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Abstract

We present a unifying treatment of dark energy and modified gravity that allows
distinct conformal-disformal couplings of matter species to the gravitational sector.
In this very general approach, we derive the conditions to avoid ghost and gradient
instabilities. We compute the equations of motion for background quantities and linear
perturbations. We illustrate our formalism with two simple scenarios, where either
cold dark matter or a relativistic fluid is nonminimally coupled. This extends previous
studies of coupled dark energy to a much broader spectrum of gravitational theories.

http://arxiv.org/abs/1504.05481v1


Contents

1 Introduction 3

2 Unifying description of dark energy with non universal couplings 5

2.1 Gravitational and matter actions . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Homogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Linear perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Matter couplings and stability conditions . . . . . . . . . . . . . . . . . . . 9
2.5 Disformal transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Matter equations of motion 12

3.1 Homogenous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Perturbation equations in Newtonian gauge . . . . . . . . . . . . . . . . . . 14

4 Baryons and coupled CDM 16

4.1 Linear perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Quasi-static approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Matter and coupled relativistic fluid 20

6 Conclusions 21

A Changing frame 22

A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Explicit quadratic action 25

B.1 Matter action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.2 Stability and sound speed of dark energy . . . . . . . . . . . . . . . . . . . . 26

C Perturbation equations 27

C.1 Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C.2 Scalar field equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D Synchronous gauge 29

E Definitions of the parameters 31

2



1 Introduction

The nature of dark energy, responsible for the present cosmological acceleration, is a
central topic in theoretical and observational cosmology. One of the main goals of current
and future cosmic surveys is to constrain or possibly detect deviations from the standard
ΛCDM scenario, induced by the presence of dark energy or modifications of General
Relativity (GR) (see e.g. [1]). This is particularly relevant on scales above ∼ 10 Mpc,
where deviations from GR are not yet well tested. Fortunately, on these scales cosmological
perturbations are still in the linear regime today and linear perturbation theory around a
FLRW background is thus a valid description.

Given the plethora of existing dark energy and modified gravity models (see for in-
stance [2,3]), it is worth resorting to an effective approach that tries to describe all possible
deviations from ΛCDM in a simple and systematic way, relying on a minimal number of
parameters. In the linear regime for perturbations, this task has been sucessfully under-
taken for single scalar field models in [4, 5]. Initially inspired by the so-called Effective
Field Theory of inflation [6,7] and minimally coupled dark energy [8], this approach relies
on the construction of an effective action for linear perturbations. In order to do so, we
start from a generic Lagrangian written in terms of Arnowitt-Deser-Misner (ADM) [9]
quantities defined with respect to the uniform scalar field hypersurfaces (see also [10, 11]
for an analogous approach, [12–14] for recent reviews and e.g. [15–17] for applications).
After having been implemented in a public numerical code named EFTCAMB [18], most
recently, it has been applied to constrain deviations from the standard cosmological con-
stant scenario by the Planck collaboration [19].

The action developed in [5] contains five free functions of time that parametrize any
deviation from ΛCDM. Four of these functions describe cosmological perturbations in
Horndeski theories [20–22]. The fifth parameter describes deviations from GR encompass-
ing Horndeski theories. Indeed, the same formalism was also instrumental to uncover the
theories beyond Horndeski of [23, 24], which lead to equations of motion higher than sec-
ond order but are free from Ostrogradski instabilities (see e.g. [25] for an earlier example
of theories beyond Horndeski).

The developments described above assume that matter is minimally coupled to a unique
metric, which will be called Jordan frame metric for convenience. However, although the
universality of couplings is very well tested on Solar System scales [26], on cosmological
scales constraints are much weaker. In particular, the scalar field responsible for the
current accelerated expansion is known to mediate a fifth force [27], which may lead to
violations of the equivalence principle (EP) on large scales [28] (see also [29] for a test of
the EP on large scales). Moreover, while fifth force effects on standard matter such as
baryons and photons are severely restricted, those on cold dark matter (CDM) or neutrinos
could be much larger. This leaves the freedom to consider the case where different matter
species1 couple differently to the scalar field [30,31].

The goal of the present work is to extend the approach developed in Refs. [4, 5] by
relaxing the assumption that all matter species are minimally coupled to the same metric.2

1By matter species we intend the different components in the Universe (baryons, photons, CDM and
neutrinos) but the results derived here could be straightforwardly extended to different types of objects,
such as e.g. galaxies of different sizes, behaving differently under the effect of the fifth force.

2Another general parametrisation of theories of single-field dark energy that is explicitly coupled to dark
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For simplicity, in the following we restrict our study to effective theories of dark energy
or modified gravity that remain within the Horndeski class. This means that we assume
that the function αH introduced in [24] to describe theories beyond Horndeski at the level
of linear perturbations vanishes here, leaving only four out of the five free independent
functions of [5]. We reserve a treatment of theories beyond Horndeski for future work. As
shown in [35], the structure of the Horndeski Lagrangians is preserved under a disformal
transformation [36] of the metric with coefficients that depend only on the scalar field (not
on its gradient), i.e. of the form

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ . (1.1)

Thus, in the following we assume that each matter species is minimally coupled to a
distinct Jordan metric of this form.3 While conformal couplings (i.e. withD = 0) have been
extensively studied in the literature (see e.g. [1] and references therein), disformal couplings
have been investigated only recently (see also e.g. [39–48]). Moreover, the dynamics of the
gravitational metric gµν is usually assumed to be governed by the standard Einstein-Hilbert
action. Here, we allow a much more general gravitational sector, based on the effective
description given in [5]. In Sec. 2 we review our formalism within the ADM effective
approach and the gravitational action in the uniform scalar-field gauge. Apart from the
four time-dependent parameters mentioned above, we introduce two extra functions of
time for each species, describing the nonminimal coupling to dark energy via an effective
metric of the form (1.1). The structure of this action is preserved under transformations
of the reference metric of the form (1.1) and the stability conditions for the matter and the
gravitational sector are shown to be invariant under these transformations. More details
on the frame dependence and on the derivation of the stability conditions of gravitational
and matter quantities are respectively given in Appendix A and Appendix B.

In Sec. 3 we derive the evolution equations describing the matter sector, which now in-
clude the effect of the nonminimal couplings, and in Appendix E we provide the definitions
of several parameters introduced in this section. These equations must be supplemented
with the Einstein equations describing the gravitational sector, reported in Appendix C.
We provide and discuss the perturbation equations using Newtonian gauge but these are
also given in synchronous gauge in Appendix D.

The parameters of our effective description can be constrained by observations. As a
direct application of our approach, in Sec. 4 we consider the cosmological consequences, for
the background evolution and for linear perturbations, of a Universe where the coupling
of CDM differs from that of the other species (see e.g. [49–59]). Our analysis extends
previous results as we allow gravity itself to be modified, not only the couplings to matter.
In Sec. 5 we consider the case where the coupled species is a relativistic fluid. This will
allow us to highlight the dependence of conformal and disformal couplings on the equation
of state. Finally, we conclude in Sec. 6.

matter has been given in [32], in the framework of the Parameterized Post-Friedmann approach [33,34].
3Other types of couplings can be found in the literature. For instance, Ref. [37] considers a CDM

action that depends on the contraction of the CDM 4-velocity with the normalized space-time gradient
of the scalar field, in the context of Lorentz-violating theories. Ref. [38] directly modifies the action for a
general perfect fluid.
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2 Unifying description of dark energy with non universal

couplings

In this section we introduce the gravitational and matter actions within the ADM frame-
work introduced in [5] and recently summarized in [14]. After giving the background
equations of motion, we study linear fluctuations and derive the conditions for the linear
theory to be healthy, i.e. ghost-free and without gradient instabilities.

2.1 Gravitational and matter actions

In the present work, we assume that the gravitational sector is described by a four-
dimensional metric gµν and a scalar field φ. Let us start by choosing a coordinate system
such that the constant time hypersurfaces coincide with the uniform scalar field hypersur-
faces. In this gauge, referred to as unitary gauge, the metric can be written in the ADM
form, which reads

ds2 = −N2dt2 + hij
(

dxi +N idt
) (

dxj +N jdt
)

, (2.1)

where N is the lapse and N i the shift. In the following, a dot will stand for a time
derivative with respect to t, and Di will denote the covariant derivative associated with
the three-dimensional spatial metric hij . Spatial indices will be lowered and raised with
the spatial metric hij or its inverse hij , respectively.

In the unitary gauge, a generic gravitational action can be written in terms of geometric
quantities that are invariant under spatial diffeomorphisms [6, 7]. Expressed in ADM
coordinates introduced above, these geometric quantities are the lapse N , the extrinsic
curvature Kij of the constant time hypersurfaces, whose components are given by

Kij =
1

2N

(

ḣij −DiNj −DjNi

)

, (2.2)

as well as the 3d Ricci tensor Rij of the constant time hypersurfaces and, possibly, spatial
derivatives of all these quantities. Thus, the action is generically of the form

Sg =

∫

d4x
√−g L(N,Kij , Rij , hij ,Di; t) . (2.3)

The gravitational action must be supplemented by a matter action Sm. In order to
describe dark energy and modified gravity scenarios with EP violations, we assume that
beside the gravitational sector introduced above, the Universe is filled byNS matter species
labelled by an index I, with I = 1, . . . , NS , each minimally coupled to a different metric.

For each species I, we denote the corresponding metric by ǧ
(I)
µν and we call this the Jordan

frame metric associated with this species. The total matter action is thus given by

Sm =

NS
∑

I

SI , SI =

∫

d4x

√

−ǧ(I) LI

(

ǧ(I)µν , ψI

)

, (2.4)

with
ǧ(I)µν = C

(φ)
I (φ)gµν +D

(φ)
I (φ)∂µφ∂νφ . (2.5)
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In order to preserve the Lorentzian signature of the Jordan-frame metric of the species I,

it is necessary to have C
(φ)
I > 0.

There is some arbitrariness in the choice of the gravitational metric gµν since we work
in the context of modified gravity, where the gravitational dynamics cannot be expressed
in terms of a standard Einstein-Hilbert term, in general. It is often convenient to choose
one particular matter species, say I∗, and define its Jordan metric as the gravitational

metric, in which case we have C
(φ)
I∗

= 1 and D
(φ)
I∗

= 0.

