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Abstract – We argue that the double-slit experiment can be understood much better by considering it as an

experiment whereby one uses electrons to study the set-up rather than an experiment whereby we use a set-up

to study the behaviour of electrons. We also show how Gödel’s concept of undecidability can be used in an

intuitive way to make sense of the double-slit experiment and the quantum rules for calculating coherent and

incoherent probabilities. We meet here a situation where the electrons always behave in a fully deterministic

way, while the detailed design of the set-up may render the question about the way they move through the

set-up experimentally undecidable.

Introduction. – The double-slit experiment has been qual-1

ified by Feynman [1] as the only mystery of quantum mechan-2

ics (QM). Its mystery resides in an apparent paradox between3

the QM result and what we expect on the basis of our intuition.4

What we want to explain in this Letter is that this apparent para-5

dox is a probability paradox. By this we mean that the paradox6

does not reside in some special property of the electron that7

could act both as a particle and a wave, but in the fact that8

we use two different definitions of probability in the intuitive9

approach and in the calculations. It is the difference between10

these two definitions which leads to the paradox, because the11

two definitions are just incompatible. In our discussion we will12

very heavily rely on the presentations by Feynman, even though13

further strange aspects have been pointed out by other authors14

later on, e.g. in the discussion of the delayed-choice experi-15

ment by Wheeler [2] and of the quantum eraser experiment [3],16

which can also be understood based on our discussion.17

Feynman’s essentials. – Feynman illustrates the paradox18

by comparing tennis balls and electrons. Tennis balls comply19

with classical intuition, while electrons behave according to the20

rules of QM. There is however, a small oversimplification in21

Feynman’s discussion. He glosses over a detail, presumably for22

didactical reasons. When the electron behaves quantum me-23

chanically and only one slit is open, the experiment will give24

rise to diffraction fringes, which can also not be understood in25

terms of a classical description in terms of tennis balls. But26

the hardest part of the mystery is that in the quantum mechan-27

ical regime we get a diffraction pattern when only one slit is28

open, while we get an interference pattern when both slits are29

open. This means that the single-slit probabilities even do not30

add up to an interference pattern when we allow for the quan- 31

tum nature of the electron in a single-slit experiment. We will 32

therefore compare most of the time the two quantum mechani- 33

cal situations rather than electrons and tennis balls. 34

What Feynman describes very accurately is how quantum 35

behaviour corresponds to the idea that the electron does not 36

leave any trace behind in the set-up of its interactions with it. 37

(We exclude here from our concept of a set-up the detectors that 38

register the electrons at the very end of their history). We can- 39

not tell with what part of the set-up the electron has interacted, 40

because the interaction has been coherent. This corresponds to 41

“wave behaviour”. At the very same energy, a particle can also 42

interact incoherently with the set-up and this will then result in 43

classical “particle behaviour”. The difference is that when the 44

particle has interacted incoherently we do have the possibility 45

to figure out its path trough the device, because the electron has 46

left behind indications of its interactions with the measuring 47

device within the device. 48

A nice example of this difference between coherent and in- 49

coherent interactions occurs in neutron scattering. In its inter- 50

action with the device, the neutron can flip its spin. The conser- 51

vation of angular momentum implies then that there must be a 52

concomitant change of the spin of a nucleus within an atom of 53

the device. At least in principle the change of the spin of this 54

nucleus could be detected by comparing the situations before 55

and after the passage of the neutron, such that the history of the 56

neutron could be reconstructed. Such an interaction with spin 57

flip corresponds to incoherent neutron scattering. But the neu- 58

tron can also interact with the atom without flipping its spin. 59

There will be then no trace of the passage of the neutron in the 60
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form of a change of spin of a nucleus, and we will never be able61

