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Abstract: We consider scattering in quantum gravity and derive long-range classical and

quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-1
2 ,

spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved

by treating general relativity as an effective field theory and identifying the non-analytic

pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the

paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and

squaring relations in gravity enable much simplified computations. We directly verify, as

predicted by general relativity, that all classical effects in our computation are universal (in

the context of matter type and statistics). Using an eikonal procedure we confirm the post-

Newtonian general relativity correction for light-like bending around large stellar objects. We

also comment on treating effects from quantum ~ dependent terms using the same eikonal

method.
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1 Introduction

The possible existence of a quantum field theoretical framework for general relativity valid

at all energy scales is clearly a fundamental question, and since the original formulation of

quantum field theory, a technique by which general relativity and quantum mechanics can be

combined has been sought [1–7]. Though such a theory has yet to be found, today we can

address profound practical and reliable (low energy) consequences of the (currently unknown)

underlying quantum theory through the modern viewpoint of effective field theory (EFT) [8–

23]. The EFT framework allows direct exploration of various quantitative phenomenological

applications, see for example [24, 25]. In addition, the recent detection of gravitational waves

GW150914 by the LIGO experiment is an important test of general relativity [26] and opens

up exciting prospects for testing low-energy effective theories of gravity [27]. In the analysis
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below we will be seeking the classical and quantum long-range (power law falloff) corrections

to the familiar 1/r Newtonian potential describing the gravitational interaction between two

systems. The effective potential describing this interaction is defined as the Fourier transform

of the gravitational scattering amplitude and 1/rn, n ≥ 2 behavior can only arise from non-

analytic components associated with quantized graviton loop effects. Analytic pieces lead

only to short-distance (delta function and its derivatives) behavior and can be dropped when

only concerned with long range physics.

In this paper we focus on providing further details on the effective field theory compu-

tation of light-like scattering in quantum gravity. In particular we will extend our previous

results for light-like scattering from bosons to fermions. Thus we can now address massless

gravitational neutrino scattering in one-loop quantum gravity. The outline of our presenta-

tion will be as follows: We first discuss the framework for our computation; especially we

will show how modern computational techniques, unitarity and spinor-helicity are important

inputs for streamlining the computations. Next we will present details of the calculation, and

finally discuss how to interpret our results.

2 General relativity as an effective field theory and one-loop amplitudes

Including gravitational interactions in particle physics models is a straightforward exercise

employing ideas from effective field theory. The starting point is the gravitational effective

field theory action

S =

∫
d4x
√
−g
[

2

κ2
R+ Smodel + SEF

]
, (2.1)

where R is the scalar curvature and gµν the metric. One can write the metric as ηµν + κhµν ,

with κ2 = 32πGN/c
4, where GN is Newton’s constant and hµν is the quantized gravitational

field. Expanding all terms in hµν , R contains the propagator for the gravitational field as

well as all the pure gravitational vertices. Interaction with matter is contained in the term

Smodel where the flat space Lagrangian for a given particle physics model is made generally

covariant by replacing flat space derivatives with general covariant derivatives expanded in

powers of κhµν (see e.g. refs. [28, 29] for details regarding such expansions.). Finally SEF

contains an infinite series of higher derivative operators (basically any operator allowed by

general covariance) associated with new gravitational couplings, and ensures that, order by

order in the energy expansion, any UV divergence due to loop effects [30] can be absorbed in

the effective action. In this way the construction, albeit “effective”, is UV consistent up to

the cut-off determined by the validity of the energy expansion, typically O(mPlanck), where

mPlanck =
√

~c
G ∼ 1019 GeV is the Planck mass.

Having constructed the effective action, we have now, in principle, a straightforward

path by which to derive transition amplitudes. The action term corresponding to the matter

coupling Smodel can take different forms depending on the specific theory we wish to study.
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We will, in this presentation, need only the minimal couplings of gravitons to scalars, photons

and massless fermions.

The action for a massless scalar ϕ or massive scalar field Φ of mass M is

Sscalar =

∫
d4x
√
−g

(
−1

2
(∂µϕ)2 − 1

2

(
(∂µΦ)2 −M2Φ2

))
, (2.2)

while the coupling to a massless spin-1
2 fermion is given by

Sfermion =
i

2

∫
d4x
√
−g χ̄ /Dχ , (2.3)

where /D = γµ (∂µ+ i
4ω

ab
µ γ

ab), ωabµ is the spin connection, and γµ are 4×4 Dirac matrices with

γab = 1
2 [γa, γb] the Lorentz generator. Finally, the coupling to an Abelian spin-1 massless

field is given by

SQED = −1

4

∫
d4x
√
−g (∇µAν −∇νAµ)2 , (2.4)

where ∇µAν := ∂µA
ν + ΓνµλA

λ and Γλµν := 1
2 g

λσ(∂µgσν + ∂νgσµ − ∂σgµν). A full list of

propagators and vertices needed for the Feynman graphs computation can, e.g., be found

in [17, 28, 29, 31].

Having an effective action, the traditional way to proceed is to simply work out all nec-

essary Feynman rules to a particular loop order and then generate amplitudes perturbatively

using the standard off-shell formalism. This, for instance, was the path taken in refs. [11–13].

However, at high orders such an approach is clearly not very practical, since it quickly leads to

very unmanageable computations, in part because of vast off-shell vertices and the occurrence

of tensor contractions everywhere. It is thus natural to take advantage of any available simpli-

fication and the on-shell techniques provided by the compact formalism of spinor-helicity and

unitarity seems particularly ideal in this regard [32–34]. Also, importantly, recent progress in

the computation of gluon and QCD amplitudes (see e.g. [35–38]) can be adapted to grav-

ity [39, 40] using the Kawai-Lewellen-Tye (KLT) string theory relations [41, 42]. Using these

methods, the only required input for effective field theory computations is that of compact

on-shell tree amplitudes, since loop amplitudes can be written in terms of trees by the use of

unitarity as the central consistency requirement.

To illustrate how this program is carried out in practice, we follow the procedure outlined

in ref. [21] where we considered two-graviton-exchange between massive scalar sources. The

only difference between that approach and the present one is that we here extend the analysis

to two-graviton-exchange between a massless field X with spin S and a massive scalar field

Φ with spin S = 0 and mass M . Given the necessary tree amplitudes, we compute the

discontinuity across the two-particle t-channel cut via

M(2)
X (p1, p2, p3, p4)

∣∣∣
disc

:=
1

2! i
µ2ε

∫
dLIPS(`1,−`2) (2π)4δ4(p1 + p2 + p3 + p4)

×
∑
λ1,λ2

M(1)
X2G2(p1, `1, p2 − `2) × M(1)

φ2G2(p3, `2, p4,−`1)† . (2.5)
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where dLIPS(`1,−`2) = d4`1 d
4`2δ

(+)(`21)δ(+)(`22) δ(p1 + p2 + `1 − `2). We follow here the

notation of ref. [20] and will everywhere employ D = 4−2ε, defining q := p1 +p2 = −p3−p4 =

`2 − `1, and p2
3 := p2

4 := M2. We use the mostly minus metric convention (+,−,−,−). The

Mandelstam variables are t := q2, s = (p1 + p4)2 and u = (p1 + p3)2.