2.2 Homogeneous equations

Let us discuss briefly the evolution of the background metric described by a FLRW metric
assumed to be spatially flat. In this case the lapse is a function of time only, which we
denote N̄(t), the shift vanishes, N i = 0, and the spatial metric reads gij = hij = a2(t)δij
where a represents the scale factor. Thus, the metric reads

ds2 = −N̄2(t)dt2 + a2(t)dx2 . (2.6)

The homogeneous dynamics depends on the gravitational Lagrangian L in eq. (2.3),
which can be seen as a function L̄(N, a, ȧ) when the arguments are restricted to their
background values, i.e. N = N̄ , hij = a2(t)δij , Rij = 0, and

Kij = K̄ij ≡
aȧ

N̄
δij = Hhij , (2.7)

where H ≡ ȧ/(aN̄ ) denotes the Hubble rate. Here and in the following, barred quantities
are evaluated on the background.

The variation of the matter action Sm with respect to the metric gµν defines the
energy-momentum tensor, according to the standard expression

T µν ≡ 2√−g
δSm
δgµν

. (2.8)

This definition applies even if the matter is minimally coupled with respect to a metric ǧµν
that differs from gµν , as discussed in Appendix A. In the homogenous case, the energy-
momentum tensor depends only on the energy density ρm ≡ −T̄ 0

0 and the pressure pm ≡
T̄ i

i/3. If there are several matter components, the previous quantities simply correspond,
respectively, to the sums of the energy densities and pressures associated to each individual
species, i.e. ρm =

∑

I ρI and pm =
∑

I pI .
The background evolution equations are then obtained by taking the variation of the

total homogeneous action Sg+Sm with the respect to N̄ and a. As shown in [5], this leads
to the equations

L̄+ N̄LN − 3HF = ρm (2.9)

and

L̄− 3HF − Ḟ
N̄

= −pm , (2.10)

where the coefficient F is defined by
(

∂L

∂Kij

)

bgd

≡ F hij . (2.11)
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Equations (2.9) and (2.10) generalize the usual Friedmann equations. For GR, where the
Lagrangian is given by L = M2

P (KijK
ij − K2 + R)/2, one can check that the standard

equations are recovered, since L̄ = −3M2
PH

2, LN = 0 and F = −2M2
PH.

The Friedmann equations eqs. (2.9)–(2.10) can always be written as

H2 =
1

3M2
(ρm + ρDE) , (2.12)

Ḣ +
3

2
H2 = − 1

2M2
(pm + pDE) , (2.13)

whereM denotes the effective Planck mass, which can be in general time-dependent (it will
be defined below from the second derivative of L with respect to the intrinsic curvature).
The above equations can be interpreted as definitions of the homogeneous energy density
and pressure of dark energy, respectively given by

ρDE ≡ 3M2H2 − ρm , pDE ≡ −M2(2Ḣ + 3H2)− pm . (2.14)

These equations can also be shown to be equivalent to the Friedmann equations derived
from the Lagrangian [4, 5]

L =
M2

2
(4)R+

c

N2
− Λ , (2.15)

where (4)R is the 4d Ricci scalar and c = c(t) and Λ = Λ(t) are time-dependent functions,
respectively given by

2c = ρDE + pDE +H(M2)· − (M2)·· , (2.16)

2Λ = ρDE − pDE + 5H(M2)· + (M2)·· . (2.17)

2.3 Linear perturbations

We now expand the gravitational action up to second order in perturbations, in terms of
the perturbative quantities

δN = N − N̄(t) , δKij = Kij −Hhij , (2.18)

as well as Rij, which is already a perturbation since its background value vanishes.
The second-order expansion of the gravitational Lagrangian involves first and second

derivatives of L with respect to its arguments Kij , Rij and N . It is convenient to introduce
the time-dependent coefficients G, BR, B, ÂK , AK , Ĉ, C, ÂR and AR respectively as

∂L

∂Ri
j

= G δji ,
∂2L

∂N∂Ri
j

= BR δ
j
i ,

∂2L

∂N∂Ki
j

= B δji , (2.19)

∂2L

∂Kj
i ∂K

l
k

= ÂK δij δ
k
l +AK

(

δil δ
k
j + δikδjl

)

, (2.20)

∂2L

∂Rj
i ∂R

l
k

= ÂR δ
i
j δ

k
l +AR

(

δil δ
k
j + δikδjl

)

, (2.21)

∂2L

∂Kj
i ∂R

l
k

= Ĉ δij δkl + C
(

δil δ
k
j + δikδjl

)

, (2.22)
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where all partial derivatives on the left hand sides are evaluated on the background.
The form of the right hand side of these expressions is merely determined by the FLRW
symmetries. The first and second derivatives of L with respect to the scalar N are simply
denoted as LN and LNN , respectively.

In the following, for simplicity, we restrict our considerations to Lagrangians that lead
to dynamical equations with at most two space derivatives. This is automatically ensured
if we impose the conditions [5, 14]4

ÂK + 2AK = 0 , Ĉ + C = 0 , 4ÂR + 3AR = 0 . (2.23)

We also impose the further condition

BR =
1

N̄
(AK − G −HC) , (2.24)

which is equivalent to restricting the range of application of the expanded action to Horn-
deski theories [5].5

The second-order gravitational action can then be explicitly written in terms of all the
coefficients introduced above. In fact, the quadratic action involves only a few combina-
tions of these coefficients, which are represented by the following dimensionless parame-
ters [14,17]

αK ≡ 2N̄LN + N̄2LNN

2H2AK
, αB ≡ BN̄

4HAK
, αT ≡ G + Ċ/(2N̄ ) +HC

AK
− 1 . (2.25)

The effective Planck mass squared is defined by M2 ≡ 2AK . With this definition, M
coincides with the time-dependent Planck mass introduced in eqs. (2.9) and (2.10) and in
the action (2.15). Its possible time variation is characterized by

αM ≡ 1

N̄H

d lnM2

dt
. (2.26)

In terms of these parameters, one finds that the second-order gravitational action is given
by 6

S(2)
g =

∫

d3xdt a3N̄
M2

2

[

δKi
jδK

j
i − δK2 +R

δN

N̄
+ (1 + αT) δ2

(√
hR/a3

)

+ αKH
2

(

δN

N̄

)2

+ 4αBHδK
δN

N̄

]

,

(2.27)

where δ2 denotes taking the expansion at second order in the perturbations. Moreover, we
have omitted irrelevant terms that vanish when adding the matter action and imposing
the background equations of motion.

4Here we have corrected a typo in Ref. [14]. The coefficient in front of δKδR inside the bracket in
eq. (55) (see v2 of the arXiv version) should be Ĉ/2, so that the condition in the second line of eq. (60)
should read Ĉ∗ = Ĉ+ C. With this correction, eq. (76) of Ref. [14] is equivalent to eq. (2.23) in this article.

5To parametrize deviations from Horndeski theories at the linear level, Ref. [24] introduced the param-
eter αH ≡ (G +HC + N̄BR)/AK − 1. Here we will assume αH = 0.

6To write this action, we have not assumed N̄ = 1 as done in previous references [4, 5, 14]. In such a
way the action remains explicitly invariant under a time reparameterization t → t̃(t), which is convenient
when changing frame.
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To verify that M plays the role of the Planck mass which canonically normalizes the
graviton, let us write this action in terms of the tensor fluctuations, defined as the traceless
and divergence-free fluctuations of the spatial metric, i.e.

hij = a2(t) (δij + γij) , γii = 0 = ∂iγij . (2.28)

The above action then yields

S(2)
γ =

∫

dx3dt a3
M2

8N̄

[

γ̇2ij − c2T
N̄2

a2
(∂kγij)

2

]

, (2.29)

where the tensor sound speed squared is given by c2T ≡ 1 + αT. Absence of ghosts and
gradient instabilities respectively require that the kinetic and spatial gradient terms are
positive, i.e. that

M2 ≥ 0 , αT ≥ −1 , (2.30)

which will be assumed in the following.

2.4 Matter couplings and stability conditions

To discuss the stability and determine the propagation speed of dark energy perturbations,
one must also include quadratic terms that come from the matter action, because the latter
depends on the gravitational degrees of freedom. In order to do so, we need to to take into

account the fact that each matter species I is minimally coupled to a metric ǧ
(I)
µν defined

in eq. (2.5). For later convenience, we define, for each matter species, the time-dependent
quantity

αC,I ≡
φ̇

2HN

d lnC
(φ)
I

dφ
, (2.31)

which parameterizes how the conformal coupling affects physical observables; the impact
of the disformal coupling is parameterized by the quantity7

αD,I ≡
(φ̇/N)2D

(φ)
I

C
(φ)
I − (φ̇/N)2D

(φ)
I

, (2.32)

and the right-hand side of these equations are to be evaluated on the background. Re-
quiring that the Jordan frame metric is Lorentzian implies αD,I > −1 [35].

In unitary gauge, eq. (2.5) reads

ǧ(I)µν = CI(t)gµν +DI(t)δ
0
µδ

0
ν , (2.33)

with
CI(t) = C

(φ)
I

(

φ(t)
)

, DI(t) = φ̇2(t)D
(φ)
I

(

φ(t)
)

. (2.34)

Then the parameters αC,I and αD,I introduced above take the form

αC,I =
1

2HN̄

d lnCI

dt
, αD,I =

DI

N̄2CI −DI
. (2.35)

7This parameter coincides with 1/γ2, where γ is the so-called disformal scalar in the notation of
Ref. [47].
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Combining the quadratic action for matter with eq. (2.27), one can extract a quadratic
action that governs the dynamics of the gravitational scalar degree of freedom and the
matter ones. The explicit calculation in the case of perfect fluids is presented in Ap-
pendix B. The absence of ghosts is guaranteed by the positivity of the matrix in front of
the kinetic terms. For the gravitational scalar degree of freedom, this condition is given
by

α ≡ αK + 6α2
B + 3

∑

I

αD,I ΩI ≥ 0 , (2.36)

where we have introduced the (time-dependent) dimensionless density parameter

ΩI ≡
ρI

3M2H2
, (2.37)

where we recall that M2 is in general time dependent. As pointed out already in [43,60],
the presence of a disformal coupling affects the ghost-free condition.