to find out the history of the particle from a post facto inspec-62

tion of the measuring device. An interaction without spin flip63

corresponds to coherent scattering. Note that this discussion64

only addresses the coherence of the spin interaction. There are65

other types of interaction possible and in order to have a glob-66

ally coherent process none of these interactions must leave a67

mark of the passage of the neutron in the system that could per-68

mit us to reconstruct its history. An example of an alternative69

distinction between coherent and incoherent scattering occurs70

in the discussion of the recoil of the atoms of the device. A71

crystal lattice can recoil as a whole (coherent scattering). Al-72

ternatively, the recoil can just affect a single atom (incoherent73

scattering).74

In incoherent scattering the electron behaves like a tennis75

ball. The hardest part of the mystery of the double-slit ex-76

periment is thus the paradox which occurs when we compare77

coherent scattering in the single-slit and in the double-slit ex-78

periment. Feynman resumed this mystery by asking: How can79

the particle know if the other slit is open or otherwise. In fact,80

as its interactions must be local the electron should not be able81

to sense if the other slit is open (see below).82

Caveats. – Let us now leave our intuition for what it is83

and turn to QM. In a purely QM approach we could make the84

calculations for the three configurations. We could solve the85

wave equations for the single-slit and double-slit experiments:86

− ~
2

2m
∆ψ1 + V1(r)ψ1 = −

~

ı
∂
∂t
ψ1, S1 open, S2 closed,

− ~
2

2m
∆ψ2 + V2(r)ψ2 = −

~

ı
∂
∂t
ψ2, S1 closed, S2 open,

− ~
2

2m
∆ψ3 + V3(r)ψ3 = −

~

ı
∂
∂t
ψ3, S1 open, S2 open.

(1)

Here S j refer to the slits. Within this theoretical framework87

we would still not obtain the result |ψ3|
2 for the double-slit ex-88

periment by adding the probabilities |ψ1|
2 and |ψ2|

2 obtained89

from the solutions of the wave equations for the single-slit ex-90

periments. The fact that |ψ3|
2
, |ψ1|

2 + |ψ2|
2 is at variance91

with our intuition about the rules of probability calculus in a92

way that seems to defy all our logic. Textbooks tell us that93

we should not add up probabilities but probability amplitudes,94

|ψ3|
2 = |ψ1 + ψ2|

2. They describe this as the “superposition95

principle”. They define wave functions ψ =
∑

j c jχ j, and cor-96

responding probabilities p = |ψ|2 = |
∑

j c jχ j|
2, whereby one97

must combine probability amplitudes rather than probabilities98

(coherent summing) in a linear way. They compare this to the99

addition of the amplitudes of waves like we can observe in a100

water tank, as also discussed by Feynman. But this is different101

from what we will define in this paper as a true superposition102

principle. A true superposition principle, based on the linearity103

of the equations would be that a linear combinationψ =
∑

j c jχ j104

is a solution of a Schrödinger equation:105

−
~

2

2m
∆ψ + V(r)ψ = −

~

ı

∂

∂t
ψ. (2)