Here M(1)
X2G2 is the gravitational Compton amplitude analyzed in [21] (See also ap-

pendix A) and the summation is over all possible helicity configurations λ1 and λ2 across

the cut. The two-particle cut can be pictorially represented as in fig. 1

p2

p1

p4

p3

←
`1

`2
→

tree tree

Figure 1. The one-loop scattering of one massless scalars (dotted line) and one massive scalars (solid

line) mediated by a graviton (curly line). The discontinuity cut is represented by the red line.

On the cut lines the gravitons are on-shell so that we have the constraint `21 = 0, `22 = 0.

The discontinuity is given by the sum of four box integrals with the same numerator factor

(see appendix A)

M(2)
ϕ (p1, p2, p3, p4) = − κ4

32t2

2∑
i=1

4∑
j=3

∫
dD` µ2ε

(2π)D
N S

`21`
2
2(pi · `1)(pj · `1)

. (2.6)

With this construction one captures all the t-channel massless thresholds, which are the only

terms (the non-analytic ones) of interest to us. Notice that the structure of the cut is very

similar to that evaluated in [20]. The numerator N S receives contributions from the singlet

graviton cut (i.e. where the helicities of the two cut gravitons are identical) as well as from

the non-singlet graviton cut (i.e. where the helicities of the two cut gravitons are opposite).

• In the case of the massless external field, the properties of the gravitational Compton

amplitudes (reviewed in appendix A.2) imply that

N S
singlet = 0 , for S = 0, 1

2 , 1 . (2.7)

• The non-singlet cut for the massless scalar S = 0 can be obtained by applying the equa-

tions (III.24) and (III.27) of [20] with m1 = 0 and m2 = M , yielding (we refer to the

appendix A.1 for conventions and notations)1

N 0
non−singlet =

1

2

[(
tr−(`1p1`2p3)

)4
+
(
tr−(`2p1`1p3)

)4]
. (2.8)

1The computations performed in this work only involve parity even contributions, therefore the four-

dimension Levi-Civita epsilon tensor εµνρσ will never appear and there will be no issue in evaluating of the

one-loop amplitude using dimensional regularisation.
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• For the photon, we denote the non-singlet cut by N 1h1 h2
non−singlet, where the polarization of

the incoming photon is h1 and the polarization of the outgoing photon is −h2. The only

non-vanishing amplitudes are those preserving photon helicity

N 1 +−
non−singlet =

(
tr−(`2p1`1p3)tr+(`2p3`1p1p3p2)

)2
+ (`1 ↔ `2)

〈p1|p3|p2]2
, (2.9)

and (N 1−+
non−singlet)

∗ = N 1 +−
non−singlet. Remarking that for the four-point amplitude the εµνρσ

terms do not contribute, we conclude that

〈p1|p3|p2]2N 1 +− = 〈p2|p3|p1]2 N 1−+ = 2<e
[

(tr−(`2p1`1p3)tr+(`2p3`1p1p3p2))2
]
. (2.10)

• For the massless fermion the non-singlet cut is non-vanishing as well only for the helicity

conserving case, and we have

N
1
2

+−
non−singlet =

(
tr−(`1p1`2p3)3tr+(p1p3p2`1p3`2)

)
− (`1 ↔ `2)

〈p2|p3|p1]
, (2.11)

and (N
1
2
−+

non−singlet)
∗ = −N

1
2

+−
non−singlet. The polarization of the external state appears only in

the numerator, which takes the form

〈p2|p3|p1]N
1
2

+−
non−singlet = 〈p1|p3|p2]N

1
2
−+

non−singlet = 2i=m
[
(tr−(`1p1`2p3)3tr+(p1p3p2`1p3`2)

]
,

(2.12)

and, by multiplying by an appropriate factor, one can remove this polarization dependence.

Therefore, for the photon, we can define the coefficients as coming from the expansion of

M(2)
γ := 〈p1|p3|p2]2M+− (2)

γ = 〈p2|p3|p1]2 M−+ (2)
γ , (2.13)

and similarly, for the fermion amplitude we define the coefficients from the polarization-

stripped expression

M(2)
χ := 〈p1|p3|p2]M+− (2)

χ = 〈p2|p3|p1] M−+ (2)
χ . (2.14)

Performing the tensor integral reductions, the amplitude can be decomposed in terms of

integral functions containing the two-massless-particle t-channel cut

κ−4M(2)
X (p1, p2, p3, p4)

∣∣∣
t−cut

= boS(t, s) I4(t, s) + boS(t, u) I4(t, u)

+ tS12(t) I3(t, 0) + tS34(t) I3(t,M2) + buS(t, 0) I2(t, 0) , (2.15)

where I4(t, s) and I4(t, u) are scalar box integrals given in Eq. (B.1), I3(t) is the massless

triangle integral of Eq. (B.3), I3(t,M2) the massive triangle integral of Eq. (B.5), and I2(t) is

the massless scalar bubble integral given in Eq. (B.4). Explicit expressions for these integrals

can be found in appendix B. The full integral reduction gives, in addition, massive bubbles,
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(a)

tree

(b)

tree

(c)

tree

Figure 2. The monodromy BCJ relations in the cut (in red) that link the one-loop integral coefficients.

tadpoles, and as well as rational pieces that are (restricting to four dimensions) not contained

in the massless t-cut. These terms are analytic in t and are not of interest to our analysis.

The massless triangle coefficient t12(t) is related to the coefficients of the box boS(t, s)

and crossed-box boS(t, u) by

boS(t, s)

M2 − s
+
boS(t, u)

M2 − u
= tS12(t) , for S = 0, 1

2 , 1 . (2.16)

and this universal identity, which is a consequence of the monodromy BCJ relations [44]

between the four point tree-level amplitude in the two-particle cut as depicted in figure 2, is

a very useful check on computations. The consequence of the monodromy BCJ relations for

one-loop integral coefficients have been studied in [45] and [46], while a string theory based

systematic derivation of these relations was given in [47].

3 The one-loop integral coefficients

We now provide explicit expressions for the integral coefficients of the one-loop amplitudes

in Eq. (2.15) for the massless scalar X = ϕ, the photon X = γ, and the massless fermion

X = χ.

The box coefficients are given by

• for the scalar

boϕ(t, s) =
1

4

(
M2 − s

)4
, (3.1)

and with u replacing s for the coefficient boϕ(t, u) of the cross box.

• for the photon

boγ(t, s) =

(
M2 − s

)2
8

(
2M8 − 8M6s+ 2M4s(t+ 6s)− 4M2s2(t+ 2s)

+ s2
(
t2 + 2ts+ 2s2

))
,

(3.2)

and with u replacing s for the coefficient boγ(t, u) of the cross box.
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• for the fermion

boχ(t, s) =

(
M2 − s

)3
8

(
2M4 − 4M2s+ s(t+ 2s)

)
, (3.3)

and with u replacing s for the coefficient boχ(t, u) of the cross box.

