N
N

N

HAL

open science

Weakening Gravity on Redshift-Survey Scales with
Kinetic Matter Mixing

Guido D "Amico, Zhiqi Huang, Michele Mancarella, Filippo Vernizzi

» To cite this version:

Guido D "Amico, Zhiqi Huang, Michele Mancarella, Filippo Vernizzi. Weakening Gravity on Redshift-
Survey Scales with Kinetic Matter Mixing. 2016. cea-01457971

HAL Id: cea-01457971
https://cea.hal.science/cea-01457971

Preprint submitted on 6 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://cea.hal.science/cea-01457971
https://hal.archives-ouvertes.fr

arXiv:1609.01272v1 [astro-ph.CO] 5 Sep 2016

CERN-TH-2016-192

Weakening Gravity on Redshift-Survey Scales
with Kinetic Matter Mixing

Guido D’Amico?, Zhiqi Huang®,

Michele Mancarella®® and Filippo Vernizzi®4

& Theoretical Physics Department, CERN, Geneva, Switzerland

b School of Physics and Astronomy, Sun Yat-Sen University,
135 Xingang Xi Road, 510275, Guangzhou, China

¢ CFEA, IPhT, 91191 Gif-sur-Yvette cédex, France
CNRS, URA-2306, 91191 Gif-sur-Ywvette cédex, France

4 Université Paris Sud, 15 rue George Clémenceau, 91405, Orsay, France

September 6, 2016

Abstract

We explore general scalar-tensor models in the presence of a kinetic mixing between matter
and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-
mixed from the scalar this is due to disformal couplings of matter species to the gravitational
sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame
where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic
Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal
coupling coefficients to depend on the gradient of the scalar field as well. In this very general
approach, we derive the conditions to avoid ghost and gradient instabilities and we define
Kinetic Matter Mixing independently of the frame metric used to described the action. We
study its phenomenological consequences for a ACDM background evolution, first analytically
on small scales. Then, we compute the matter power spectrum and the angular spectra of the
CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version
of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor
modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short
scales, predicting a lower og with respect to the ACDM case. We propose this as a possible
solution to the tension between the CMB best-fit model and low-redshift observables.
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1 Introduction

A key goal of current and future cosmic surveys is to constrain or possibly detect deviations
from the standard ACDM model, which are expected if the origin of the present accelerated
expansion is not a cosmological constant, but a dynamical field or a modification of General
Relativity (see e.g. [1,2]). To deal with the fact that there are many dark energy and modified
gravity models (see for instance [3,4]), effective approaches that describe these deviations for a
large number of models in terms of a few time-dependent parameters have been proposed in the
literature [5-16]. In most cases, these approaches are limited to a description of cosmological
perturbations around a Friedmann-Lemaitre-Robertson-Walker (FLRW) background in the linear
regime (see however [17,18] for some nonlinear aspects), applicable to scales above ~ 10Mpc, where
deviations from General Relativity are not yet well tested.

This work focuses on the so-called Effective Theory of Dark Energy. Formulated for single scalar
field models—i.e. models where the time diffeomorphisms are broken while leaving the spatial ones
preserved—in this approach the unitary (or uniform field) gauge action is given as the sum of all
possible geometrical elements constructed from the metric and its derivatives that are invariant



under the preserved diffs, i.e. the spatial ones [19,20]. It has been derived and studied for minimally
and nonminimally coupled dark energy models, respectively, in [5] and [6, 8] (see [10,21,22] for
reviews). When restricting to the lowest order in derivatives, the final second-order action contains
five free functions of time that parametrize any deviation from ACDM. As shown in [8], four of
these functions describe cosmological perturbations of effective theories of dark energy or modified
gravity within the Horndeski class, i.e. those with quadratic gravitational action with the same
structure as Horndeski theories [23-25]. This description has been reformulated in [26] in terms
of dimensionless functions that clearly parametrize deviations from General Relativity. The fifth
function, denoted as ay, describes scalar field models extending the Horndeski class, such as,
e.g., the theories “beyond Horndeski” proposed in [27,28] (see [29] for an earlier proposal of theories
beyond Horndeski). The Effective Theory formulation has been used to explore the observational
consequences of deviations from ACDM (see for instance [30—-41]). In this direction, a few Einstein-
Boltzmann solvers have been recently developed and employed [42-47].