when all wave functions χ j are solutions of the same106

Schrödinger equation Eq. 2. This is then a straightforward107

mathematical result, and one can argue [4] that it leads to 108

the probability rule p =
∑

j |c j|
2|χ j|

2 (incoherent summing), 109

whereby one combines probabilities p j = |χ j|
2 in the classical 110

way, which corresponds to common sense. But telling that the 111

solution ψ1 of a first equation with potential V1 can be added 112

to the solution ψ2 of a second equation with a different poten- 113

tial V2 to yield a solution ψ3 for a third equation with a yet 114

different potential V3 can a priori not be justified by the math- 115

ematics and is not exact. It has nothing to do with the linearity 116

of the equations. Summing the equations for ψ1 and ψ2 does 117

not yield the equation for ψ3. A solution of the wave equa- 118

tion for the single-slit experiment will not necessarily satisfy 119

all the boundary conditions of the double-slit experiment, and 120

vice versa. At the best, ψ3 = ψ1 + ψ2 will in certain physical 121

situations be a good approximation. But the fact that this is not 122

rigorously exact and should be merely considered as a good nu- 123

merical result rather than an exact physical truth is important. 124

In fact, based on textbook presentations one could believe that 125

it is an absolute physical truth in principle that one must replace 126

the traditional rules of probability calculus p3 = p1+ p2 by sub- 127

stituting the probabilities by their amplitudes. This is just not 128

true. The belief must be vigorously eradicated because it leads 129

to the misconception that there could exist a deep logical prin- 130

ciple behind ψ3 = ψ1 + ψ2, that in its proper context would 131

be a truth that is as unshakable as p3 = p1 + p2 in our tra- 132

ditional logic. As discussed below, mistaking the principle of 133

substituting p by ψ for a deep mysterious absolute truth leads 134

to insuperable conceptual problems in the case of destructive 135

interference where ψ1(r) + ψ2(r) = 0. 136

To take this objection into account rigorously, we will de- 137

fine that the approximate solution ψ3 ≈ ψ1 + ψ2 of the double- 138

slit wave equation follows a Huyghens’ principle and note it as 139

ψ3 = ψ1 ⊞ ψ2, reserving the term superposition principle for 140

the case when we combine wave functions that are all solutions 141

of the same linear equation. We make this distinction between 142

the superposition principle (with incoherent summing) and a 143

Huyghens’ principle (with coherent summing) to lay a math- 144

ematical basis for justifying that we have two different rules 145

for calculating probabilities and that both the incoherent rule 146

p =
∑

j |c j|
2|χ j|

2 and the coherent rule p = |ψ|2 = |
∑

j c jχ j|
2

147

are correct within their respective domains of validity. This is 148

the mathematical essence of the problem. QM just tells us that 149

once we have an exact pure-state solution of a wave equation, 150

we must square the amplitude of the wave function to obtain an 151

exact probability distribution. 152

The very last thing we can do in face of a very hard paradox 153

is to capitulate and think that we are not able to think straight. 154

We will thus categorically refuse to yield to such defeatism. If 155

we believe in logic, the rule p3 = p′
1
+ p′

2
, where p′

1
and p′

2
are 156

the probabilities to traverse the slits in the double-slit experi- 157

ment, must still be exact. We are then compelled to conclude 158

that in QM the probability p′
1

for traversing slit S1 when slit 159

S2 is open is manifestly different from the probability p1 for 160

traversing slit S1 when slit S2 is closed. We can then ask with 161

Feynman how the particle can know if the other slit is open or 162

otherwise if its interactions are local. 163
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Double-slit experiment