The massless triangle coefficients are given by

• for the scalar

tϕ12(t, s) =
1

4
(M2 − s)3 +

1

4
(M2 − u)3 , (3.4)

• for the photon

tγ12(t, s) =
t

8

(
6M8 − 2M6(5t+ 12s) + 2M4

(
5t2 + 16ts+ 18s2

)
−M2

(
5t3 + 20t2s+ 34ts2 + 24s3

)
+
(
t2 + 2ts+ 2s2

) (
t2 + 3ts+ 3s2

) )
, (3.5)

• for the fermion

tχ12(t, s) =
t

8

(
s3 + 3M4 (s− u)− 2s2u+ 2su2 − u3 − 2M2

(
s2 − u2

))
. (3.6)

The massive triangle coefficients are given by

• for the scalar

tϕ34(t, s) =
1

4 (t− 4M2)2

(
− 12M10 + 6M8t− 12M6

(
s2 − 3su+ u2

)
+M4t

(
23s2 − 44su+ 23u2

)
− 3M2t2

(
3s2 − 4su+ 3u2

)
+ t3

(
s2 − su+ u2

) )
, (3.7)

• for the photon

tγ34(t, s) =
1

8 (t− 4M2)2

(
− 4M12(s+ u) + 4M10(s− u)2 − 16M8(s− u)2(s+ u)

− 12M6su(s− u)2 + 6M4(s+ u)
(
s4 + s3u− 2s2u2 + su3 + u4

)
−M2(s− u)2(s+ u)2

(
s2 − 4su+ u2

)
− (s+ u)3

(
s2 + u2

) (
s2 − su+ u2

) )
, (3.8)

• for the fermion

tχ34(t, s) =
2M2 − t− 2s

8 (t− 4M2)2

(
60M10 − 2M8(61t+ 60s)− t3(t2 + 3ts+ 3s2)

+ 6M2t2(2t2 + 6ts+ 5s2)
)
. (3.9)
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The massless bubble coefficients are

• for the scalar

buϕ(t) =
1

120(t− 4M2)2

(
− 56M8 + 72M6t+M4

(
23s2 + 10su+ 23u2

)
−M2t

(
13s2 + 218su+ 13u2

)
+ t2

(
s2 + 41su+ u2

) )
, (3.10)

• for the photon

buγ(t) =
su−M4

240 (t− 4M2)2

(
1288M8−8M6(373t+322s)+M4

(
2083t2 + 3416ts+ 1288s2

)
− 2M2t

(
300t2 + 695ts+ 532s2

)
+ t2

(
60t2 + 163ts+ 163s2

) )
, (3.11)

• for the fermion

buχ(t) =
124M4 − 272M2t+ 49t2

240 (t− 4M2)2

(
2M6 + 2M2s(2t+ 3s)−M4(t+ 6s)

− s(t2 + 3ts+ 2s2)
)
. (3.12)

4 The low energy limit of the cut constructible one-loop amplitude

In the previous section we have provided the full non-analytic contributions to the one-loop

amplitudes of gravitational scattering of scalars, photons and fermions from a large scalar

mass. However, for many applications and specifically for the calculation done in this paper,

only the leading low energy limit is needed, and we present it here. In the low energy limit,

the energy E = ~ω of the massless particle is much smaller than the mass of the massive

scalar ω �M and the momentum transfer t ∼ −q2 �M2 is tiny as well.

In this limit the one-graviton-exchange amplitude of a massless particle X from the

massive scalar Φ is given by (cf. appendix A.3)

M(1)
X '

NX

~
κ2 (2Mω)2

4t
, (4.1)

where Nϕ = 1 for the massless scalar, while for the photon N γ = (2Mω)2/(2〈p1|p3|p2]2)

for the (+−) photon helicity contribution and its complex conjugate for the (−+) photon

helicity contribution, and N χ = Mω/〈p1|p3|p2] for the (+−) fermion helicity contribution

and its complex conjugate for the (−+) configuration. That the photon amplitude vanishes

for the polarization configurations (++) and (−−) is a direct consequence of the properties

of the tree-amplitudes in Eq. (A.10). Note that |N γ |2 → 1 and |N χ|2 → 1 in the low-energy

limit and therefore this pre-factor does not affect the cross-section.
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The corresponding low energy one-loop amplitudes have the form

iM(2)
X '

NX

~

[
~
κ4

4

(
4(Mω)4(I4(t, u) + I4(t, s)) + 3(Mω)2tI3(t)

− 15(M2ω)2I3(t,M) + buX(Mω)2I2(t)
)]
, (4.2)

where the coefficients of the bubble contributions are

buϕ =
3

40
, buγ = −161

120
, buχ = −31

30
. (4.3)

Since in this limit t ∼ −q2, s ' (M + E)2, and u ' (M − E)2 + q2, with E = ~ω, the finite

component of the integral functions In are found to be (cf. appendix B for more details)

i(I4(t, s) + I4(t, u)) ' 1

2tME
(4iπ) log

(
−t
M2

)
(4.4)

iI3(t) ' − 1

2t
log2

(
−t
µ2

)
(4.5)

iI3(t,M2) ' − 1

32π2M2

(
log

(
−t
M2

)
+
π2M√
−t

)
(4.6)

iI2(t) ' − 1

16π2

(
2− log

(
−t
µ2

))
. (4.7)

The total gravitational scattering amplitude

iMX =
i

~
M(1)

X + iM(2)
X , (4.8)

then has the low-energy expansion

iM(2)
X '

NX

~
(Mω)2

×
[
− κ2

q2
+ κ4 15

512

M

|q|
+ ~κ4 15

512π2
log

(
q2

M2

)
− ~κ4 buX

(8π)2
log

(
q2

µ2

)
(4.9)

+~κ4 3

128π2
log2

(
q2

µ2

)
− κ4 Mω

8π

i

q2
log

(
q2

M2

)]
,

where µ2 is a mass scale parameter used in dimensional regularization. This result confirms

ref. [22] and extends it to the case of fermonic scattering. Note that Eq. (4.9) contains

both classical (independent of ~) and quantum mechanical (∝ ~) loop contributions. It

was shown in [48] why classical post-Newtonian corrections appear in one-loop gravitational

amplitudes. While most field theories identify classical and quantum effects by separating

tree from loop topologies, this is not a fundamental distinction and has in fact more to do

with linearity vs. non-linearity of the field equations; it is then natural that a quantum field

theory constructed from the non-linear Einstein-Hilbert action receives classical contributions
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from loop topologies. At one-loop order, in the above computation, this contribution is of the

type ∼ κ4/|q| and it is a very pleasing check of our computation that we observe universality

in both particle type and statistics for this contribution, as expected from general relativity.

The one-loop amplitude has infrared divergences arising from the propagation of the

graviton between the massless external legs p2
1 = p2

2 = 0,

p1

p2

` ∝M(1)
X ×

∫
0

d4−2ε` µ2ε

`2 2` · p1 2` · p2
∼ (t µ−2)−ε

t ε2
M(1)

X . (4.10)

The resulting infrared divergence is contained in the scalar boxes and the massless triangle in

the decomposition (4.2). The infrared divergences of gravitational theories have been studied

in [49–53]. At one-loop the amplitude is the sum, M(2)
X = SM(1) + H, consisting of an

infrared divergent part from the soft region in (4.10), S = (tµ−2)−ε/(tε2) times M(1) (the

tree-level one-graviton amplitude is evaluated in appendix A.3) and a finite hard part H.