For the matter sector, the analogous condition usually corresponds to the Null Energy
Condition [61]. In the Jordan frame of each species I, this can be expressed in terms of the
energy density and pressure by ρ̌I + p̌I ≥ 0 (we use the symbolˇto denote Jordan-frame
quantities). In the frame of gµν , this inequality becomes

ρI + (1 + αD,I)pI ≥ 0 , (2.38)

where we have used that w̌I = (1+αD,I)wI (see Appendix A for various relations between
quantities defined in distinct frames).

The speed of sound for scalar perturbations can be read off from the quadratic action
derived in Appendix B. One finds

c2s = − 2

α

{

(1+αB)

[

Ḣ

H2
−αM+αT+αB(1+αT)

]

+
α̇B

H
+
3

2

∑

I

[

1+(1+αD,I)wI

]

ΩI

}

, (2.39)

where matter appears in the last term in the bracket, proportional to
∑

I(ρ̌I+p̌I). Absence
of gradient instabilities is guaranteed provided that

c2s ≥ 0 . (2.40)

We also require that the propagation speed for each matter species, in its Jordan frame,
is positive, č2s,I ≥ 0.

2.5 Disformal transformations

As mentioned earlier, there is some arbitrariness in the choice of the metric gµν that
describes the gravitational sector. Let us thus see how the description is modified when
the reference metric undergoes a disformal transformation, of the form

gµν → g̃µν = C(φ)(φ)gµν +D(φ)(φ)∂µφ∂νφ . (2.41)

In unitary gauge, this corresponds to the transformation

gµν → g̃µν = C(t)gµν +D(t)δ0µδ
0
ν , (2.42)
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with C(t) = C(φ)
(

φ(t)
)

and D(t) = D(φ)
(

φ(t)
)

φ̇2(t). The effect of this transformation
on the ADM quantities, on the background quantities and on the linear perturbations is
described in detail in Appendix A. Here, we just present the main consequences on the
parametrization of the couplings and of the linear perturbations.

In analogy with (2.35), it is convenient to introduce the dimensionless time-dependent
parameters

αC ≡ Ċ

2HN̄C
, αD ≡ D

N̄2C −D
, (2.43)

which characterize, respectively, the conformal and disformal parts of the above metric
transformation.8

Let us first see how the gravitational action (2.27) changes under the transformation
(2.42). As shown in Ref. [35], the structure of Horndeski Lagrangians is preserved un-
der a disformal transformation. Indeed, using eqs. (A.2) and (A.3), one can check that
(2.27) maintains the same structure with the time-dependent coefficients in the action
transforming as

M̃2 =
M2

C
√
1 + αD

(2.44)

and

α̃K =
αK + 12αB[αC + (1 + αD)αD]− 6[αC + (1 + αD)αD]

2 + 3ΩmαD

(1 + αC)2(1 + αD)2
,

α̃B =
1 + αB

(1 + αC)(1 + αD)
− 1 ,

α̃M =
αM − 2αC

1 + αC
− α̇D

2HN̄ (1 + αD)(1 + αC)
,

α̃T = (1 + αT)(1 + αD)− 1 .

(2.45)

We can use these transformations, which depend on the two arbitrary functions αC and
αD, to set to zero any two of the parameters α̃a above.

Finally, the conformal and disformal coefficients associated with the respective matter
Jordan frame metrics are modified according to

α̃D,I =
αD,I − αD

1 + αD
,

α̃C,I =
αC,I − αC

1 + αC
.

(2.46)

Alternatively to setting two α̃a to zero, it is always possible to choose as the new reference

metric g̃µν one of the matter Jordan metrics, say g
(I∗)
µν , which then implies α̃C,I∗ = α̃D,I∗ =

0.
One can verify that all the stability conditions are frame independent. In particular,

the quantities that appear in the no-ghost conditions, eqs. (2.36) and (2.38), transform as

α̃ =
α

(1 + αC)2(1 + αD)2
, ρ̃I + (1 + α̃D,I)p̃I =

ρI + (1 + αD,I)pI

C2(1 + αD)1/2
, (2.47)

8We require C > 0 and αD > −1, see discussions respectively in Secs. 2.1 and 2.4.

11



and since 1 + αD > 0 (see discussion in Sec. 2.4), their sign is indeed frame independent.
It is also straightforward to check that all the propagation speeds, i.e. of tensor, scalar and
matter fluctuations, transform in the same way and that their signs remain unchanged,

c̃2T = (1 + αD)c
2
T , c̃2s = (1 + αD)c

2
s , c̃2s,I = (1 + αD)c

2
s,I . (2.48)

In summary, at the level of linear perturbations our gravitational sector is characterized
by four time-dependent parameters αK, αB, αM and αT. Each species is characterized by
two time-dependent parameters, associated with their conformal and disformal couplings
respectively. A priori, for a system of NS species coupled to different metrics, this gives
a total of 2NS + 4 parameters. However, the general invariance of the system under
an arbitrary change of frame, characterized by two parameters, reduces the number of
independent parameters to 2(NS + 1).

In particular, action (2.27) can also be used to describe inflationary perturbations.
In this case, matter can be ignored, i.e. NS = 0, and one can always use eq. (2.44) to
find a frame where the Planck mass is time-independent and cT = 1, without loss of
generality [62]. Thus, inflationary fluctuations can be generically described in the frame
where αM = 0 = αT by only two operators, those proportional to αK and αB, as in
Refs. [6, 7].9

3 Matter equations of motion

In this section, we leave the unitary gauge description introduced in the previous sec-
tion, by “covariantizing” the action. This can be done explicitly by performing a time
reparametrization of the form

t→ φ = t+ π(t,x) , (3.1)

where the unitary time t becomes a four-dimensional scalar field φ. For convenience, we
denote by π the fluctuation of φ.

By substituting the above transformation into the total action S = Sg + Sm, we then
obtain an action that depends on the scalar field φ and an arbitrary metric gµν . We
will use this more general form for the action to derive the evolution equations for the
gravitational and matter sectors.

The equations of motion for the metric are obtained by varying the total action with
respect to gµν ,

δS

δgµν
= 0 . (3.2)

which provides the generalized Einstein equations. At linear order, they are explicitly
given in Appendix C.

To write the equations of motion for matter, we use the invariance of the matter action
SI under arbitrary diffeomorphisms, xµ → xµ + ξµ. This implies

∇µT(I)
µ
ν +QI∂νφ = 0 , (3.3)

9The sound speed of fluctuations in this case is c2s = −(2/α)
[

(1 + αB)(Ḣ/H2 + αB) + α̇B/H
]

; see
eq. (2.39). Thus, for a constant αB, the usual gradient instability associated with the violation of the Null
Energy Condition for Ḣ ≥ 0 can be cured by requiring −1 ≤ αB ≤ −Ḣ/H2 [6].
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where the function QI , which characterizes the coupling between the matter species I and
the scalar field, is defined by

QI ≡ − 1√−g
δSI
δφ

= − C ′

I

2CI
T(I) −

D′

I

2CI
T µν
(I)∂µφ∂νφ+∇µ

(

T µν
(I)∂νφ

DI

CI

)

, (3.4)

where a prime denotes a derivative with respect to φ. The expression on the right hand
side is obtained by using the property that the matter action SI depends on the scalar
field only through the Jordan metric eq. (2.5).

Finally, the evolution equation for φ can be obtained by variation of the total action
with respect to φ, δS/δφ = 0. Thus, from eq. (3.4) we obtain

1√−g
δSg
δφ

−
∑

I

QI = 0 . (3.5)

In the following, we will study the above equations, first in the homogeneous limit and
then restricting ourselves to their linearized version.

3.1 Homogenous equations

Let us first consider the homogeneous case, with the flat FLRW metric (2.6) where we set
N̄ = 1. The associated Friedmann equations are given in eqs. (2.9) and (2.10), or (2.12)
and (2.13), with ρm =

∑

I ρI and pm =
∑

I pI .
For a FLRW background, the definition of QI , eq. (3.4), reduces to

Q̄I =
HρI

1 + αD,I

{

αC,I [1− 3wI(1 + αD,I)] + αD,I

(

3 +
ρ̇I
HρI

)

+
α̇D,I

2H(1 + αD,I)

}

, (3.6)

where we recall that the conformal and disformal parameters αC,I and αD,I are respectively
defined in eq. (2.35). Substituting the above expression into eq. (3.3), one finds that the
homogeneous matter evolution equation can be written in the form

ρ̇I + 3H(1 + wI − γI)ρI = 0 , (3.7)

where the dimensionless parameter γI is given by

γI ≡
1

3
αC,I [1− 3wI(1 + αD,I)]−wIαD,I +

α̇D,I

6H(1 + αD,I)
. (3.8)

Taking into account (3.7), one can also check that Q̄I = 3HρIγI . Note that the equation
of state in the Jordan frame of the fluid I corresponds to w̌I = wI(1+αD,I) (see Appendix
A.1). Using this relation, one can check that for a relativistic fluid, i.e. w̌I = 1/3, the
conformal term in (3.8) disappears, as expected from the tracelessness of its stress energy
tensor.

Given the Friedmann equations (2.12) and (2.13) as well as the continuity equation for
matter, eq. (3.7), the homogenous energy density of dark energy satisfies

ρ̇DE + [3(1 + wDE)− αM]HρDE = H
∑

I

(αM − 3γI)ρI , (3.9)

where we have introduced the equation of state parameter for the dark energy component
wDE ≡ pDE/ρDE.
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3.2 Perturbation equations in Newtonian gauge

We now consider a linearly perturbed FLRW metric in Newtonian gauge with only scalar
perturbations, i.e.,

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj . (3.10)

In this gauge, we decompose the scalar part of the stress-energy tensor for each species,
at linear order, as

T(I)
0
0 ≡ −(ρI + δρI) , (3.11)

T(I)
0
i ≡ ρI(1 + wI)∂ivI = −a2T(I)i0 , (3.12)

T(I)
i
j ≡ (ρIwI + δpI)δ

i
j +

(

∂i∂j −
1

3
δij∂

2

)

σI , (3.13)

where δρI and δpI are the energy density and pressure perturbations, vI is the 3-velocity
potential and σI is the anisotropic stress potential for the species I. As usual, we define the
total matter quantities as δρm =

∑

I δρI , δpm =
∑

I δpI , vm =
∑

I(ρI + pI)vI/(ρm + pm)
and σm =

∑

I σI .
The continuity equation, for each species, can be derived from the time component of

eq. (3.3). In Fourier space, at linear order, this reads

δρ̇I + 3H(δρI + δpI)− 3ρI(1 + wI)Ψ̇ − ρI(1 + wI)
k2

a2
vI = Q̄I π̇ + δQI , (3.14)

where Q̄I and δQI are given respectively by eqs. (3.6) and (C.6). The space components
of eq. (3.3) gives the Euler equation, which at linear order reads

ρI(1+wI)v̇I+ρI [ẇI − 3HwI(1 + wI)] vI+δpI+ρI(1+wI)Φ−
2

3

k2

a2
σI = −Q̄I

[

π+vI(1+wI)
]

.