References [6, 8] assumed that all matter species are minimally coupled to the same metric,
which we call Jordan frame metric for convenience. In general, however, there is no reason to
impose this restriction. The universality of couplings is very well tested on Solar System scales [48]
but on cosmological scales constraints are much weaker and different species could have distinct
couplings to the gravitational sector. If matter is universally but nonminimally coupled to the
gravitational sector, in most cases it is convenient to perform a field redefinition of the metric
that brings the system into the Jordan frame, where matter is minimally coupled. In general, this
frame transformation depends on the scalar field and its derivatives and, as long as it is regular
and invertible, it cannot change the physics (see e.g. [49]). The advantage of using the Jordan
frame to derive predictions is that only the gravitational sector is non-standard; thus, one does
not need to care about modifications of non-gravitational forces, which would otherwise greatly
complicate the analysis.

Along this line of thought, recently Ref. [50] extended the effective approach of [6,8] to allow for
distinct conformal and disformal couplings of matter species to the gravitational sector. The treat-
ment was restricted to effective theories within the Horndeski class and to conformal and disformal
factors that depend only on the scalar field (not on its gradients). In this case, the full quadratic
action depends on the four functions describing the gravitational sector and on two extra functions
per species, describing the coupling to the scalar. However, two of these functions are redundant,
because the structure of the action is preserved under transformations of the reference metric. This
is expected, as it was shown that the structure of the Horndeski Lagrangians is preserved under
disformal transformations with both conformal and disformal coefficients independent of the scalar
field gradient [51].

The phenomenological aspects of general modifications of gravity described by Ref. [50] was
studied in Ref. [35], where constraints on the effective descriptions were derived from three ob-
servables: the galaxy and weak-lensing power spectra and the correlation between the Integrated
Sachs-Wolfe (ISW) effect and the galaxy distribution. However, the study was restricted to the
quasi-static limit, which is reliable on short enough scales and at late times, once the oscillations
of the scalar fluctuations have been damped by the expansion of the universe. While this approx-
imation is fairly good for current and future galaxy and weak lensing surveys,' it fails on large
scales or high redshifts.

'The quasi-static approximation typically fails on scales k < aH/cs, where cs is the sound speed of fluctuations
of the scalar. As shown in [52], this approximation should be reliable for surveys such as Euclid as long as the sound
speed exceeds 10% of the speed of light, i.e. ¢s = 0.1.
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In this article we go one step forward, in two directions. First, in Sec. 2 we extend the
treatment of Ref. [50] and include in the gravitational action the fifth time-dependent function,
ag, describing models extending the Horndeski class. As shown in [27,28], the structure of the
Lagrangian of theories beyond Horndeski is preserved under a disformal transformation of the
metric with disformal coefficient that depends as well on the gradient of the scalar field, i.e. of the
form

g,uu = C(¢)gwf + D(d% X)au¢8u¢ ) X = g'uyau(éaﬂb . (1'1)

Thus, in the following we consider the possibility that matter couples to a Jordan frame metric of
this form.? In particular, we denote the conformal and disformal coefficients of the nonminimal
coupling of matter respectively as Cy, (¢) and Dy, (¢, X) (which can be distinct for different species).

As shown in Sec. 2, the dependence of the disformal coupling on the derivative of the field
introduces a kinetic mixing between the scalar and matter, which hereafter we call Kinetic Matter
Mizing (KMM), that has rather unique observational effects, as discussed below. To parametrize
this direct kinetic coupling we introduce an additional function of time,

X2 0Dy,

= O ox (12)

QX m
where the right-hand side is evaluated on the background. Thus, the full quadratic action depends
now on five functions describing the gravitational sector and three functions per species, describing
the matter couplings. The structure of this action is preserved under transformations of the
reference metric of the form (1.1). Remarkably, ax m is transformed into the beyond Horndeski
parameter oy under a transformation which sets to zero the disformal coupling. Since KMM is a
truely physical effect, it is possible to define a combination of these two parameters, proportional
to (ap —axm)® (c.f. eq. (2.17) below), that encodes in a frame-independent way the degree of
kinetic mixing between matter and the scalar.