When forming cross-sections, we know how to resolve them. Soft graviton bremsstrahlung

radiation also contributes to the measured cross-section if the radiated graviton is below

the resolution of the detector. Including the cross-section for bremsstrahlung with a finite

detector resolution ∆E has the effect of converting the scale µ into the detector resolution,

potentially along with some finite constants depending on the specifics of the detector and

the cross-section definition. This has been checked explicitly for massless gravitons in the

process of graviton-graviton scattering [53].

In our case, we are about to use this amplitude in the process of light bending. Again,

very soft gravitational bremsstrahlung cannot be differentiated from the non-radiative light

bending, and should be included in the measurement. As with the cross-section, this should

eliminate the IR divergences and replace the scale µ the logarithm by a factor depending

on the resolution of the measurement. We have not done an explicit calculation of this

process. If the quantum correction were close to being observable and if detectors capable

of resolving graviton bremsstrahlung existed, one would be motivated to perform a careful

analysis. However, a couple of options present themselves. If the light was a monochromatic

beam, the detector resolution could be a resolution in energy of the photon. This could be

either an energy independent resolution factor, or one which is proportional to some fraction

of the original energy. These two cases would then have different infrared factors in the

bending angle, indicating that there is not a unique detector-independent factor to include

in a bending angle formula. Alternatively, the angular resolution of the detector could be

used to define the acceptance factor for graviton bremsstrahlung. In the absence of a full

calculation, we simply replace the scale µ in the logarithm by and infrared scale which we

will call 1/b0 below.
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5 Bending of light

5.1 Bending formula from general relativity

Perhaps the most famous verification of Einstein’s general theory of relativity is its prediction

for the bending angle of light passing the rim of the Sun, since its 1919 measurement during

a total solar eclipse led to worldwide publicity and acceptance of Einstein’s theory. The

standard derivation of this result in general relativity follows from considering a spherically

symmetric metric parameterized as

ds2 = A(r)dt2 −B(r)2dr2 − r2dΩ2 . (5.1)

In the case of the Schwarzschild metric we have

A(r) =
1

B(r)
= 1− 2GNM

r
, (5.2)

so that geometrically the deflection angle is given the standard formula

θ = 2

∫ 1

0

du√
1− u2 − 2GNM

R (1− u3)
− π , (5.3)

where we have defined u = R
r . Here R is the distance of closest approach in Scwarzschild

coordinates. The integration in Eq. (5.3) can be performed exactly in terms of elliptic func-

tions, but since near the solar rim 2GNM/R ' 10−3 � 1, we can instead use a perturbative

solution

θ = 2

∫ 1

0
du

[
1√

(1− u)(1 + u)
+
GNM

R

1 + u+ u2√
(1− u)(1 + u)3

+
3

2

G2
NM

2

R2

(1 + u+ u2)2√
(1− u)(1 + u)5

+ . . .

]
− π

=
4GNM

R
+

4G2
NM

2

R2

(
15π

16
− 1

)
+ . . . (5.4)

However, instead of using the coordinate-dependent quantity R, the bending angle should be

written in terms of the impact parameter b, defined as

b =
√
B(R)R =

R√
1− 2GNM

R

= R+GNM + . . . (5.5)

It is important to note that b is a coordinate-independent quantity whereas R depends on

the coordinate system (see [54] for a nice discussion of the coordinate dependence on the

expression of the deflection angle). We arrive then at the universal (matter-independent)

formula for the bending angle

b

2GNM
=

2

θ
+

15π

32
+O(θ) , (5.6)
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or

θ =
4GNM

b
+

15πG2
NM

2

4b2
+O

(
1

b3

)
. (5.7)

This is the standard derivation and arises from considering light as particles (photons) travers-

ing a classical trajectory. Below we show how we can reproduce this expansion from the (low

energy) limit of the one-loop scattering amplitude, which can be thought of as a quantum

mechanical (wavelike) derivation.

5.2 Leading Newtonian correction

We will first reproduce the leading term by evaluating the (classical) elastic differential cross-

section using only the first Newtonian (tree-level) contribution. Writing the cross-section out

as a perturbative expansion we have

M =M(1) +M(2) + · · · (5.8)

and thus

|M|2 = |M(1)|2 + 2<e(M(1)(M(2))∗) + · · · (5.9)

Since we are interested in the low energy limit E � m, we can make the approximations

t = (p1 + p2)2 = (p3 + p4)2 ' −q2 = −4E2 (sin θ/2)2, with q = p1 + p2, s = (p1 + p4)2 '
(M+E)2 'M2+2ME, and u = (p1+p3)2 ' (M−E)2+q2 'M2−2ME+q2. We also employ

a small angle scattering approximation so that |q2| � E2. Recalling that κ2 = 32πGN/c
4,

the tree-level contribution to the cross-section is given by

dσ

dt

∣∣∣∣tree

ϕ2

=
κ4(u−M2)2

163πt2
' π

(
4GNME

t

)2

. (5.10)

Making the (classical) assumption that we can determine the impact parameter ρ(θ) from the

cross-section dσ = πdρ2, we have

ρ2 =

∫ 4E2

4E2(sin θ/2)2

dσ

dt

dt

π
, (5.11)

and in the small angle approximation θ � 1

ρ2 ' (4GNME)2

∫ 4E2

4E2(θ/2)2

dt

t2
'
(

4GNM

θ

)2

, (5.12)

which gives the relation between the bending angle and the impact parameter

θ ' 4GNM

ρ
. (5.13)

It is clear, given Eq. (4.9), that this result for the leading contribution to the bending angle is

universal for both particle type and statistics and agrees with general relativity. Of course, the

validity of this semi-classical derivation of the leading contribution (Coulomb-type potential
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scattering) to the bending angle is not guaranteed when considered within a full quantum

mechanical framework. It is, however, still true, up to a phase, due to the fact that even

quantum mechanically angular momentum remains conserved for a Coulombic potential, so

that the classical cross-section formula at leading order is valid even in the full quantum

regime.

5.3 Bending via the Eikonal Approximation

An appropriate quantum mechanical treatment of the light bending problem makes use of

the eikonal formulation, which describes the scattering in terms of an impact parameter

representation. In impact parameter space, the scattering amplitude exponentiates into an

eikonal phase and evaluation using the stationary phase method yields the classical result for

the bending angle, together with quantum effects.

There are two important aspects to the eikonal approximation. One is kinematic. When

the impact parameter is large, the bending angle is small. The small-angle approximation

means that the momentum transfer is small—t ∼ −q2 � s. This condition is easy to

implement in our amplitude. The second approximation is diagrammatic. The leading eikonal

approximation involves the iteration of one graviton exchange in all permutations. The first

correction to this approximation involves more complicated diagrams, such as loop processes,

in addition to the permutations of graviton exchange. The leading eikonal phase is of order

GN , and the first correction to the phase will be of order G2
N . We will impose eikonal

kinematics and proceed to the first diagrammatic correction.