Local interactions, non-local probabilities. – The solu-164

tion to that problem is that the interactions of the electron with165

the device are locally defined while the probabilities defined by166

the wave function are not. The probabilities are non-locally,167

globally defined. When we follow our intuition, the electron168

interacts with the device in one of the slits. The correspond-169

ing probabilities are local interaction probabilities. We may170

take this point into consideration. Following our intuition we171

may then think that after doing so we are done. But in QM the172

story does not end here. The probabilities are globally defined173

and we must solve the wave function with the global boundary174

conditions. We may find locally a solution to the wave equa-175

tion based on the consideration of the local interactions, but176

that is not good enough. The wave equation must also satisfy177

boundary conditions that are far away from the place where the178

electron is interacting. The QM probabilities are defined with179

respect to the global geometry of the set-up. This global ge-180

ometry is fundamentally non-local, and the ensuing probability181

distribution is also non-locally defined. This claim may look182

startling. To make sense of it we propose the following slogan,183

which we will explain below: “We are not studying electrons184

with the measuring device, we are studying the measuring de-185

vice with electrons”. This slogan introduces a paradigm shift186

that will grow to a leading principle as we go along. We can187

call it the holographic principle (see below).188

In fact, we cannot measure the interference pattern in the189

double-slit experiment with one electron impact on a detector190

screen. We must make statistics of many electron impacts. We191

must thus use many electrons and measure a probability distri-192

bution for them. The probabilities must be defined in a glob-193

ally self-consistent way. The definitions of the probabilities that194

prevail at one slit may therefore be subject to compatibility con-195

straints imposed by the definitions that prevail at the other slit.196

We are thus measuring the probability distribution of an ensem-197

ble of electrons in interaction with the whole device. While a198

single electron cannot know if the other slit is open or other-199

wise, the ensemble of electrons will know it, because all parts200

of the measuring device will eventually be explored by the en-201

semble of electrons if this ensemble is large enough, i.e. if our202

statistics are good enough. When this is the case, the interfer-203

ence pattern will appear. Reference [5] gives actually a nice204

illustration of how the interference pattern builds up with time.205

The geometry of the measuring device is non-local in the206

sense that a single electron cannot sense all aspects of the set-207

up through its local interactions. There is no contradiction with208

relativity in the fact that the probabilities for these local inter-209

actions must fit into a global probability scheme that is dic-210

tated also by parts of the set-up a single electron cannot probe.211

We must thus realize how Euclidean geometry contains infor-212

mation that in essence is non-local, because it cannot all be213

probed by a single particle, but that this is not in contradiction214

with the theory of relativity. The very Lorentz frames used to215

write down the Lorentz transformations are non-local because216

they assume that all clocks in the frame are synchronized up217

to infinite distance. It is by no means possible to achieve this,218

such that the very tool of a Lorentz frame conceptually violates219

the theory of relativity. But this remains without any practical220

incidence on the validity of the theory. 221

A classical analogy. – We can render these ideas clear by 222

an analogy. Imagine a country that sends out spies to an en- 223

emy country. The electrons behave as this army of spies. The 224

double-slit set-up is the enemy country. The physicist is the 225

country that sends out the spies. Each spy is sent to a differ- 226

ent part of the enemy’s country, chosen by a random generator. 227

They will all take photographs of the part of the enemy coun- 228

try they end up in. The spies may have an action radius of 229

only a kilometer. Some of the photographs of different spies 230

will overlap. These photographs correspond to the spots left by 231

the electrons on your detector. If the army of spies you send 232

out is large enough, then in the end the army will have made 233

enough photographs to assemble a very detailed complete map 234

of the country. That map corresponds to the interference pat- 235

tern. In assembling the global map from the small local patches 236

presented by the photographs we must make sure that the er- 237

rors do not accumulate such that everything fits together self- 238

consistently. This is somewhat analogous with the boundary 239

conditions of the wave function that must be satisfied globally, 240

whereby we can construct the global wave function also by as- 241

sembling patches of local solutions. The tool one can use to 242

ensure this global consistency is a Huyghens’ principle. An 243

example of such a Huyghens’ principle is Feynman’s path inte- 244

gral method or Kirchhoff’s method in optics. The principle is 245

non-local and is therefore responsible for the fact that we must 246

carry out calculations that are purely mathematical but have no 247

real physical meaning. They may look incomprehensible if we 248

take them literally, because they may involve e.g. backward 249

propagation in space and even in time [6, 7]. 250

The interference pattern presents this way the information 251

about the whole experimental set-up. It does not present this 252

information directly but in an equivalent way, by an integral 253

transform. This can be seen from Born’s treatment of the scat- 254

tering of particles of mass m0 by a potential Vs, which leads to 255

the differential cross section: 256

dσ

dΩ
=

m0

4π2
|F (Vs)(q)|2, (3)