While in Sec. 2 we assume for simplicity that matter couples universally to the same Jordan
frame metric, in App. A we extend this treatment to multiple species with distinct couplings.
Taking into account the invariance under the disformal transformation (1.1), which reduces the
number of independent functions of time by three, the whole system depends on a total of 24+ 3Ng
independent functions of time, where Ng is the number of matter species.

In the rest of the paper we assume that matter is universally coupled to the gravitational
sector and work in the Jordan frame, where the coupling is minimal. In this frame, KMM is
encoded in the beyond Horndeski parameter ay. We then extend the treatment of Ref. [35] and
explore the phenomenological consequences of general late-time modifications of gravity including
beyond Horndeski theories (see also [58,59] and [60-63] for an earlier study of the observational
consequences of beyond Horndeski theories, respectively in cosmology and astrophysics). In Sec. 3,
we focus on short scales. In particular, we derive the eigenmodes of propagation of the scalar
field and matter, which in the presence of a nonvanishing oy are mixed by their kinetic coupling.
Moreover, we obtain the evolution equations in the quasi-static regime, which govern the dynamics
once the oscillating modes have been damped by the expansion. Appendix B contains the full action
of perturbations in Newtonian gauge, derived for completeness, while the transition between the
oscillating regime and the quasi-static limit is discussed in App. C.

?Disformal transformations with C' = C(¢, X) have been studied in the context of beyond Horndeski theories
in [29,53] and in the context of degenerate higher-order theories in [54-57].



In Sec. 4 we go beyond the quasi-static approximation and explore the full range of cosmo-
logical scales using the linear Einstein-Boltzmann solver of Cosmology Object Oriented Package
(COOP) [47],® which solves cosmological perturbations including very general deviations from
ACDM in terms of the Effective Theory of Dark Energy description [10]. In particular, assuming
the background expansion history of ACDM, we compute the matter power spectrum, the Cos-
mic Microwave Background (CMB) anisotropies angular power spectrum, and the CMB lensing
potential angular spectrum in the presence of KMM, for a non vanishing «y parameter. As we
will see, on “short” scales, i.e. for k > 1073h Mpc~!, the quasi-static approximation provides the
correct amplitude for the linear growth factor, which is scale independent and suppressed with
respect to the ACDM case. On larger scales, we compute the linear matter growth analytically
using a perturbative expansion in aj that confirms the numerical results. To contrast with the
effects of ay, in App. D we compute the same observables in the case of a kinetic mixing between
the scalar field and gravity, the so called kinetic braiding [64,65] (see [5,19] for an earlier study),
and we find agreement with the results of Ref. [45]. We compare these results with the quasi-static
approximation and a perturbative expansion in the braiding parameter. In contrast to kinetic
braiding or other modifications of gravity within the Horndeski class, the exchange of fifth force
in KMM suppresses the power of matter perturbations on redshift-survey scales. In Sec. 4.3, we
study the possibility that the lack of power measured in the large scale structures and in tension
with that inferred from the CMB anisotropies observed by Planck [66,67] can be explained by the
KMM special signature. Finally, we conclude in Sec. 5.

2 Effective Theory of Dark Energy with Kinetic Matter Mixing

In this section we extend the treatment of [50], limited to Horndeski theories, and develop the
unifying framework for dark energy and modified gravity that allows distinct conformal-disformal
couplings of matter species to the gravitational sector, including beyond Horndeski theories. We
show that the quadratic beyond Horndeski operator arises when transforming to the Jordan frame
a disformal coupling of matter species which depends on the kinetic energy of the scalar field.
In this setup, we derive the conditions to avoid ghost and gradient instabilities and discuss the
disformal /conformal transformations of the gravitational and matter action. The reader only
interested in the phenomenological aspects of KMM is invited to skip this section and go directly
to Sec. 3, not before having retained eq. (2.5) as the second order action describing the gravitational
sector.