(3.15)
We can rewrite the equations above in terms of the density contrast δI ≡ δρI/ρI and

using the explicit expression for δQI given in eq. (C.6). This yields

δ̇I + 3H(1 + αC,I)(1 + αD,I)

(

δpI
ρI

− wIδI

)

− (1 + wI)
k2

a2
vI = 3 [1 + (1 + αD,I)wI ] Ψ̇

+ 2(1 + αD,I) [αC,I(1− 3wI)− 3γI ]HΦ− αD,I

(

Φ̇− π̈ + wI
k2

a2
π

)

− [2(1 + αD,I)αC,I(1− 3wI)− 3wIαD,I − 3γI(3 + 2αD,I)]Hπ̇

+ 3
[

(γIH)· + wIαD,IḢ + (αC,I + αD,I(1 + αC,I)) ẇIH
]

π ,

(3.16)

and

v̇I−3H

[

wI − γI −
ẇI

3H(1 + wI)

]

vI+
δpI

(1 + wI)ρI
+Φ− 2

3(1 + wI)ρI

k2

a2
σI = −3H

γI
1 + wI

π .

(3.17)
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As mentioned before, the equation of state parameter in the matter Jordan frame, w̌I ,
is different from the one in a generic frame, wI . This means that the relation between
pressure and energy density perturbations depends on the frame. Indeed, because of
the coupling to the scalar field, there is a non-adiabatic pressure perturbation [63] which
appears in frames that are disformally distinct from the Jordan one (see also [64] for a
similar remark). For an isentropic perfect fluid with č2s,I = w̌I = constant, this reads (see
Appendix A.2)

δpnad,I ≡ δpI −
ṗI
ρ̇I
δρI = pI

[

2αD(Φ − π̇) +
α̇D

1 + αD

(

δρI
ρ̇I

− π

)]

. (3.18)

Let us comment on the initial conditions of the above equations. In the simplest
case, one can assume that perturbations start in the adiabatic growing solution, which
is justified if they have originated from single-field inflation (see e.g. [65]). In this case,
their amplitude can be given in terms of the time-independent quantity Rin, defined as
the long-wavelength limit (k ≪ aH) of the total comoving curvature perturbation [66]

R ≡ −Ψ+H
Ψ̇ +HΦ

Ḣ
. (3.19)

In Ref. [14] it was shown that, in the absence of nonminimal couplings, the generalized
Einstein equations and the evolution equations for the matter and field fluctuations admit
the adiabatic solution

Φ = −(1 + αT)Rin + (1 + αM)Hǫ− σm
M2

, Ψ = −Rin +Hǫ ,

δρI = −ρ̇Iǫ , δpI = −ṗIǫ , vI = ǫ , π = −ǫ ,
(3.20)

where

ǫ ≡ 1

M2a

∫

a
[

M2(1 + αT)Rin + σm
]

dt . (3.21)

One can check that these expressions are frame invariant and remain a solution even
in the presence of nonminimal couplings, with the same Rin. Note that, for adiabatic
initial conditions, the right hand side of (3.18) automatically vanishes and that the matter
perturbations are in effect adiabatic in all frames. The nonadiabatic pressure term due to
the change of frame manifests itself only for nonadiabatic initial conditions.

Let us point out that the equations written in this section include as a special case
(corresponding to αM = αT = αB = 0 and αD,I = 0) the equations of motion for linear
perturbations derived in standard models of dark energy (k-essence) conformally coupled
with matter (see e.g. [51]). Our results also include the more recent investigations of dis-
formal couplings between matter, usually CDM, and some standard dark energy (i.e. with
αM = αT = αB = 0) [41–43,47,64].

In the general case, eqs. (3.16)–(3.17) can be directly applied to the usual matter
species, i.e. CDM, baryons, photons and neutrinos and implemented in a numerical code.
If one wants to study the CMB fluctuations, the fluid approximation is not sufficient for
photons and neutrinos and must be replaced by a Boltzmann description. Whereas a
nonminimal coupling of photons is constrained to remain tiny [67], one could envisage a
nonminimal coupling of neutrinos (see e.g. [68–70]). To deal with this modification, the
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simplest method would consist in writing the Boltzmann equation in the Jordan frame of
the neutrinos, where it keeps its usual form. The neutrino-frame gravitational potentials
appearing in this equation could then be expressed in terms of the gravitational poten-
tials Φ and Ψ associated with the baryon-photon frame, by using explicitly the disformal
transformation between the two frames, as given in Appendix A.

4 Baryons and coupled CDM

In this section, we apply the general formalism developed in the previous sections to the
cosmological era where the dominant matter species are baryons (denoted by the subscript
b) and CDM (subscript c). Whereas there exist very stringent constraints on EP violation
for baryons [26,45], the dark matter sector is much less constrained [19]. For this reason,
we now assume that the baryons are minimally coupled, i.e.

αC,b = 0 , αD,b = 0 ⇒ γb = 0 , (4.1)

while dark matter is coupled to dark energy via a general metric of the form (2.33).
For both baryons and CDM, one neglects the pressure and anisotropic stress, so that

wb = wc = 0 for the background and δpb = δpc = σb = σc = 0 for the perturbations 10.
The background equations (3.7) and (3.9) take the form

ρ̇b + 3Hρb = 0 , (4.2)

ρ̇c + 3H(1− γc)ρc = 0 , (4.3)

ρ̇DE + [3(1 + wDE)− αM]HρDE = −3Hγcρc +HαMρm . (4.4)

According to (3.8), the coupling parameter γc is related to the CDM conformal and dis-
formal parameters via

γc =
1

3
αC,c +

α̇D,c

6H(1 + αD,c)
. (4.5)

4.1 Linear perturbations

Let us now consider the linear perturbations. The continuity and Euler equations, (3.16)
and (3.17), reduce to

δ̇b −
k2

a2
vb = 3Ψ̇ , (4.6)

v̇b = −Φ , (4.7)

δ̇c −
k2

a2
vc = 3(Ψ + γcHπ)

· + 2(1 + αD,c)(αC,c − 3γc)H(Φ− π̇)− αD,c(Φ̇− π̈) , (4.8)

v̇c + 3Hγcvc = −Φ− 3Hγcπ . (4.9)

These equations must be supplemented by the Einstein equations, eqs. (C.2)–(C.5) and
by the scalar fluctuation equation (C.7).

It is possible to use a combination of the Einstein equations and of (C.7) to eliminate
the dependence on π and π̇ in the above equations in favour of the gravitational potentials.

10As shown in Appendix A.2, this statement holds in any frame.
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The same procedure has been used in the case of minimally coupled matter in Refs. [17]
and [14]. In our baryon and coupled CDM system we find a dynamical equation for Ψ of
the form:

Ψ̈ +
β1β2 + β3α

2
B k

2
H

β1 + α2
Bk

2
H

HΨ̇ +
β1β4 + β1β5 k

2
H + c2sα

2
Bk

4
H

β1 + α2
B k

2
H

H2Ψ =

−
∑

I

3

2
H2ΩI

[

β1β6,I + β7,Iα
2
B k

2
H

β1 + α2
B k

2
H

δI +
β1β8,I + β9,Iα

2
B k

2
H

β1 + α2
B k

2
H

HvI

]

,

(4.10)

where kH ≡ k/(aH) and the time-dependent coefficients βa are explicitly given in Ap-
pendix E. They generally differ from those given in Refs. [17] and [14] because the dis-
formal coupling to dark matter modifies the evolution equation for π, see eq. (C.7). The
relation between Φ and Ψ is given by

α2
Bk

2
H

(

Φ−Ψ
ξ

αB

)

+ β1

[

Φ−Ψ(1 + αT)

(

1 + α̂
αT − αM

2β1

)]

=

αT − αM

2

{

α̂
Ψ̇

H
+ 3

∑

I

ΩI

[

αBδI +
αK − 6αB

2
HvI

]

}

,

(4.11)

where α̂ ≡ αK + 6α2
B and we have introduced the time-dependent combination

ξ ≡ αB(1 + αT ) + αT − αM . (4.12)

For αT = αM = 0, this reduces to the familiar relation Φ = Ψ.
We can also eliminate the dependence on π from the continuity and Euler equations

for CDM, eqs. (4.8) and (4.9). For simplicity, we give here the explicit expressions only
in the case αM = αT = 0, for which Φ = Ψ, the generalization being straightforward. In
this case, the continuity and Euler equations (4.8) and (4.9) become

δ̇c −
k2

a2
vc =

β1ξ2 + ξ3 k
2
H

β1 + α2
Bk

2
H

Ψ̇ +
β1ξ4 + β1ξ5 k

2
H + c2sαB

αD,c

1+αD,c
k4H

β1 + α2
B k

2
H

HΨ

+
∑

I

3

2
ΩIH

[

β1ξ6,I + ξ7,I k̃
2

β1 + α2
B k

2
H

δI +
β1ξ8,I + ξ9,I k

2
H

β1 + α2
B k

2
H

HvI

]

, (4.13)

v̇c + 3Hγcvc = −Ψ− 3γc
β1 + α2

Bk
2
H

{

α̂
Ψ̇ +HΨ

2H
+ k2HαBΨ

+
∑

I

3

2
ΩIH

[

αBδI +
αK − 6αBγI

2
HvI

]}

, (4.14)

where the time-dependent coefficients ξa are given in Appendix E. In this case, where
Φ = Ψ, eqs. (4.6), (4.7), (4.10), (4.13) and (4.14) form a closed system of equations.