Our guide in this approach is the discussion of the next-to-leading eikonal amplitude by

Akhoury et al. in [55]2. This method can be readily generalized to include the quantum terms

within the same diagrams as well as the purely quantum diagrams (the bubble diagrams) at

the same order. We determine the eikonal phase by matching the amplitudes at one-loop

order. In high energy small-angle scattering the dominant four-momentum transfer is in the

transverse spatial direction. For photons traveling in the z direction we have p3 = p1 + q so

that, squaring this equation, we obtain 0 = 2E(q0 − qz) + q2. A similar calculation for the

heavy scalar yields 0 = −2Mq0 + q2, which tells us that both q± = q0 ± qz are suppressed

compared to the transverse components q2 ∼ −q2
⊥ by at least a factor of 2E. This condition

on the overall momentum transfer gets reflected in the same condition on the exchanged

gravitons, so that the dominant momentum transfer inside loops is also transverse. In the

effective theory of high energy scattering, the Soft Collinear Effective Theory (SCET), these

are called Glauber modes [56] and carry momentum scaling (k+, k−, k⊥) ∼
√
s(λ2, λ2, λ) where

λ ∼
√
−t/s.

2 We note that, at the time our manuscript is being written, the preprint version of their work contains a

clear error in the summary of their amplitude. We have confirmed this with the authors and a corrected version

of this work will appear soon. Once this mistake is rectified, their result reproduces the correct next-to-leading

classical bending angle.
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The one-graviton amplitude amplitude in this limit is

M(1)
1 (q) = κ2M2E2 1

q2
, (5.14)

and, after some manipulations, the multiple exchanges of this amplitude can be arranged into

a form which exponentiates

M(1)
sum(q) = 32πME

∑
n

1

n!
(i2GNME)n

n∏
i=1

∫
d2ki
(2π)2

1

k2
i

δ2(
∑

ki − q) . (5.15)

In order to bring this amplitude into impact parameter space, one defines the Fourier trans-

form, with impact parameter b being transverse to the initial motion.

iM(b) =

∫
d2q

(2π)2
e−iq·b M(1)

sum(q) . (5.16)

Writing the sum as an exponential, the result (with the prefactor relevant for gravity) for the

scattering of a massless particle from a massive one is given by

iM(b) = 2(s−M2)
(
eiχ1(b) − 1

)
. (5.17)

Here χ1(b) is the Fourier transform of the one graviton exchange, with some kinematics

factored out

χ1(b) =
1

2M2E

∫
d2q

(2π)2
e−iq·b M1(q) , (5.18)

and can be evaluated using dimensional regularization,∫
d2q

(2π)2
e−iq·b |q|α =

∫ ∞
0

dq

2π
qα+d−1J0(qb) =

1

4π(2b)α+d

Γ
(
α+d

2

)
Γ
(

2−α−d
2

) , (5.19)

and taking the limit d→ 2 in the final expression. Therefore (using κ2 = 32πGN )

χ1(b) =
κ2ME

4

∫
d2q

(2π)2
e−iq·b

1

q2

' 4GNME

[
1

d− 2
− log(b/2)− γE

]
, (5.20)

with E being the energy of the massless particle. Only the log b term will be important in

the following treatment.

At order G2
N , the matrix element picks up corrections which we can describe by

M(q) =M(1)
1 (q) +M(2)(q) , (5.21)

where M(2)(q) is our calculated amplitude evaluated in this kinematic limit. Including the

dressing ofM(2)(q) by permutations of one graviton exchange, it was shown in [55] that there

is again an exponentiation of the simple exchange

M(2)
sum(q) = (32π)2ME

∑
n

(i2GNME)n−2

(n− 2)!

∫
d2kjM(2)(kj)

n∏
i 6=j

∫
d2ki
(2π)2

1

k2
i

δ2(
∑

ki − q) .

(5.22)
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In impact parameter space then we can write (5.21)

iM(b) = 2(s−M2)
[
(1 + iχ2)eiχ1 − 1

]
' 2(s−M2)

[
ei(χ1+χ2) − 1

]
, (5.23)

with the second expression being valid to this order in GN . The second order phase χ2 is

given by

χ2(b) =
1

2M2E

∫
d2q

(2π)2
e−iq·b M(2)(q) . (5.24)

For the classical correction we need the integral∫
d2q

(2π)2
e−iq·b

1

|q|
=

1

2πb
, (5.25)

while for the quantum terms we require∫
d2q

(2π)2
e−iq·b log q2 = − 1

πb2
, (5.26)∫

d2q

(2π)2
e−iq·b log2 q2 =

4

πb2
log

2

b
. (5.27)

We find then

χ2(b) = G2
NM

2E
15π

4b
+
G2
NM

2E

2πb2

(
8buη − 15 + 48 log

2b0
b

)
. (5.28)

The light bending analysis is now straightforward and involves determining the stationary

phase of the exponent, which can be argued to dominate the momentum space integration,

via
∂

∂b
(−q · b + χ1(b) + χ2(b) + · · · ) =

∂

∂b
(q b+ χ1(b) + χ2(b) + · · · ) = 0 . (5.29)

Using q = 2E sin(θ/2) this condition reads

2 sin
θ

2
' θ = − 1

E

∂

∂b
(χ1(b) + χ2(b)) , (5.30)

and yields

θ ' 4GNM

b
+

15

4

G2
NM

2π

b2
+

(
8buS + 9− 48 log

b

2b0

)
~G2

NM

πb3
+ . . . . (5.31)

Here 1/b0 in the logarithm is the infrared cutoff which removes the IR singularities of the

amplitude. We see that the eikonal approximation leads to the expected classical general

relativity contributions, in agreement with the next-to-leading correction of [55] and [57],

as well as producing the leading quantum correction. Treating the quantum effect using the

eikonal procedure, we recover the results of [22] derived with a semiclassical potential method.

The quantum effect has the power-law dependence in impact parameter as the classi-

cal post-post-Newtonian contribution. This second post-Newtonian contribution of order

G3
NM

3/b3 arises as a classical piece from two-loop amplitudes with momentum dependence

q0/~. These two contributions lead to very distinct analytic structure to the S-matrix and

are easily separated. The classical corrections is much larger than the quantum effect by the

ratio the square of the Schwarzschild radius to the Planck length G2
NM

2 � ~GN .
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5.4 Bending via Geometrical Optics

There is an equivalence between the eikonal method described above and the semiclassical

potential method which we used in [22]. In order to elucidate this, it is useful to consider the

bending in terms of a wave picture of light propagation. Since the wavelength of the light

is much smaller than size of the massive scalar object (Sun or black hole) around which the

bending occurs, the analysis can be done using the methods of geometrical (ray) optics. This

formalism is developed in many places, e.g. [58], and leads to the equation

d

ds
n
dr

ds
= ∇n , (5.32)

where n is the index of refraction and r(s) is the trajectory as a function of the path length

s. For light we can write ds ' cdt so that Eq. (5.32) becomes

1

c2

d2r

dt2
=

1

n
∇n . (5.33)

In our case, at leading order, the index of refraction is determined from the general relativity/optical-

mechanical analogy [59] which, for a line element

ds2 = A(r)dt2 −B(r) dr2 + r2(dθ2 + sin2 θdφ2) , (5.34)

yields

n(r) =

√
B(r)

A(r)
. (5.35)

For the Schwarzschild metric we have then

n(r) =
1

1− 2GNM
r

' 1 +
2GNM

r
= 1− 1

Em
V0(r) , (5.36)

where

V0(r) = −2GNMEm
r

, (5.37)

is the leading order potential energy for a photon of energy Em interacting with a massive

scalar of mass M . Following [22], the generalization to the full interaction is then achieved

by replacing the lowest order potential V0(r) by the full interaction potential Vint(r) gener-

ated from the low energy approximation with t ' −q2 of the total gravitational scattering

amplitude3 in Eq. (4.9) with the second Born (rescattering) term excised

Vint(r) =
~

4Mω

∫ (
MX(q) + κ4 Mω

8πq2
log

q2

M2

)
eiq·r

d3q

(2π)3
(5.39)

= −2GNME

r
+

15

4

(GNM)2E

r2
+

8buS − 15 + 48 log(r/r0)

4π

~G2
NME

r3
.