2.1 Gravitational and matter actions

In the present work, following [6, 8] we assume that the gravitational sector is described by a
four-dimensional metric g,, and a scalar field ¢. As usual, we choose a coordinate system such
that the constant time hypersurfaces coincide with the uniform scalar field hypersurfaces. In this
gauge, referred to as unitary gauge, the metric can be written in the ADM form,

ds? = —N2dt? + hyj (da' + N'dt) (da? + N7dt) (2.1)

where N is the lapse and N’ the shift. In the following, a dot stands for a time derivative with
respect to t, and D; denotes the covariant derivative associated with the three-dimensional spatial

3See http://www.cita.utoronto.ca/~zghuang/ for documentation.
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metric h;;. Spatial indices are lowered and raised with the spatial metric h;; or its inverse hii
respectively.

In the unitary gauge, a generic gravitational action can be written in terms of geometric quan-
tities that are invariant under spatial diffeomorphisms [19,20]. Expressed in the ADM coordinates
introduced above, these geometric quantities are the lapse IV, the extrinsic curvature of the con-
stant time hypersurfaces K;;, whose components are given by

1
79N

as well as the 3d Ricci tensor of the constant time hypersurfaces R;; and, possibly, spatial deriva-
tives of all these quantities. Thus, the gravitational action is generically of the form

K; (hij — DiNj — D;N;) | (2.2)

Sg = /d4x\/ —gL(N, Kz'j,RZ‘j,hij,Di;t) . (2.3)

To study linear perturbations, one needs to expand the action at second order around a ho-
mogeneous background. For the background geometry, we assume a spatially flat FLRW metric,
ds? = —dt? + a?(t)dx?. Its dynamics is governed by the background evolution equations and we
refer the reader to Refs. [8,10,50] for details on their derivation. We can now expand the gravi-
tational action up to second order in perturbations. Fixing the background gauge N = 1, these
are

SN=N-1, 06K;=Ki— Hhi, (2.4)

as well as R;;, which is already a perturbation since its background value vanishes. It is convenient
to introduce the time-dependent parameters ax, ap, at [26] and oy [28] in terms of which the
second-order gravitational action reads

M? ) )
SP) = / dBxdt a37 [51{;51{3 —0K% 4+ (14 ag)ROIN + (14 ar) b, (\/ER/GP’)
(2.5)
+ axH?6N? + 4agHSKSN |,

where do denotes taking the expansion at second order in perturbations. Another useful parameter
is the variation of the effective Planck mass squared M2,

_ dln M?
M ="
For the details on the derivation of the above action and the explicit definitions of the parameters
QaK, ap, ay, ar and ag in terms of first and second derivatives of L with respect to its arguments,
we refer again the reader to Refs. [8,10,50].
The gravitational action must be supplemented by a matter action Sy,

S = / A2/ Li () | (27)

where g, is the Jordan-frame metric. In order to describe dark energy and modified gravity
scenarios where the scalar and matter can be kinetically mixed, we assume that this metric is
conformally and disformally related to the gravitational metric g,, by

Guv = C\D () g + DS (6, X)0,p Db . (2.8)

(2.6)



Contrarily to the disformal coupling presented in [50], here Dr(f ) can also depend on X, to allow

for a kinetic mixing. In Appendix A we generalize to the case where matter is made of several
species, each of which is coupled to a different metric.

To conclude, we notice that the variation of the matter action Sy, with respect to the metric
g defines the energy-momentum tensor, according to the standard expression

T — 2 0Sm
vV —9g 5g;w

This definition applies even if matter is minimally coupled to a metric g,,, that differs from g,,. In
the homogeneous case, the energy-momentum tensor depends only on the energy density pn = —TOO
and the pressure py, = T" /3.

(2.9)

2.2 Matter couplings and stability conditions

To discuss the stability and determine the propagation speed of dark energy perturbations, one
must also include quadratic terms that come from the matter action, because the latter depends on
the gravitational degrees of freedom. In order to do so, we need to take into account that matter
is minimally coupled to a metric §,, defined in eq. (2.8).

