherein

the dimensions of the set-up are tuned with respect to the de-

cay length. Due to the time decay of the muons, the question
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through which one of the slits the muon has traveled will be-

come less undecidable in the wings of the distribution and this

will have an effect on the interference pattern. Conversely,

one could imagine an interference experiment to measure a

life time.

X. CONCLUSION

In summary, we have proposed an intelligible solution for

the paradox of the double-slit experiment. What we must learn

from it is that there is no way one can use probabilities ob-

tained from one experiment in the analysis of another exper-

iment. The probabilities are conditional and context-bound.

Combining results from different contexts in a same calcu-

lation should therefore be considered as taboo. In deriving

Bell-type inequalities one transgresses this taboo. A much

more detailed account of this work is given in reference [4],

which fills many gaps and also explains how the same argu-

ment of context dependence can be applied to paradoxes re-

lated to Bell-type inequalities.

Acknowledgments. The author thanks his director, Kees van

de Beek for his continuous interest in this work and the CEA

for the possibility to carry out this research.

[1] R.P. Feynman, R. Leighton, and M. Sands, in The Feyn-

man Lectures on Physics, Vol. 3, Addison-Wesley, Read-

ing, MA (1970). See also the video entitled “Probability

& uncertainty - the quantum mechanical view of nature” at

https://www.youtube.com/watch?v=2mIk3wBJDgE.

[2] J.A. Wheeler in Mathematical Foundations of Quantum The-

ory, A.R. Marlow editor, Academic Press (1978), pp. 9-48;

J.A. Wheeler and W.H. Zurek, in Quantum Theory and Mea-

surement (Princeton Series in Physics).

[3] Y.-H. Kim, R. Yu, S.P. Kulik, Y. Shih et M.O. Scully, Phys. Rev.

Lett. 84, 1-5 (2000).

[4] G. Coddens, CEA-01269569 (2016).

[5] G. Coddens, in From Spinors to Quantum Mechanics, Imperial

College Press, (2015).

[6] A. Tonomura, J. Endo, T. Matsuda and T. Kawasaki, Am. J.

Phys. 57, 117 (1989); see also M.P. Silverman in More than

one Mystery, Explorations in Quantum Interference, Springer,

p. 3 (1995).

[7] R.P. Feynman, QED, The Strange Theory of Light and Matter,

Princeton University Press (1988).

[8] J. Cramer, Rev. Mod. Phys. 58, pp. 647-688, (1986).

[9] P.A.M. Dirac, Physikalishe Zeitschrift der Sowjetunion, Band

3, Heft 1 (1933).

[10] R.P. Feynman in The Character of Physical Law, MIT Press

(1967).

[11] This idea was first developed by L.E. Ballentine, Rev. Mod.

Phys. 42, 358 (1970).
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