3We made use of the following Fourier transformations∫
d3q

(2π)3
eiq·r

1

q2
=

1

4πr
,

∫
d3q

(2π)3
eiq·r

1

|q| =
1

2π2r2
,

∫
d3q

(2π)3
eiq·r log(q2) = − 1

2πr3
. (5.38)
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(Note that this interaction potential is not derivable from an quantum corrected effective

background metric. We will comment more about this fact in the section 6.) In the absence

of a potential, we can imagine a photon incident in the êy direction with impact parameter b

on a massive scalar target located at the origin. The trajectory is then characterized by

r(t) = bêx + ctêy, −∞ < t <∞ . (5.40)

If we now impose a potential, there will exist a small deviation from this straight line trajectory

with

∆
1

c2

dr

dt
= −

∫ +∞

−∞
dtV ′int(r)r̂ . (5.41)

We have then
2

c
sin

1

2
θ ' 1

Em

∫ +∞

−∞
dtV ′int(

√
b2 + c2t2)

b√
b2 + c2t2

, (5.42)

where θ is the scattering angle. Changing variables to t = bu/c, we find

2

c
sin

1

2
θ ' 1

c
θ = − b

Em

∫ +∞

−∞
V ′int(b

√
1 + u2)

dux√
1 + u2

, (5.43)

yielding

θ =
b

Em

∫ +∞

−∞
V ′int(b

√
1 + u2)

du√
1 + u2

. (5.44)

Substituting the interaction potential Eq. (5.40) and performing the requisite integration, we

arrive at

θ =
4GNM

b
+

15πG2
NM

2

4b2
+

(
8buS + 9− 48 log

b

2b0

)
~G2

NM

πb3
+ . . . . (5.45)

The first two (classical) pieces of Eq. (5.45) agree with the standard post-Newtonian analysis

given above, but they are accompanied by a small quantum mechanical correction term found

in our eikonal analysis. It may seem surprising that small angle scattering theory, involving

the two-dimensional eikonal Fourier transform yields a result identical to that found from the

semiclassical potential result, which is given in terms of a three-dimensional Fourier transform

of the transition amplitude. However, this equality is made clear from the mathematical

identity ∫ ∞
0

dqq2J1(qb)F (q2) =
b

π

∫ ∞
−∞

du√
1 + u2

∫ ∞
0

dqq3j1(qb
√

1 + u2)F (q2) (5.46)

which is valid for any sufficiently smooth function F (q2) [60].

6 Discussion

We have in this presentation derived one-loop scattering results for all types of massless matter

interacting gravitationally with a massive scalar source. While we have found universality and
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agreement with general relativity for the classical physics component of the result, i.e., the so

called post-Newtonian corrections, field theory has also produced a new type of contribution

of quantum origin, which has no precedence in classical general relativity. This pattern of new

contributions will persist to all loop orders, and thus produce terms having varying powers

of ~ that all are unique signatures of quantum effects in the theory of gravity. We will here

comment on on the role of such terms.

While many field theories have limits wherein quantum effects can be dealt with and

motivated in a semi-classical/semi-quantum context (even in QCD!) it is particularly hard

finding such limits in general relativity, given its geometric nature and local description. Con-

cepts like a free falling elevator and motion along geodesics have no known simple quantum

mechanical equivalent. An interesting observation, however, is that such quantum terms,

except for the bubble coefficients, are universal. The bubble non-universality could be in-

terpreted as a violation of some classical descriptions of the equivalence principle, in that

massless particles do not follow null geodesics, and different types of massless particles fol-

low different trajectories. However this in not a fundamental violation of the equivalence

principle in the larger sense, as the action which defines the theory is compatible with the

equivalence principle. However, in the scattering process tidal effects offer another possible

interpretation of the result, since we have the quantum loops of massless particles involving

long-range propagation in a non-homogenous gravitational field. Construction of a gedanken

experiment featuring a homogeneous gravitational field could thus be an interesting exercise.

One might consider the possibility that the quantum correction to the gravitational in-

teraction between two massive particles could have a geometrical interpretation in terms of

an effective particle evolving in a quantum-corrected metric. However, this seems not to be

feasible since the effective one-particle reducible potential that would result from propaga-

tion in a quantum corrected metric would be gauge-dependent. This is already the case for

the interaction potential between two massive particles. It appears that a fully quantum

mechanical description, such as we have presented, is required.

We conclude that the best way to deal with this situation is to simply compute a cross-

section for scattering and use this to compare observational data to theory. The effects are

seen to be too small to be observed experimentally, yet they can yield interesting theoretical

insights, such as the evidence that massless particles no longer follow null geodesics, and that

the cross-section is not universal as it depends on the type of massless particle.
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A Gravitational photon and scalar tree amplitudes

A.1 Helicity formalism conventions

This appendix contains a brief account of the conventions and the notation in the paper. We

follows the notations and conventions of ref. [32].

We employ the mostly minus metric signature ηµν = diag(+,−,−,−) and use Dirac

matrices satisfying {γµ, γν} = 2ηµν , i.e.,

γµ =

(
0 σµ

σ̄µ 0

)
; γ5 =

(
1 0

0 −1

)
. (A.1)

We have (σµ) = (1, σi) and (σ̄µ) = (−1, σ̄i) where σi are the standard Pauli matrices. We

use some places the notation γµpµ =6 p. The Dirac matrices satisfy the Clifford algebra (we

refer to [43, App. A-2] for details) {γµ, γν} = 2ηµν and γ5 is the chirality operator, satisfying

tr(γ5γ
µ1γµ2γµ3γµ4) = 4i εµνρσ.

We have the following conventions for traces. They are defined by tr±(a1 · · · ar) :=

tr
(1±γ5

2 γµ1 · · · γµr
)
a1µ1 · · · ar µr . We note in particular that tr±(abcd) = 2(a · b c · d − a · c b ·

d+ a · d b · c)± 2iεµνρσaµbνcρdσ.

The Levi-Civita epsilon tensor εµνρσ takes the value 1 if {µ, ν, ρ, σ} is an even permutation

of {0, 1, 2, 3}, −1 if {µ, ν, ρ, σ} is an odd permutation of {0, 1, 2, 3}, and 0 otherwise.