where p = ~q is the momentum transfer. The integral trans- 257

form is here the Fourier transform F , which is a even a one-to- 258

one mapping. This result is derived within the Born approxima- 259

tion and is therefore an approximate result. In a more rigorous 260

setting, the integral transform could be e.g. the one proposed 261

by Dirac [8], which Feynman was able to use to derive the 262

Schrödinger equation [9]. The Huyghens’ principles used by 263

Feynman and Kirchhoff are derived from integral transforms to 264

which they correspond. In a double-slit experiment, Vs embod- 265

ies just the geometry of the set-up. Combined with a reference 266

beam F (Vs)(q) yields its hologram. The spies in our analogy 267

are not correlated and not interacting, but the information about 268

the country is correlated: It is the information we put on a map. 269

The map will e.g. show correlations in the form of long straight 270

lines, roads that stretch out for thousands of miles, but none of 271

your spies will have seen these correlations and the global pic- 272

ture. They just have seen the local picture of the things that 273

p-3



Gerrit Coddens

were situated within their action radius. The global picture, the274

global information about the enemy country is non-local, and275

contains correlations, but it can nevertheless be obtained if you276

send out enough spies to explore the whole country, and it will277

show on the map assembled. That is what we are aiming at278

by invoking the non-locality of the Lorentz frame and the non-279

locality of the wave function. The global information gathered280

by many electrons contains the information how many slits are281

open. It is that kind of global information about your set-up282

that is contained in the wave function. You need many single283

electrons to collect that global information. A single electron284

just gives you one impact on the detector screen. That is al-285

most no information. Such an impact is a Dirac delta measure,286

derived from the Fourier transform of a flat distribution. It con-287

tains hardly any information about the set-up because it does288

not provide any contrast. This global geometry contains thus289

more information than any single electron can measure through290

its local interactions. And it is here that the paradox creeps in.291

The probabilities are not defined locally, but globally. The in-292

teractions are local and in following our intuition, we infer from293

this that the definitions of the probabilities will be local as well,294

but they are not. The space wherein the electrons travel in the295

double-slit experiment is not simply connected, which is, as we296

will see, a piece of global, topological information apt to pro-297

foundly upset the way we must define probabilities.298

Highly simplified descriptions still catch the essence. –299

The description of the experimental set-up we use to calculate300

a wave function is conventionally highly idealized and simpli-301

fied. Writing an equation that would make it possible to take302

into account all atoms of the macroscopic device in the experi-303

mental set-up is a hopeless task. Moreover, the total number of304

atoms in “identical” experimental set-ups is only approximately305

identical. In such a description there is no thought for the ques-306

tion if the local interaction of a neutron involves a spin flip or307

otherwise. Despite its crudeness, such a purely geometrical de-308

scription is apt to seize a crucial ingredient of any experiment309

whereby interference occurs. It is able to account for the dif-310

ference between set-ups with one and two slits, as in solving311

the wave equation we unwittingly avoid the pitfall of ignor-312

ing the difference between globally and locally defined prob-313

abilities, rendering the solution adopted tacitly global. In this314

sense the probability paradox we are confronted with is akin to315

Bertrand’s paradox in probability calculus. It is not sufficient to316

calculate the interaction probabilities locally. We must further317

specify how we will use these probabilities later on in the pro-318

cedure to fit them into a global picture. The probabilities will319

be only unambiguously defined if we define simultaneously the320

whole protocol we will use to calculate with them.321

Winnowing out the over-interpretations. – It is now time322