4.2 Quasi-static approximation

To investigate late-time cosmology, it is convenient to resort, on sufficiently short scales,
to the quasi-static limit. This is justified as long as we remain on scales smaller than the
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sound horizon of dark energy, i.e. k ≫ aH/cs [71]. In this limit, the conservation and
Euler equations for baryons and CDM (eqs. (4.6)–(4.9)) simplify to

δ̇b −
k2

a2
vb = 0 , (4.15)

v̇b = −Φ , (4.16)

δ̇c −
k2

a2
vc = 0 , (4.17)

v̇c + 3Hγcvc = −Φ− 3Hγcπ . (4.18)

In these equations, all the modifications are encoded in the single parameter γc. Therefore,
it is not possible to disentangle the conformal and disformal effects. Note that this is due
to the fact that the nonminimally coupled species is pressureless and that we restrict to
the quasi-static regime.

We can then use the generalized Einstein equations to derive the Poisson equation for
Φ. Combining eqs. (C.2) and (C.4) one finds

− k2

a2
Φ =

3

2
H2Ωm

{(

1 + αT + β2ξ
)

ωbδb + [1 + αT + βξ(βξ + βγ)]ωcδc
}

, ωI ≡
ΩI

Ωm
,

(4.19)
where we have defined the dimensionless parameter

βγ ≡ 3
√
2γc

csα1/2
, (4.20)

which characterizes the strength of the nonminimal coupling of CDM, as well as the
analogous parameter

βξ ≡
√
2ξ

csα1/2
, (4.21)

associated with the modified gravity coefficient ξ defined in (4.12). Note that the denom-
inator in the definitions of βγ and βξ is real, since stability requires that c2sα ≥ 0.

Moreover, in the quasi-static limit the evolution equation (C.7) for π reduces to a
constraint equation, which reads

− k2

a2
π = 3HΩm

βξωbδb + (βξ + βγ)ωcδc√
2csα1/2

. (4.22)

Substituting (4.19) and (4.22) into the matter equations (4.15)–(4.18), we obtain two
coupled second-order differential equations for the two density contrasts:

δ̈b + 2Hδ̇b =
3

2
H2Ωm

{

(1 + αT + β2ξ )ωbδb + [1 + αT + βξ(βξ + βγ)]ωcδc
}

, (4.23)

δ̈c + (2− 3γc)Hδ̇c =
3

2
H2Ωm

{

[1 + αT + βξ(βξ + βγ)]ωbδb +
[

1 + αT + (βξ + βγ)
2
]

ωcδc
}

.

(4.24)

In the absence of nonminimal coupling of CDM (βγ = 0), the gravitational coupling of
both species is modified by the same factor 1+αT+β2ξ . In the absence of modified gravity
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(βξ = 0 and αT = 0), one finds that the nonminimal coupling of CDM (βγ 6= 0) modifies
the friction term for δc, as well as increases the coefficient in front of δc in the second
equation, whereas all other three coefficients on the right hand sides are unchanged. This
is the result obtained in the context of coupled dark energy (see e.g. [51]). By contrast,
if one combines modified gravity (βξ 6= 0) with a nonminimal coupling of CDM, all four
coefficients on the right hand sides are modified. We leave for the future the detailed study
of how these new coefficients parametrize the influence of modified gravity on structure
formation.

Let us now turn to the two gravitational potentials Φ and Ψ. When considering the
impact of dark energy on observations, it is often convenient to express the new relations
between the two potentials Ψ and Φ and the total matter density fluctuations in terms of
modifications of the Newton constant. We thus introduce the parameters

µΦ ≡ −2M2k2Φ

a2ρmδm
, µΨ ≡ −2M2k2Ψ

a2ρmδm
, (4.25)

which are equal to one in the standard case. From eq. (4.19) and an analogous Poisson-like
equation for Ψ, obtained by combining the Einstein equations, one finds that the above
parameters are given by

µΦ = 1 + αT + βξ
(

βξ + βγωcbc
)

, (4.26)

µΨ = 1 + βB
(

βξ + βγωcbc
)

, (4.27)

where we have defined

βB ≡
√
2αB

csα1/2
. (4.28)

We have also introduced a time-dependent bias parameter, bc ≡ δc/δm.
11

As the gravitational lensing effect depends on the sum of the two potentials, the rele-
vant quantity parametrizing deviations in weak lensing observables (and equal to two in
the standard case) is

µWL = µΨ + µΦ = 2 + αT + (βB + βξ)
(

βξ + βγωcbc
)

. (4.29)

Thus, the impact of modifications of gravity due to non-vanishing αB, αM and αT affects
observable quantities in the perturbations through αT and the combinations βB, βξ. Anal-
ogously, the effect of nonminimal couplings on observations is parameterized by βγ only
(see the next section for the case of a coupled relativistc fluid, where another quantity is
needed to parameterize the nonminimal coupling). Note that as a consequence of dropping
time derivatives in the fluctuations of π, the parameter α always appears multiplied by
c2s. From the definition of the sound speed, eq. (2.39), c2sα is independent of αK, so that
the latter cannot be constrained by observations in the quasi-static limit [16].

When βγ = 0, i.e. if CDM is minimally coupled and there are no EP violations, the
last term inside the parenthesis of eqs. (4.26) and (4.27) drops and these relations simplify
to

µΨ = 1 + βξβB , µΦ = 1 + αT + β2ξ . (4.30)

11In the quasi-static limit, the evolution equations (4.23) and (4.24) are scale independent so that the
ratios δb/δm and δc/δm do not depend on scales.
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In this case, the so-called slip parameter becomes (see for instance [14])

Ψ

Φ
=

1 + βξβB
1 + αT + β2ξ

. (4.31)

By contrast, if there is a non trivial coupling of CDM but gravity itself is not modified, in
which case we have αB = 0, αM = 0 and αT = 0 (thus ξ = 0), we recover that the Newton
constant is not modified, µΦ = µΨ = 1, and that Φ and Ψ are the same as in GR, even if
CDM is nonminimally coupled, as is the case in usual scenarios of coupled dark energy. In
general, we find that the situation is much richer when both gravity and matter couplings
are modified.

5 Matter and coupled relativistic fluid

In this section, as another example we consider nonminimally coupled relativistic particles,
in the fluid approximation. They could represent neutrinos, radiation or warm dark matter
in the relativistic regime. Baryons and CDM are taken to be minimally coupled, αD,m =
αC,m = 0. In the Jordan frame of the relativistic fluid, its equation of state parameter
is given by w̌r = 1/3 (and č2s,r = 1/3). Thus, in the frame where baryons and CDM are
minimally coupled, the background and perturbed equations of state are

wr =
1

3(1 + αD,r)
, δpr =

ρr
3(1 + αD,r)

[

δr + 2αD,r(Φ− π̇)− α̇D,r

1 + αD,r
π

]

. (5.1)

The second relation has been obtained from eq. (3.18), using eq. (2.48) for the sound
speed. To simplify the treatment, we ignore the anisotropic stress, i.e. σr = 0.

We are now going to assume that baryons and CDM dominate the gravitational per-
turbations, thus neglecting the backreaction of the relativistic fluid. On small scales, we
can then resort to the quasi-static approximation. Under these conditions, the evolution
equations for matter are

δ̇m − k2

a2
vm = 0 , v̇m = −Φ . (5.2)

For the relativistic fluid, we use eqs. (3.16) and (3.17) and replace γr with the expression
γr = (α̇D,r − 2HαD,r)/[6H(1 + αD,r)]. The evolution equations then read

δ̇r −
4 + 3αD,r

3(1 + αD,r)

k2

a2
vr =− αD,r

3(1 + αD,r)

k2

a2
π , (5.3)

v̇r −H

[

1− 3
2 + 3αD,r

1 + 3αD,r
(gD,r − fD,r)

]

vr +
δr

4 + 3αD,r
=− (1 + 2fD,r)Φ + 2fD,rπ̇ − 3HgD,rπ ,

(5.4)

where we have defined

fD,r ≡ − αD,r

4 + 3αD,r
, gD,r ≡ fD,r

[

1− (1 + 3αD,r)α̇D,r

6(1 + αD,r)HαD,r

]

. (5.5)

As expected, for αD,r = 0 the effects due to the nonminimal coupling vanish. Note that,
even if we are in the quasi-static limit, the term in π̇ should be kept in the Euler equation,
as it is expected to be of the order of Hπ and therefore comparable to the other terms.
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Our assumption that the relativistic fluid does not contribute to the gravitational
perturbations means that Φ and π are only sourced by CDM and baryons, i.e.

−k
2

a2
Φ =

3

2
H2Ωm

(

1 + αT + β2ξ
)

δm , −k
2

a2
π = 3HΩm

βξ√
2csα1/2

δm , (5.6)

which correspond to eqs. (4.19) and (4.22) specialized to the case βγ = 0. Therefore, even
when the extra scalar field is not sourced by matter perturbation (e.g. when βξ = 0)
and π = 0, the relativistic particles still feel a force Fr different from that felt by matter,
Fm, the relative difference being given by (Fr − Fm)/Fm = 2fD,r. This extra force is due
to the non-adiabatic pressure perturbation δpnad,I in eq. (3.18), induced by the disformal
coupling out of the Jordan frame of the fluid (see eq. (5.1)).

To highlight this effect, the Euler and continuity equations can be combined to form
a second-order differential equation for the density contrast δr, sourced by the matter
perturbations according to eq. (5.6). In the simple case where gravity is not modified,
i.e. βξ = αT = 0, we get

δ̈r +Hδ̇r

(

1 + 3αD,r
1− gD,r/fD,r

1 + 3αD,r

)

+
k2

3a2(1 + αD,r)
δr = 2H2Ωm

1 + αD,r/4

1 + αD,r
δm . (5.7)

Unlike in the case of the bayons-CDM fluid, the signature of the disformal coupling here
is present at the linear level in αD,r, while in eqs. (4.23)–(4.24) it appears at the quadratic
level through the terms βξβγ and β2γ .

The main message of this section is that one must define the usual fluid properties
(such as the equation of state and the speed of sound) in the Jordan frame, where the
species is minimally coupled to gravity.