For a light-like momentum p the positive energy solution to the Dirac equation is 6
p uh(p) = 0 both for positive and negative helicities, i.e., h = +1 and h = −1. This so-

lution satisfy the usual chirality condition (1∓ γ5)/2u±(p) = 0 and (1± γ5)/2 ū±(p) = 0.

We will also make use of the following conventions

|k〉 ≡ u+(k); |k] ≡ u−(k) (A.2)

〈k| ≡ ū−(k); [k| ≡ ū+(k) . (A.3)

and spinor products will be defined according to

〈p q〉 ≡ ū−(p)u+(q); [p q] ≡ ū+(p)u−(q) , (A.4)

where (p+ q)2 = 2p · q = 〈p q〉 [p q].
This yields the following completeness relation∑

h=±1

uh(k)ūh(k) =6k = |k〉[k|+ |k]〈k| . (A.5)
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and we arrive at

6ε+µ (k, pref) =
[k|γµ|pref〉√

2 〈pref k〉
; 6ε−µ (k, pref) = −〈k|γµ|pref ]√

2 [pref k]
, (A.6)

for the polarisation tensor for the photon of light-like momentum k where pref is an arbitrary

light-like reference momentum.

For p and q light-like momenta and k a four-momentum vector we have

〈p|k|q] = 〈p|γµ|q] kµ; [p|kq〉 = (〈p|k|q])∗ . (A.7)

A.2 The gravitational Compton amplitudes

In this section we review the gravitational Compton scattering at tree-level represented in

fig 3 and discussed in detail in [15, 17, 20] and in [21]. We are interested in the gravita-

tional Compton scattering of a graviton g from a massless target of spin 0 (scalar ϕ), spin 1
2

(fermion χ), and spin 1 (photon γ). The only interactions that we consider are gravitational

interactions.

= + + +

Figure 3. Gravitional Compton scattering given by the tree-level scattering a massless particle (wavy

line) on graviton (curly line) with only gravitational interactions.

A remarkable property of the gravitational Compton scattering from a target X of spin

S and mass M (which can be vanishing) is its factorization onto a product of Abelian QED

Compton amplitudes [20]

iMX2G2(p1, k1, p2, k2) =
κ2

8e4

p1 · k1 p1 · k2

k1 · k2
ACompton
S (p1, k2, p2, k1)ACompton

0 (p1, k2, p2, k1) ,

(A.8)

where ACompton
S is the Compton amplitude associated with scattering a photon from a target

of spin S, and ACompton
0 is the Compton amplitude obtained by scattering a photon on scalar

target.

We express gravitational Compton amplitudes in the helicity formalism, using the nota-

tion for the polarization dependence of the external states

M(h1h2|λ1λ2)
γ2G2 :=MG−Compton

γ (ph11 , kλ11 , ph22 , kλ22 ) . (A.9)

The amplitudes M(++|++)
γ2G2 , M(++|+−)

γ2G2 , M
(++|−+)
γ2G2 , M(+−|++)

γ2G2 , M(−+|++)
γ2G2 and their complex

conjugate vanish since the four-gluon tree-level amplitude ACompton
1 (ph11 , kλ11 , ph22 , kλ22 ) is zero
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for these configurations of polarizations as they are not MHV amplitudes. In addition, the

gravitational amplitude M(++|−−)
γ2G2 (and its complex conjugate) vanishes because the scalar

amplitudes ACompton
0 (p1, k

−
1 , p2, k

−
2 ) (and its complex conjugate) vanishes for massless scalars.

Thus, the only non-vanishing gravitational Compton amplitudes for photons are, see for

example [32–34].

M(+−|+−)
γ2G2 =

κ2

8

[p1 k1]2 〈p2 k2〉2 〈k2|p1|k1]2

(p1 · p2)(p1 · k1)(p1 · k2)
, (A.10)

M(−+|+−)
γ2G2 =

κ2

8

[p2 k1]2 〈p1 k2〉2 〈k2|p2|k1]2

(p1 · p2)(p1 · k1)(p1 · k2)
, (A.11)

and their complex conjugates.

For scalar target Compton scattering, the helicity amplitudes derived in [20] are given by

ACompton
0 (p1, p2, k

+
2 , k

+
1 ) = − M2 [k1 k2]2

k1 · k2 2k1 · p1
, ACompton

0 (p1, p2, k
−
2 , k

+
1 ) =

〈k2|p1|k1]2

k1 · k2 2k1 · p1
,

(A.12)

with the complex conjugated expressionsACompton
0 (p1, p2, k

−
2 , k

−
1 ) = (ACompton

0 (p1, p2, k
+
2 , k

+
1 ))∗

and ACompton
0 (p1, p2, k

+
2 , k

−
1 ) = (ACompton

0 (p1, p2, k
−
2 , k

+
1 ))∗.

The gravitational Compton amplitude in Eq. (A.8) then reads in the helicity formalism

MΦ2G2(p1, k
+
1 , p2, k

+
2 ) =

κ2

16

1

(k1 · k2)

M4 [k1 k2]4

(k1 · p1)(k1 · p2)
,

MΦ2G2(p3, k
−
1 , p4, k

+
2 ) =

κ2

16

1

(k1 · k2)

〈k1|p3|k2]2 〈k1|p4|k2]2

(k1 · p3)(k1 · p4)
. (A.13)

Note that for the same reason as in the photon case, the MΦ2G2(p1, k
+
1 , p2, k

+
2 ) amplitude

vanishes for a massless target, and in the same way we find the Compton amplitude for

massless fermions to be

Mχ2G2(p+
1 , p

−
2 , k

+
1 , k

−
2 ) =

κ2

16

1

(k1 · k2)

〈k2|p1|k1]3 [k1 p2] 〈p1 k2〉
(k1 · p1)(k1 · p2)

. (A.14)

A.3 The one-graviton tree-level amplitudes

Figure 4. One graviton exchange between a massless fields and a massive scalar.
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We give the full tree-level one-graviton exchange amplitude between the massive scalar

Φ of mass M and the massless scalar ϕ, the photon γ and the massless fermion χ. The

massless particles have momenta p1 and p2, the massive scalar has momenta p3 and p4, with

p1 + p2 + p3 + p4 = 0. The kinematic invariants are t = (p1 + p2)2, s = (p1 + p4)2 and

u = (p1 + p3)2.

• The tree-level gravitational interaction between a massless scalar ϕ and a massive scalar

Φ is given by

M(1)
ϕ2Φ2 = −κ

2

4

(s−M2)(u−M2)

t
. (A.15)

• The tree-level gravitational interaction between a photon γ and a massive scalar Φ is

given by

M(1) (++)
γ2Φ2 = 0; M(1) (+−)

γ2Φ2 = κ2 〈p2|p3|p1]2

4(p1 + p2)2
= κ2 (M4 − su)2

4t 〈p1|p3|p2]2
, (A.16)

where the superscript denotes the helicity of the external photons, and we used that

〈p2|p3|p1]2 〈p1|p3|p2]2 =
(
tr−(p2p3p1p3)

)2
= (M4 − su)2 with equivalent expressions for

their complex conjugate helicity configurations. The vanishing of the amplitude when

the helicity of the configuration of the incoming and outgoing photons are the same

is expected from general relativity since two parallel beams of light do not interact

gravitationally [61].