to get rid of the particle-wave duality. Electrons are always par-323

ticles, never waves. As pointed out by Feynman, electrons are324

always particles because a detector detects always a full elec-325

tron at a time, never a fraction of an electron. Electrons never326

travel like a wave through both slits simultaneously. But in a327

sense, their probability distribution does. It is the probability328

distribution of many electrons which displays wave behaviour329

and acts like a flowing liquid, not the individual electrons them- 330

selves. This postulate only reflects literally what quantum me- 331

chanics says, viz. that the wave function is a probability am- 332

plitude, and that it behaves like a wave because it is obtained 333

as the solution of a wave equation. Measuring the probabilities 334

requires measuring many electrons, such that the probability 335

amplitude is a probability amplitude of an ensemble of elec- 336

trons. Although this sharp dichotomy is very clearly present in 337

the rules, we seem to loose sight of it when we are reasoning 338

intuitively. This is due to a tendency towards “Hineininter- 339

pretierung” in terms of Broglie’s initial idea that the particles 340

themselves, not their probability distributions, would be waves. 341

These heuristics have historically been useful but are reading 342

more into the issue than there really is. Their addition blurs 343

again the very accurate sharp pictures provided by QM. With 344

hindsight, we must therefore dispense with the particle-wave 345

duality. The rules of QM are clear enough in their own right: 346

In claro non interpretatur! Wave functions also very obviously 347

do not collapse. They serve to describe a statistical ensemble 348

of possible events, not outcomes of single events. 349

It is also time to kill the traditional reading of ψ3 = ψ1 ⊞ ψ2 350

in terms of a “superposition principle”, based on the wave pic- 351

ture. It is is only a convenient numerical recipe, a Huyghens’ 352

principle without true physical meaning. We can make the ex- 353

periment in such a way that only one electron is emitted by the 354

source every quarter of an hour. Still the interference pattern 355

will build up if we wait long enough. But if ψ1 and ψ2 were 356

to describe the correct probabilities from slit S1 and slit S2, we 357

would never be able to explain destructive interference. How 358

could a second electron that travels through slit S2 erase the 359

impact made on the detector screen of an electron that traveled 360

through slit S1 hours earlier? We may speculate that the elec- 361

tron feels whether the other slit is open or otherwise. E.g. the 362

electron might polarize the charge distribution inside the mea- 363

suring device and the presence of the other slit might influence 364

this induced charge distribution. This would be an influence 365

at a distance that is not incompatible with the theory of rela- 366

tivity. But this scenario is not very likely. As pointed out by 367

Feynman interference is a universal phenomenon. It exists also 368

for photons, neutrons, helium atoms, etc... We already capture 369

the essence of this universal phenomenon in a simple, crude 370

geometrical description of the macroscopic set-up of the exper- 371

iment. While this could be a matter of pure luck according to 372

the principle that fortune favors fools, it is not likely that one 373

could translate the scenario evoked for electrons to an equiva- 374

lent scenario in all these different situations. E.g. how could 375

the fact that another slit is open (in a nm-sized double-slit ex- 376

periment) affect the nuclear process at the fm scale of the spin 377

flip of a neutron? The generality of the scenario based on an 378

influence at a distance is thus not very likely. 379

We must thus conclude that ψ3 = ψ1 ⊞ ψ2 is a very good nu- 380

merical approximation for the true wave function ψ′
3
, whereby 381

the physically meaningful identity reads ψ′
3
= ψ′

1
+ ψ′

2
in terms 382

of other wave functions ψ′
1

and ψ′
2
. The wave functions ψ′

1
and 383

ψ′
2

must now both be zero, ψ′
1
(r) = ψ′

2
(r) = 0, in all places r 384

where we have “destructive interference”, because p3 = p1+ p2 385

must still be valid. In other words ψ1 , ψ
′
1

and ψ2 , ψ
′
2
. 386
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Undecidability. – We can further improve our intuition for387