6 Conclusions

In this work, we have presented an effective description of dark energy and modified grav-
ity, which extends the approach developed in [5] by relaxing the assumption of universal
coupling of all matter species. Namely, we have allowed each matter species to be asso-
ciated with a specific Jordan frame (or metric), conformally and disformally related to
the gravitational metric. In this way, we have made connection with a vast sector of the
literature devoted to the so-called coupled dark energy, with either a conformal coupling
in most works or a disformal coupling for more recent works. However, in contrast with
this previous literature, we have considered here a very general description of the gravita-
tional sector, which includes Horndeski’s theories (although not their extensions such as
G3) instead of general relativity with a quintessence-like scalar field as usually assumed.

At the level of linear perturbations, the gravitational sector is described by the quadratic
action given in eq. (2.27), which depends on four time-dependent parameters αK, αB, αM

and αT. As for matter, each species is characterized by two time-dependent parameters,
αC,I and αD,I , associated with their conformal and disformal couplings to the gravitational
metric. This implies that the whole system depends on a total of 2NS +4 time-dependent
parameters, if NS species are present. However, there is some arbitrariness in the choice
of the gravitational metric that is used to define the gravitational and matter sectors. By
considering a conformal-disformal transformation (2.42) of this metric, the same physical

21



system is characterized by 2NS + 4 new parameters, which transform according to (2.45)
and (2.46). Taking into account this “gauge” redundance, which depends on two arbitrary
parameters, one thus finds that the number of physically relevant parameters is reduced
to 2(NS + 1).

A very useful result of the present work is the derivation of the linear stability condi-
tions in this very general framework. As the presence of disformal couplings contributes
to the kinetic energy of the scalar fluctuations, the condition for the absence of ghosts is
modified. This now requires that α defined in eq. (2.36) is positive. We have checked that
the stability conditions are invariant under the “gauge transformations” of the parameters
discussed above.

We have also written the equations of motion for the linear perturbations and em-
phasized how the usual equations are modified in the presence of modified gravity and
nonmininal (conformal or disformal) couplings. Special care must be taken when the cho-
sen frame does not coincide with the matter Jordan frame as the relations between matter
quantities are frame-dependent. For instance, the equation of state parameter, whose
natural value (e.g. 1/3 for radiation) is defined in the Jordan frame associated with the
matter species, will be in general different in another frame.

We have illustrated our formalism by considering two types of scenarios, motivated by
the already stringent constraints on the nonminimal coupling of ordinary species (baryons
and photons) to a scalar field. In the first case, we have focused our attention to the
situation where only CDM is nonminimally coupled to the scalar field. For late cosmology,
in the quasi-static approximation, we have computed the evolution equations of CDM and
baryon density contrasts. In the second case, we have assumed that both baryons and
CDM are minimally coupled but allowing for a relativistic fluid (e.g. neutrinos) with
nonminimal couplings. These two simple examples illustrate what kind of new effects can
be produced by the combination of modified gravity and nonminimal couplings.

It would be interesting to investigate how future observations will be able to constrain
simultaneously the parameters describing the deviations from GR and those characterizing
the coupling of matter to this generalized gravitational sector.
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A Changing frame

We consider a general disformal transformation of the metric (2.41), which in unitary
gauge reads

gµν → g̃µν = C(t)gµν +D(t)δ0µδ
0
ν , (A.1)

and study how metric and matter quantities change under this transformation. In terms
of the two time-dependent parameters C and D, the ADM components of the new metric
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g̃µν in unitary gauge are given by

Ñ2 = CN2 −D , Ñ i = N i , h̃ij = Chij , (A.2)

while the intrinsic Ricci scalar and the extrinsic curvature respectively transform as

R̃ = C−1R , K̃i
j =

N

Ñ

(

Ki
j +

Ċ

2NC
δij

)

. (A.3)

For the matter sector, the stress-energy tensor in the new frame is

T̃ µν
(I) ≡

2√−g̃
δSI
δg̃µν

, (A.4)

so that

T̃ µν
(I) =

√−g√−g̃
δgαβ
δg̃µν

Tαβ
(I) =

N

C5/2
√
CN2 −D

T µν
(I) . (A.5)

A.1 Background

Let us now set N̄ = 1 and assume a flat FLRW background, ds2 = −dt2+a2(t)dx2. From
eq. (A.2), the background metric in the new frame remains flat FLRW, with line element
ds̃2 = −dt̃2 + ã2(t̃)dx2, where we have defined

t̃ ≡
∫

√

C

1 + αD
dt , ã ≡

√
Ca . (A.6)

From this equation, the Hubble rate in the new frame is given by

H̃ ≡ 1

ã

dã

dt̃
= (1 + αC)

√

1 + αD

C
H . (A.7)

From eq. (A.5), the background energy density and pressure in the two frames are respec-
tively related by

ρ̃I =
1

C2
√
1 + αD

ρI , p̃I =

√
1 + αD

C2
pI , (A.8)

where ρ̃ ≡ −T̃ 0
0 and p̃ ≡ T̃ i

i/3. This implies w̃I = wI(1 + αD).
In terms of these quantities the Friedmann equations (2.12) and (2.13) become

H̃2 =
1

3M̃2
(ρ̃m + ρ̃DE) , (A.9)

dH̃

dt̃
+

3

2
H̃2 = − 1

2M̃2
(p̃m + p̃DE) , (A.10)

where M̃2 is given by eq. (2.44). Using the expressions above, one can compute the
relations between the background energy density and pressure of dark energy in the two
frames. One finds, respectively,

ρ̃DE =
1

C2
√
1 + αD

ρDE + 3M2H2

√
1 + αD

C2

[

αC(2 + αC) +
αD

1 + αD

]

, (A.11)

p̃DE =

√
1 + αD

C2
pDE +M2H2

√
1 + αD

C2

[

αC(4 + αC) + 2αC
Ḣ

H2
+ 2

α̇C

H
+
α̇D(1 + αC)

H(1 + αD)

]

,

(A.12)

where as usual a dot denotes a derivative with respect to t.

23



A.2 Perturbations

Let us now study how perturbations transform under disformal transformations. Due to
the invariance of the gravitational action under disformal transformations, the pertur-
bation equations have the same form in both frames. Thus, we just need to derive the
relation between perturbation quantities in different frames.

Introducing π in eq. (A.1) via the time reparametrization (3.1), one finds, up to linear
order in π,

g̃00 = C

[

g00 +
αD

1 + αD
(1 + 2π̇)− 2αC

1 + αD
Hπ +

α̇D

(1 + αD)2
π

]

, (A.13)

g̃0i = C

[

g0i +
αD

1 + αD
∂iπ

]

, (A.14)

g̃ij = C(1 + 2HαCπ)gij . (A.15)

Thus, if we start from a perturbed FLRW metric in Newtonian gauge with g0i = 0 we end
up with g̃0i 6= 0 after this transformation. To maintain the Newtonian gauge condition
g̃0i = 0, we need to supplement the time redefinition (A.6) with a space-dependent shift
(see Appendix C of [24]), i.e.

t̃ =

∫

√

C

1 + αD
dt− αD

√

C

1 + αD
π(t,x) . (A.16)

Then, the new perturbations result from combination of the field redefinition (A.1) and
this change of coordinates. For the metric in Newtonian gauge, this yields

Φ̃ = (1 + αD)Φ + [αC(1 + αD)H + α̇D] π , (A.17)

Ψ̃ = Ψ− [αC(1 + αD) + αD]H π , (A.18)

π̃ =
√

C(1 + αD) π . (A.19)

For the matter quantities, using eq. (A.5), one finds

δ̃I = δI + αD (Φ− π̇)−
[

3HαD(1 + wI − γI) + 4HαC(1 + αD) +
1

2
α̇D

]

π , (A.20)

δp̃I/ρ̃I = (1 + αD)

{

δpI/ρI − wIαD (Φ− π̇)

− wI

[

3HαD(1 + wI − γI) + 4HαC(1 + αD)−
1

2
α̇D − ẇI

wI
αD

]

π

}

, (A.21)

ṽI =

√

C(1 + αD)

1 + wI(1 + αD)
[(1 + wI)vI −wIαDπ] , (A.22)

σ̃I =

√
1 + αD

C
σI . (A.23)

One can relate the pressure and density perturbations via the speed of sound, which is
defined as the ratio between these two quantities in a coordinate system where the fluid
is at rest. In the Jordan frame of the fluid, this gives [72]

δp̃I = c̃2s,Iδρ̃I − (1 + w̃I)ρ̃I

[

3H̃(c̃2s,I − w̃I) +
dw̃I/dt̃

1 + w̃I

]

ṽI . (A.24)
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One can then use eqs. (A.20)–(A.22) to rewrite this equation in a generic frame. This
yields

δpI = c2s,IδρI − ρI

[

3H(c̃2s,I − w̃I)(1 + αC) +
˙̃wI

1 + w̃I

] [

(1 + wI)vI +
αD

1 + αD
π

]

− 4HρI(c
2
s,I − wI)αCπ + ρI(c

2
s,I + wI)

[

2αD(Φ− π̇)− α̇D

1 + αD
π

]

,

(A.25)

where we recall that, from eqs. (A.8) and (2.48), the equation of state parameters and
sound speeds defined in the two frames are respectively related by w̃I = (1 + αD)wI and
c̃2s,I = (1 + αD)c

2
s,I .