• The tree-level gravitational interaction between a massless spin-1
2 field χ and a massive

scalar Φ is given by

M(1) (+−)
χ2Φ2 = κ2 (s− u)

8t
〈p2|p3|p1] = κ2 (s− u)(M2 − su)

8t 〈p1|p3|p2]
. (A.17)

with an equivalent expression for the complex conjugate helicity configuration.

B Integrals

In this appendix we use the same convention as in the main text q = p1 + p2 = −p3 − p4,

t = (p1 + p2)2, s = (p1 + p4)2 and u = (p1 + p3)2.

The infrared divergent integral

The boxes are defined and evaluated [62] as

I4(t, s) =
1

iπ2−εrΓ

∫
d4−2ε` µ2ε

`2(`+ q)2(`+ p1)2((`− p4)2 −M2)
, (B.1)

with the following ε expansion

I4(t, s) = − 1

t(M2 − s)

(
µ2

M2

)ε [
2

ε2
− 1

ε
(2 log

M2 − s
M2

+ log
−t
M2

)

+ 2 log
M2 − s
M2

log
−t
M2
− π2

2
+O(ε)

]
, (B.2)
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where rΓ = (Γ(1 − ε))2Γ(1 + ε)/Γ(1 − 2ε). The box scalar integral I4(t, u) is obtained by

replacing s by u in the previous expressions.

The massless triangle integral is defined by

I3(t) =
1

iπ2−εrΓ

∫
d4−2ε` µ2ε

`2(`− p1)2(`+ p2)2
= − 1

ε2 t

(
−t
µ2

)−1−ε

= − 1

t ε2
− log(−t/µ2)

tε
− (log(−t/µ2))2

2t
+O(ε) . (B.3)

The ultraviolet divergent integral

The massless bubble integral is defined as

I2(t) =
1

iπ2−εrΓ

∫
d4−2ε` µ2ε

`2(`+ q)2
=

1

ε
+ 2− log(−t/µ2) +O(ε) . (B.4)

The finite integral

The massive triangle is given by

I3(t,M2) =
1

iπ2−εrΓ

∫
d4−2ε` µ2ε

(`+ p4)2(`− p3)2(`2 −M2)

=
1

t β

[
4ζ(2) + 2Li2

(
β − 1

β + 1

)
+

1

2
log2

(
β − 1

β + 1

)]
, (B.5)

where Li2(x) =
∑

n≥1
xn

n2 and β2 = 1− 4M2

t . The non-relativistic limit leads to

I3(t,M2) ' − 1

32π2M2

(
log

(
−t
M2

)
+
π2M√
−t

)
. (B.6)

References

[1] M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an

electromagnetic field,” Proc. Roy. Soc. Lond. A 173, 211 (1939). doi:10.1098/rspa.1939.0140

[2] S. N. Gupta, “Gravitation and Electromagnetism,” Phys. Rev. 96, 1683 (1954).

doi:10.1103/PhysRev.96.1683

[3] R. H. Kraichnan, “Special-Relativistic Derivation of Generally Covariant Gravitation Theory,”

Phys. Rev. 98, 1118 (1955). doi:10.1103/PhysRev.98.1118

[4] R. P. Feynman, “Quantum theory of gravitation,” Acta Phys. Polon. 24, 697 (1963).

[5] B. S. DeWitt, “Quantum Theory of Gravity. 1. The Canonical Theory,” Phys. Rev. 160, 1113

(1967). doi:10.1103/PhysRev.160.1113

[6] B. S. DeWitt, “Quantum Theory of Gravity. 2. The Manifestly Covariant Theory,” Phys. Rev.

162, 1195 (1967). doi:10.1103/PhysRev.162.1195

[7] B. S. DeWitt, “Quantum Theory of Gravity. 3. Applications of the Covariant Theory,” Phys.

Rev. 162, 1239 (1967). doi:10.1103/PhysRev.162.1239

[8] S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327.

– 23 –



[9] J. F. Donoghue, “Leading quantum correction to the Newtonian potential,” Phys. Rev. Lett.

72, 2996 (1994) doi:10.1103/PhysRevLett.72.2996 [gr-qc/9310024].

[10] J. F. Donoghue, “General Relativity as an Effective Field Theory: the Leading Quantum

Corrections,” Phys. Rev. D 50 (1994) 3874. [gr-qc/9405057].

[11] N. E. J. Bjerrum-Bohr, “Leading quantum gravitational corrections to scalar QED,” Phys. Rev.

D 66, 084023 (2002) doi:10.1103/PhysRevD.66.084023 [hep-th/0206236].

[12] N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, “Quantum Corrections to the

Schwarzschild and Kerr Metrics,” Phys. Rev. D 68 (2003) 084005 Erratum: [Phys. Rev. D 71

(2005) 069904] doi:10.1103/PhysRevD.68.084005, 10.1103/PhysRevD.71.069904

[hep-th/0211071].

[13] N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, “Quantum Gravitational

Corrections to the Nonrelativistic Scattering Potential of Two Masses,” Phys. Rev. D 67 (2003)

084033 Erratum: [Phys. Rev. D 71 (2005) 069903] doi:10.1103/PhysRevD.71.069903,

10.1103/PhysRevD.67.084033 [hep-th/0211072].

[14] I. B. Khriplovich and G. G. Kirilin, “Quantum long range interactions in general relativity,” J.

Exp. Theor. Phys. 98, 1063 (2004) [Zh. Eksp. Teor. Fiz. 125, 1219 (2004)]

doi:10.1134/1.1777618 [gr-qc/0402018].

[15] B. R. Holstein, “Factorization in Graviton Scattering and the ‘Natural’ Value of the G-Factor,”

Phys. Rev. D 74 (2006) 085002, [gr-qc/0607058].

[16] A. Ross and B. R. Holstein, “Spin effects in the effective quantum field theory of general

relativity,” J. Phys. A 40, 6973 (2007). doi:10.1088/1751-8113/40/25/S48

[17] B. R. Holstein and A. Ross, “Spin Effects in Long Range Gravitational Scattering,”

arXiv:0802.0716 [hep-ph].

[18] B. R. Holstein and A. Ross, “Long Distance Effects in Mixed Electromagnetic-Gravitational

Scattering,” arXiv:0802.0717 [hep-ph].

[19] D. Neill and I. Z. Rothstein, “Classical Space-Times from the S Matrix,” Nucl. Phys. B 877,

177 (2013) doi:10.1016/j.nuclphysb.2013.09.007 [arXiv:1304.7263 [hep-th]].

[20] N. E. J. Bjerrum-Bohr, J. F. Donoghue and P. Vanhove, “On-Shell Techniques and Universal

Results in Quantum Gravity,” JHEP 1402 (2014) 111 [arXiv:1309.0804 [hep-th]].

[21] N. E. J. Bjerrum-Bohr, B. R. Holstein, L. Planté and P. Vanhove, “Graviton-Photon
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