this by another approach based on undecidablity. Questions388

that are undecidable are well known in mathematics. Examples389

occur e.g. in Gödel’s theorem [10]. The existence of such unde-390

cidable questions may look hilarious to common sense but this391

does not need to be. In fact, the reason for the existence of such392

undecidable questions is that the set of axioms of the theory is393

incomplete. We can complete then the theory by adding an ax-394

iom telling the answer to the question is “yes”, or by adding an395

axiom telling the answer to the question is “no”. The two al-396

ternatives permit to stay within a system based on binary logic397

(“tertium non datur”) and lead to two different axiomatic sys-398

tems and thus to two different theories. An example of this399

are Euclidean and hyperbolic geometry [11]. In Euclidean ge-400

ometry one has added on the fifth parallels postulate to the first401

four postulates of Euclid, while in hyperbolic geometry one has402

added on an alternative postulate that is at variance with the par-403

allels postulate. We are actually not forced to make a choice:404

We can decide to study a “pre-geometry”, wherein the question405

remains undecidable. The axiom one has to add can be con-406

sidered as information that was lacking in the initial set of four407

axioms. Without adding it one cannot address the yes-or-no408

question which reveals that the axiomatic system without the409

parallels postulate added is incomplete. As Gödel has shown,410

we will almost always run eventually into such a problem of in-411

completeness. On the basis of Poincaré’s mapping between hy-412

perbolic and Euclidean geometry [11], we can appreciate which413

information was lacking in the first four postulates. The infor-414

mation was not enough to identify the straight lines as really415

straight, as we could still interpret the straight lines in terms of416

half circles in a half plane.417

When the interactions are coherent in the double-slit experi-418

ment, the question through which one of the two slits the elec-419

tron has traveled is very obviously also undecidable. Just like in420

mathematics, this is due to lack of information. We just do not421

have the information that could permit us telling which way422

the electron has gone. This is exactly what Feynman pointed423

out so carefully. In his lecture he considers three possibilities424

for our observation of the history of an electron: “slit S1”, “slit425

S2”, and “not seen”. The third option corresponds exactly to426

this concept of undecidability. He works this out with many427

examples in reference [1], to show that there is a one-to-one428

correspondence between undecidability and coherence. Coher-429

ence already occurs in a single-slit experiment, where it is at430

the origin of the diffraction fringes. But in the double-slit ex-431

periment the lack of knowledge becomes all at once amplified432

to an objective undecidability of the question through which slit433

the electron has traveled, which does not exist in the single-slit434

experiment. What happens here in the required change of the435

definition of the probabilities has nothing to do with a change in436

local physical interactions. It has only to do with the question437

how we define a probability with respect to a body of available438

information. The probabilities are in a sense conditional be-439

cause they depend on the information available. As the lack of440

information is different in the double-slit experiment, the body441

of information available changes, such that the probabilities442

must be defined in a completely different way. According to443

common-sense intuition whereby we reason only on the local 444

interactions, opening or closing the other slit would not affect 445

the probabilities or only affect them slightly, but this is wrong. 446

We may also think that the undecidability is just experimen- 447

tal such that it would not matter for performing our probability 448

calculus. We may reckon that in reality, the electron must have 449

gone through one of the two slits anyway. We argue then that 450

we can just assume that half of the electrons went one way, and 451

the other half of the electrons the other way, and that we can 452

then use statistical averaging to simulate the reality, just like we 453

do in classical statistical physics. We can verify this argument 454

by detailed QM calculations. We can calculate the solutions of 455

the three wave equations in Eq. 1 and compare |ψ3|
2 with the 456

result of our averaging procedure based on |ψ1|
2 and |ψ2|

2. This 457

will reproduce the disagreement between the experimental data 458

and our classical intuition, confirming QM is right. 459

To make sense of this we may point out that we are not used 460

to logic that allows for undecidability. Decided histories with 461

labels S1 or S2 occur in a theory based on a system of axioms 462

A1 (binary logic), while the undecided histories occur in a the- 463

ory based on an all together different system of axioms A2 464

(ternary logic). In fact, the averaging procedure is still cor- 465

rect inA2 because the electron travels indeed either through S1 466

or through S2 following binary logic. But the information we 467

obtain about the electron’s path does not follow binary logic. It 468

follows ternary logic. Information biases probabilities, which is 469

why insurance companies ask their clients to fill forms request- 470

ing information about them. Due to the information bias the 471

probabilities |ψ′
1
|2 and |ψ′

2
|2 to be used in A2 are very different 472

from the probabilities |ψ1|
2 and |ψ2|

2 to be used inA1. The para- 473

dox results thus from the fact that we just did not imagine that 474

such a difference could exist. Assuming ψ′
j
= ψ j, for j = 1, 2 475

amounts to neglecting the ternary bias of the information con- 476

tained in our data and reflects the fact that we are not aware of 477

the global character of the definition of the probabilities. To 478

show that the intuition ψ′
j
= ψ j, for j = 1, 2 is wrong, nothing 479

is better than giving a counterexample. The counterexample is 480

the double-slit experiment where clearly the probability is not 481

given by p3 = |ψ1|
2+ |ψ2|

2 but by p3 = |ψ
′
1
|2+ |ψ′

2
|2 ≈ |ψ1⊞ψ2|

2, 482