B Explicit quadratic action

B.1 Matter action

For simplicity, we assume that each matter species can be described by a perfect fluid with
vanishing vorticity (this restriction does not affect the analysis of scalar linear modes).
It is then easy to write an action in terms of a derivatively coupled scalar field with
Lagrangian12

Sm =

N
∑

I

SI , SI =

∫

d4x

√

−ǧ(I)PI(YI) , YI ≡ ǧµν(I)∂µσI∂νσI . (B.1)

The second-order expansion of the action SI reads

S
(2)
I =

∫

d3x dt N̄
a3

c2s,I

{

1 + αD,I c
2
s,I + (1 + αD,I)wI

2
ρI

(

δN

N̄

)2

− 1 + (1 + αD,I)wI

(1 + αD,I)2
ρI
˙̄σI

[

δσ̇I

(

δN

N̄
− c2s,Iδ

√
h

)

+ c2s,IN
i∂iδσI

]

+
1 + (1 + αD,I)wI

(1 + αD,I)2
ρI
2 ˙̄σ2I

[

δσ̇2I − N̄2c2s,I
(∂iδσ)

2

a2

]}

,

(B.2)

where we have split the scalar field σI into a background value and its perturbations,
σI = σ̄I(t) + δσI(t,x). The fluid quantities are related to the function PI (YI) through

pI ≡
C2
I

√

1 + αD,I
PI , ρI ≡ C2

I

√

1 + αD,I

(

2YIP
′

I − PI

)

,

c2s,I ≡
P ′

I

P ′

I + 2YIP
′′

I

(1 + αD,I)
−1 ,

(B.3)

where a prime denotes a derivative with respect to the variable YI . We have omitted in the
action irrelevant terms that vanish when imposing the background equations of motion.
For CI = 1 and αD,I = 0 we recover the usual expressions for a k-essence fluid [73,74,76].

12The more general k-essence type Lagrangian of Refs. [73,74] explicitly depends also on the scalar field.
Since here we are interested only in the derivative terms, we assume for simplicity that PI depends only
on YI and not on σI . This description implies that each of the fluids is also barotropic [75], i.e. that its
pressure is a function of its energy density, pI = pI(ρI).
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B.2 Stability and sound speed of dark energy

In order to investigate linear stability issues, we need to extract the quadratic action for
the propagating degrees of freedom. We concentrate on scalar modes as the stability
conditions of tensors are not modified by the nonminimal coupling of matter. To this end,
we will expand the total action up to quadratic order in linear scalar fluctuations around a
FLRW solution and solve the constraints, generalizing the procedure of Refs. [77] and [24].

The second-order action
S(2) = S(2)

g + S(2)
m , (B.4)

where the gravitational part S
(2)
g is given in eq. (2.27), governs the dynamics of linear

scalar fluctuations. Assuming N̄ = 1 without loss of generality, the scalar modes can be
described in unitary gauge by the metric perturbations [78]

N = 1 + δN, N i = δij∂jψ, hij = a2(t)e2ζδij . (B.5)

As a consequence, we get

δ
√
h = 3a3ζ , δKi

j =
(

ζ̇ −HδN
)

δij − δik∂k∂jψ , (B.6)

and

δ1Rij = −δij∂2ζ − ∂i∂jζ , δ2R = − 2

a2
[

(∂ζ)2 − 4ζ∂2ζ
]

. (B.7)

(The metric perturbations δN and ζ and the scalar fluctuation ψ are related to the metric
perturbations in Newtonian gauge by δN = Φ − π̇, ζ = −Ψ − Hπ and ψ = a−2π.)
Substituting these expressions into (B.4), we obtain the second-order action in terms of
the three scalar quantities δN , ψ and ζ. Variation with respect to ψ yields the momentum
constraint, whose solution reads

δN =
1

1 + αB

(

ζ̇

H
+

3

2
H
∑

I

1 + (1 + αD,I)wI

1 + αD,I
ΩI
δσI
σ̇I

)

, (B.8)

with ΩI = ρI/(3M
2H2).

We do not need the solution of the Hamiltonian constraint, as the longitudinal part
of the shift ψ only contributes to a boundary term in the action. Replacing the above
solution into the second-order action and re-expressing the scalar fields perturbations δσI
in terms of the gauge invariant variables

QI ≡ δσ −
˙̄σI
H
ζ , (B.9)

the total second-order action reads, focusing only on the kinetic and spatial gradient parts,

S(2) =

∫

d3x dt a3
M2

2

[

gζ̇ ζ̇ ζ̇
2 + g∂ζ∂ζ

(∂iζ)
2

a2
+
∑

I

κIH
2

˙̄σ2I c
2
s,I

(

Q̇2
I − c2s,I

(∂iQI)
2

a2

)

+ 2
∑

I

gint,IH
˙̄σI

(

Q̇I ζ̇ −
c2s,I
a2

∂iQI∂iζ

)

]

,

(B.10)
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with

gζ̇ ζ̇ ≡
1

(1 + αB)2

[

α+
∑

I

κI
c2s,I

(αD,I − αB)
2

]

, (B.11)

gint,I ≡
1

1 + αB

∑

I

κI
c2s,I

(αD,I − αB) , (B.12)

g∂ζ∂ζ ≡
2

1 + αB

[

Ḣ

H2
+

α̇B

1 + αB
+ αB(1 + αT) + αT − αM +

∑

I

κI
2
(1 + 2αD,I − αB)

]

,

(B.13)

where we have defined the dimensionless coefficients

α ≡ αK + 6α2
B + 3

∑

I

αD,I ΩI , κI ≡ 3
1 + (1 + αD,I)wI

(1 + αD,I)2
ΩI . (B.14)

Absence of ghosts is ensured by requiring that the matrix of the kinetic coefficients is
positive definite, which yields the conditions α ≥ 0 and κI ≥ 0. The second condition
reads ρI+(1+αD,I)pI ≥ 0, which is the usual Null Energy Condition written in a disformed
frame.

Diagonalization of the kinetic-spatial gradient matrix yields the following speed of
propagation for dark energy,

c2s = − 2

α

{

(1 + αB)

[

Ḣ

H2
− αM + αT + αB(1 + αT)

]

+
α̇B

H
+

3

2

∑

I

[

1 + (1 + αD,I)wI

]

ΩI

}

.

(B.15)
Absence of gradient instabilities requires c2s ≥ 0 and c2s,I ≥ 0.

C Perturbation equations

Here we provide the generalized Einstein equations in the presence of dark energy and
modifications of gravity. These have been first given in Ref. [5] in terms of the parameters
of the Effective Field Theory of dark energy [4] and in Refs. [17] (see also [14]) in terms
of the parameters αa.

C.1 Einstein equations

Let us defined
wm ≡

∑

I

ρI
ρm

wI , γm ≡
∑

I

ρI
ρm

γI , (C.1)

where γI parametrizes the nonminimal coupling of the species I, see definition in eq. (3.8).
The Hamiltonian constraint ((00) component of the Einstein equation) is

6(1 + αB)HΨ̇ + (6− αK + 12αB)H
2Φ+ 2

k2

a2
Ψ+ (αK − 6αB)H

2π̇

+ 6

[

(1 + αB)Ḣ +
3

2
H2Ωm(1 + wm − γm)−

1

3

k2

a2
αB

]

Hπ = −3ΩmH
2δm ,

(C.2)
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while the momentum constraint ((0i) components of the Einstein equation) reads

2Ψ̇ + 2(1+αB)HΦ− 2HαBπ̇+
[

2Ḣ +3H2Ωm(1+wm)
]

π = −3H2Ωm(1+wm)vm . (C.3)

The traceless part of the ij components of the Einstein equation gives

Φ− (1 + αT)Ψ + (αM − αT)Hπ = − σm
M2

, (C.4)

while the trace of the same components gives, using the equation above,

2Ψ̈ + 2(3 + αM)HΨ̇ + 2(1 + αB)HΦ̇

+ 2

[

Ḣ − 3

2
H2Ωm(1 + wm) + (αBH)· + (3 + αM)(1 + αB)H

2

]

Φ

− 2HαB π̈ + 2

[

Ḣ +
3

2
H2Ωm(1 + wm)− (αBH)· − (3 + αM)αBH

2

]

π̇

+ 2

{

(3 + αM )HḢ +
3

2
H2Ωm[ẇm − 3H(1 +wm − γm)] + Ḧ

}

π =
1

M2

(

δpm − 2

3

k2

a2
σm

)

.

(C.5)

C.2 Scalar field equation

The charge QI is defined in eq. (3.4). Its perturbation reads

δQI ≡ 3H

[

γIδI − αC,I

(

δpI
ρI

− wIδI

)]

ρI − αD,I
1 + wI

1 + αD,I

k2

a2
ρIvI

+ 2H
[

αC,I(1− 3wI)− 3γI
]

ρIΦ− αD,I

1 + αD,I

(

Φ̇ + 3Ψ̇− δ̇I − π̈ + wI
k2

a2
π

)

ρI

+
H

1 + αD,I

[

− 2αC,I(1− 3wI)(1 + αD,I) + 3wIαD,I + 3γI(2 + αD,I)
]

ρI π̇

+
3

1 + αD,I

{

(

wIαD,I + γI
)

Ḣ +
[

(αD,I + αC,I(1 + αD,I))ẇI + γ̇I
]

H
}

ρIπ .

(C.6)

We have checked that this expression agrees with those in the literature (see e.g. [41–43,
47,64]) in the relevant limits.13

The evolution equation for π in the absence of EP violations is given in [5] and can be
found in [14] in terms of the parameters used in this article. Including the contribution
of
∑

I δQI using the above equation, and using the continuity equation, eq. (3.16), this

13The expressions for the charge QI given in eqs. (3.6) and (C.6) are in unitary gauge. To compare to
those in the literature, one must rescale by a factor φ̇, i.e. QI 7→ QI φ̇ and δQI 7→ δQIφ̇+ Q̄I(φ̈/φ̇)π.
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becomes

(

αK + 3
∑

I

αD,IΩI

)

H2π̈ +

{

[

H2(3 + αM) + Ḣ
]

αK + (HαK)
·

− 3H2
∑

I

ΩI

[

2αC,I(1− 3wI)(1 + αD,I)− 3wIαD,I − 6γI(1 + αD,I)
]

}

Hπ̇

+ 3

{

2Ḣ2 + 3ḢH2

[

Ωm(1 + wm) +
∑

I

wIαD,IΩI

]

+ 2ḢαB

[

H2(3 + αM) + Ḣ
]

+ 2H(ḢαB)
·+3H3

∑

I

[

ẇI (αD,I + αC,I(1 + αD,I)) + 3HγI(1 + wI − γI)
]

ΩI

}

π

− k2

a2

{

2Ḣ + 3H2Ωm(1 +wm) + 2H2
[

αB(1 + αM) + αT − αM

]

+ 2 (HαB)
·

+ 3H2
∑

I

wIαD,IΩI

}

π + 6HαBΨ̈ +
[

H2(6αB − αK)− 3H2
∑

I

αD,IΩI

]

Φ̇

+ 3
[

2Ḣ + 3H2Ωm(1 + wm) + 2H2αB(3 + αM) + 2(αBH)· + 3H2
∑

I

wIαD,IΩI

]

Ψ̇

+

{

6Ḣ + 9H2Ωm(1 + wm) +H2(6αB − αK)(3 + αM) + 2(9αB − αK)Ḣ +H(6α̇B − α̇K)

− 6H2
∑

I

[

3γI − αC,I(1− 3wI)
]

(1 + αD,I)ΩI

}

HΦ+ 2
k2

a2
{[H(αM − αT)] Ψ− αBHΦ}

+ 9H3
∑

I

{

γIδI − [αC,I(1 + αD,I) + αD,I ]

(

δpI
ρI

− wIδI

)}

ΩI = 0 .