where the index 3 really refers to the third (undecidable) option. 483

It is then useless to insist any further. 484

The undecidability criterion corresponds to a global con- 485

straint that has a spectacular impact on the definition of the 486

probabilities. The probabilities are conditional and not abso- 487

lute. They are physically defined by the physical information 488

gathered from the interactions with the set-up, not absolutely 489

by some absolute divine knowledge about the path the elec- 490

tron has taken. The set-up biases the information we can obtain 491

about that divine knowledge by withholding a part of the in- 492

formation about it. Einstein is perfectly right that the Moon is 493

still out there when we are not watching. But we cannot find 494

out that the Moon is there if we do not register any of its inter- 495

actions with its environment, even if it is there. If we do not 496

register any information about the existence of the Moon, then 497

the information contained in our experimental results must be 498

biased in such a way that everything looks as though the Moon 499

were not there. Therefore, in QM the undecidability must af- 500

p-5



Gerrit Coddens

fect the definition of the probabilities and bias them, such that501

p′
j
, p j, for j = 1, 2. The experimental probabilities must502

reflect the undecidability. In a rigorous formulation, this un-503

decidability becomes a consequence of the fact that the wave504

function must be a function, because it is the integral transform505

of the potential, which must represent all the information about506

the set-up and its built-in undecidability. As the phase of the507

wave function corresponds to the spin angle of the electron,508

even this angle is thus uniquely defined. The way the electron509

travels through the set-up from a point r1 to a point r2 can thus510

have no incidence whatsoever on the phase of the wave func-511

tion in r1 and r2. The exact application of this idea is worked512

out in reference [12], pp. 329-333, and depends critically on513

the fact that the space traversed by the electrons that end up514

in the detector is not simply connected. In an alternative ap-515

proach we can try to revert this argument, and start from the516

idea of undecidability instead. As we describe the experiment517

in a purely geometrical way without any reference to spin flips,518

atomic recoils or other specific physical processes, the only519

way to account for the undecidability is imposing a left-right520

symmetry on the wave function. This highlights that the para-521

dox is a probability paradox and is the reason why this wave522

function must mathematically be given by the symmetrical lin-523

ear combination ψ′
3
= ψ′

1
+ ψ′

2
. It is just the symmetry-adapted524

wave function. For these reasons ψ′
1

and ψ′
2

must be weighted525

reductions of ψ′
3

to their respective slits, and be different from526

ψ1 and ψ2, whereby “accidentally” ψ′
1
+ ψ′

2
= ψ1 + ψ2. The527

other symmetry-adapted combination is ψ′
1
− ψ′

2
, which is anti-528

symmetrical. There is a pitfall in the reversed approach which529

we automatically avoid in the direct approach. It is not obvious530

how we rule out intuitively ψ′
1
− ψ′

2
, because we might have531

the intuition that one cannot measure spin angles or phases. As532

the only quantities we can measure then are probabilities, only533

the probabilities must be undecidable and we could therefore534

object that rejecting ψ′
1
− ψ′

2
is not cogent. The solution of this535

riddle is that the undecidability implies that ψ′
1
−ψ′

2
= 0. When536

we perform the change of basis to the symmetry-adapted func-537

tions, we must resist the temptation to use the functions ψ1 and538

ψ2, because they have nothing to do with the double-slit exper-539

iment. We cannot consider ψ1 − ψ2 , 0 as the basis vector that540

is complementary to the basis vector ψ3 = ψ1 ⊞ψ2, because the541

calculation ψ3 = ψ1 ⊞ ψ2 is conceptually meaningless. Only542

the quantities ψ′
1
, ψ′

2
, ψ′

1
− ψ′

2
= 0 and ψ′

1
+ ψ′

2
are physically543

meaningful. We see thus that p3 = |ψ
′
1
|2 + |ψ′

2
|2 and that inter-544

ference does not exist physically. Interference has no meaning545

beyond the purely mathematical context of Huyghens’ princi-546

ple. Furthermore, the spin angle is conceptually a meaningful547

physical quantity. If it really could not manifest itself in any548

experiment, we would not need wave functions and it would549

imply that what counts in QM is more than just what can be550

observed. The assumption that we cannot measure spin angles551

must therefore be considered with extreme caution.552

The reason why we can calculate ψ′
3
= ψ′

1
+ ψ′

2
as ψ3 =553

ψ1 ⊞ψ2 can within the Born approximation be explained [4] by554

the linearity of the Fourier transform used in Eq. 3, which is555

a better argument than invoking the linearity of the wave equa-556

tion. The reason for the presence of the Fourier transform in557

the formalism is the fact that the electron spins [4,12]. One can 558

derive the whole wave formalism purely classically, just from 559

the assumption that the electron spins. Eq. 3 hinges also cru- 560

cially on the Born rule p = |ψ|2. There is no rigorous proof 561

for this rule but there exists ample justification for it [4]. The 562

undecidability is completely due to the properties of the po- 563

tential which defines both the local interactions and the global 564

symmetry. But to highlight the importance of the undecidabil- 565

ity we can reformulate the algebra by stating that the integral 566

transform we must use for undecidable problems is the unde- 567

cidable Fourier transform
∫
R3 V(r) cosq · r dr rather than the 568

decidable Fourier transform
∫
R3 V(r) eıq·rdr. 569

Conclusion. – In summary, we have proposed an intelligi- 570

ble solution for the paradox of the double-slit experiment. It is 571

perhaps not what everybody would call intuitive and it is not 572

an absolutely rigorous mathematical proof, but it is logically 573

intelligible and plausible. A much more detailed account of 574

this work is given in reference [4], where we explain also how 575

a similar analysis can be applied to paradoxes related to Bell- 576

type inequalities. 577
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