(C.7)

D Synchronous gauge

Here we provide the perturbation equations in synchronous gauge, often employed in
numerical codes, where the perturbed FLRW metric has the form

ds2 = −dt2 +
[(

1 +
1

3
h

)

δij +

(

kikj
k2

− 1

3
δij

)

(h+ 6η)

]

dxidxj . (D.1)

Defining ǫ ≡ a2
(

ḣ+ 6η̇
)

/k2, one can write Newtonian gauge quantities in terms of syn-
chronous gauge ones using the following relations (see for instance [79]),

Φ = ǫ̇ , Ψ = η −Hǫ , π(N) = π(S) + ǫ ,

δρ
(N)
I = δρ

(S)
I + ρ̇Iǫ , δp

(N)
I = δp

(S)
I + ṗIǫ , v

(N)
I = −θ(S)I /k2 − ǫ ,

(D.2)

where we have introduced the divergence of the velocity, θI ≡ −k2vI/a. (The anisotropic
stress is gauge invariant.) We can then use the above relations to rewrite eqs. (C.2)–(C.5)
in synchronous gauge. To do this, we use conformal time, τ ≡

∫

dt/a, and denote by a
prime the derivative with respect to it. Rescaling the scalar fluctuation π by the conformal
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factor, π → π/a, and defining the conformal Hubble rate as H ≡ a′/a, one obtains
((00) component)

2k2η −H(1 + αB)h
′ −H2(6αB − αK)π

′ +
[

9H2Ωm(1 + wm − γm)

−H2(6− αK + 12αB) + 6H′(1 + αB)− 2k2αB

]

Hπ = − a2

M2
ρmδm ,

(D.3)

((0i) component)

2η′ − 2HαBπ
′ +
[

2H′ − 2(1 + αB)H2 + 3H2Ωm(1 + wm)
]

π =
a2

M2
(ρm + pm)

θm
k2

, (D.4)

((ij)-traceless)

h′′ + 6η′′ +H(2 + αM)(h′ + 6η′)− 2k2(1 + αT)η − 2k2H (αT − αM)π =
2k2

M2
σm , (D.5)

and ((ij)-trace)

h′′ +H(2 + αM)h′ − 2k2(1 + αT)η + 6αBHπ′′

+
[

6H2αB(3 + αM) + 6(αBH)′ − 9H2Ωm(1 +wm)− 6(H′ −H2)
]

π′

+
{

6H2[2 + αM + αB(2 + αM)] + 6(αB − αM)H′ + 6(αBH)′ − 2k2(αT − αM)

− 9H2Ωm

[

(1− 3wm)(1 + wm) + 3wmγm + w′

m/H
]

− 6H′′

}

Hπ = −3
a2

M2
δpm .

(D.6)

In synchronous gauge, the evolution equation for the scalar fluctuation, eq. (C.7), reads

H2
(

αK + 3
∑

I

αD,IΩI

)

π′′ +

{

H2αK(2 + αM) +H′αK + (αKH)′+

− 3H2
∑

I

ΩI

[

2αC,I(1− 3wI)(1 + αD,I)− αD,I(1 + 3wI)− 6γI(1 + αD,I)
]

}

Hπ′

− 2k2
{

H2
[

αBαM + αT − αM − 1
]

+ (αBH)′ +H′ +
3

2

∑

I

H2
[

1 + wI(1 + αD,I)
]

ΩI

}

π

+

{

H4[6− 6αBαM + αK(1 + αM)] + 3H2H′[−4 + αK − 2αB(3− αM)]

+ 6(1 + αB)H′2 −H3(6α′

B − α′

K) + 6H(αBH′)′

+ 3H2
∑

I

ΩI

[

− 2H2αC,I(1− 3wI)(1 + αD,I) +H′

(

3 + αD,I + 3wI(1 + αD,I)
)

+ 3H2
(

γI(1 + 2αD,I)− (1− 3γI)(1 + wI − γI)
)

+ 3Hw′

I

(

αD,I + αC,I(1 + αD,I)
)

]}

π

−HαBh
′′ −

{

H′ +H2
[

αB(1 + αM)− 1
]

+ (αBH)′ +
3

2

∑

I

H2
[

1 + wI(1 + αD,I)
]

ΩI

}

h′

+ 2k2H(αM − αT)η = 0 .

(D.7)
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The continuity and Euler equations for matter become, respectively,

δ′I + 3H(1 + αC,I)(1 + αD,I)

(

δpI
ρI

− wIδI

)

+ (1 + wI)θI − αD,Iπ
′′

−H
[

− 2αC,I(1− 3wI)(1 + αD,I) + αD,I(1 + 3wI + 6γI) + 9γI
]

π′

+

{

− 2H2(1 + αD,I)
(

3γI − αC,I(1− 3wI)
)

+ wIαD,Ik
2

−H′
(

3γI + αD,I(1 + 3wI)
)

− 3H
[

w′

I

(

αD,I + αC,I(1 + αD,I)
)

+ γ′I

]

}

π

+
1

2

[

1 + wI(1 + αD,I)
]

h′ = 0 ,

(D.8)

and

θ′I +H
[

1− 3wI + 3γI +
w′

I

H(1 + wI)

]

θI −
k2δpI

ρI(1 + wI)
+

2k4

3a2ρI(1 + wI)
σI =

3HγI
(1 + wI)

k2π .

(D.9)

E Definitions of the parameters

The coefficients βa appearing in eqs. (4.10) and (4.11) are defined as

β1 ≡ −3

4
ΩmαK − 1

2
α̂

(

Ḣ

H2
+ αT − αM

)

− 9

2
αBγcΩc , (E.1)

β1β2
α̂

≡ 9

2
ΩmαB

[

αB

α̂
β3 −

4 + αM + αT

6αB
+
ξ

α

]

− 9

4
γcΩc

(

c2s −
2αBβ3
α̂

− 2αB
3− 3γc − ξ

α

)

+
1

2
(1 + αM)

[

(αM − αT)−
Ḣ

H2

]

− 1

2

[

˙αM − α̇T

H
+

2Ḣ(αM − αT)

H2
− Ḧ

H3

]

, (E.2)

β3 ≡ 3 + αM
α̂

α
− 6

(αC,c − 3γc)(1 + αD,c) + αD,c

α
Ωc +

α2
B

Hα

(

αK

α2
B

)·

+ 3Ωc
αD,c

αBα

[

Ḣ

H2
− αM + (1 + αB)αT − (αBH)·

H2
+

3

2
Ωm

]

, (E.3)

β4 ≡ (1 + αT)
(

β2 − 1− αM + 2Ḣ/H2
)

+ α̇T/H , (E.4)

β5 ≡ c2s −
2αB(β3 − β2)

α̂
+
α2
B

β1
(1 + αT)(β3 − β2) +

α2
Bβ4
β1

, (E.5)

β6,I ≡ β7,I + 2
αB(β2 − β3)

α̂
, (E.6)

β7,I ≡ c2s + 2
αB ξ

α
, (E.7)

β8,I ≡ β9,I − (6αB − αK)
β2 − β3
α̂

, (E.8)

β9,I ≡ −(4 + 3c2s + αM + αT) + β3 , (E.9)

where we remind that ξ ≡ αB(1 + αT) + αT − αM, α = αK + 6α2
B + 3αD,cΩc and we have

defined α̂ ≡ αK + 6α2
B = α − 3αD,cΩc. Setting αD,c = αC,c = γc = 0 in these equations,

one recovers the expressions of [17] and [14].
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For αM = αT = 0, the coefficients ξa appearing in eqs. (4.13) and (4.14) are defined as

ξ2 ≡
3

2

α̂

β1

[

α

α̂

(Hγ)·
H2

− Ḣ

H2

]

+
9

2

Ωm

β1

[

αBΞ− 1

2
α̂− αD,c

(

α̂

α
αB +

αK

2
c2s

)]

− 9αD,cΩc

2H2β1
(Hγ)· + 9γcΩc

2β1

[

3αBαD,c c
2
s + Ξ+

αB + 3γc − 3

α
α̂ αD,c

]

, (E.10)

ξ3 ≡ αBΞ− αK αD,c

2
c2s , (E.11)

ξ4 ≡ ξ2 − 3(1− γc) , (E.12)

ξ5 ≡
αB

β1
Ξ+ 2

αB ξ2 − Ξ

α̂
− 3

α2
B

β1
(1− γc)−

[

αK

2β1
+ 6

αB

α̂

]

αD,cc
2
s , (E.13)

ξ6,I ≡ −2αB αD,c

(

3
c2s
α̂

+
1

α

)

+ 2
αB ξ2 − Ξ

α̂
− 6

αD,c

α
γI , (E.14)

ξ7,I ≡ −αB αD,c

(

c2s + 2
α2
B

α

)

− 6α2
B

αD,c

α
γI , (E.15)

ξ8,I ≡ −3 +
6αB − αK

α̂

(

3αD,cc
2
s − ξ2

)

+ 6
1 + αB

α̂
Ξ , (E.16)

ξ9,I ≡ −3α2
B +

6αB − αK

2
αD,cc

2
s + αBΞ , (E.17)

with

Ξ ≡ 3αB + 3γc −
2α̂

α

[

αD,c + αC,c(1 + αD,c)− 3γc(1 + αD,c) + αD,cḢ/(2H
2)
]

− αD,c

αH2

{

(1 + αB)αKH
2 + (α̂H)· − 6αB [(1 + αB)H]· − 9αBΩmH

2
}

.
(E.18)
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