In unitary gauge, this definition reads

G = Cra(t)gpv + Da(t, NS5 | (2.10)
with ' )
Cun(t) = C(6(t),  Dm(t,N) =G> () D (4(1), —d(t)*/N?) . (2.11)
Then, we introduce the parameters
_ Cn _ Dn 1 9Dy
“Cm=gge,  PmEE DL %= a0 N (2:12)

where the right-hand sides are evaluated on the background. The first two parameters in the above
equations, ¢ m and ap m, were introduced in Ref. [50].

Combining the quadratic action for matter with eq. (2.5), one can extract the dynamics of the
gravitational scalar degree of freedom and the matter ones. The explicit calculation in the case of
perfect fluids is presented in Appendix A. The absence of ghosts is guaranteed by the positivity
of the matrix in front of the kinetic terms. For the gravitational scalar degree of freedom, this
condition is given by

a =ak + 60 +3af, Qm >0, (2.13)
where €y, is the standard (time-dependent) dimensionless density parameter,
_ Pm
and we define the combination
eff 1 82Dm

afm = apm(1+ axm)® + axm(2 + axm) + (2.15)

2C, ON? °

Thus, the dependence on X in the disformal coupling affects the ghost-free condition.



Diagonalization of the kinetic matrix yields the following dispersion relation (see Appendix A
for a generalization to multiple species)

(w? — k) (W? — 2 %) = N2 w?k?, (2.16)

where the parameter A\? on the right-hand side is defined as

3

2\ = o [1 + (1 + apm)wWm | Qm (an — aX,m)2 . (2.17)
S

This is the physically relevant parameter measuring the degree of KMM (as expected it is frame

independent, see below). The ¢? appearing above is the sound speed of dark energy for A = 0,

given by

1 H « 16"
2 _ H B
o= —a{2(1 + ap) {5 +(1+ aH)ﬁ - H] + ZF
(2.18)
+3(1+ on)? 1+ (14 apm)wn] Qm} ,
where for convenience we have defined
§EaB(1+OzT)—|—0¢T—aM—aH(1+aM) . (2.19)

For ap; = 0, this coincides with the parameter ¢ first defined in [50]. The above dispersion relation
yields the two speeds of propagation

= %{c?n +E1+ M)+ \/[C?n +c2(1+ )\2)]2 — 401%103} : (2.20)
Equations (2.16) and (2.20) generalize the dispersion relations and speeds of propagation derived
in [27,59,68] for ax,m = 0. The effect of KMM appears in the presence of the coupling A2 £ 0
and the propagation modes are mixed states of matter and scalar. In general, absence of gradient
instabilities is guaranteed by the usual conditions ¢ > 0. Finally, when ax.m = O We recover
the usual results, i.e. ¢ = ¢2 and ¢ = 2, for ¢Z > c2,.

2.3 (0¢)*-dependent disformal transformations

As mentioned earlier, there is some arbitrariness in the choice of the metric g, that describes the
gravitational sector. Let us thus see how the description is modified when the reference metric
undergoes a disformal transformation, of the form

G = G = C()gu + DV (6, X)0,60,6 (2:21)
which in unitary gauge corresponds to
G = Guv = C(t)guw + D(t, N)S)5, . (2.22)

The effect of this transformation on the ADM variables, on the background quantities and on the
linear perturbations has been studied in detail in [28,50]. Here, we present the main consequences
on the parametrization of the gravitational sector.



In analogy with (2.12), it is convenient to introduce the dimensionless time-dependent param-

eters .
C D 1 0D

“C=g3Ecc °T@-p T 0N
which characterize the conformal and disformal parts of the above metric transformation.
Let us first see how the gravitational action (2.5) changes under the transformation (2.22).
As shown in Ref. [28], the structure of the combination of the Horndeski and beyond Horndeski
Lagrangians is preserved under a disformal transformation with an X-dependent disformal func-
tion D. Indeed, one can check that (2.5) maintains the same structure with the time-dependent
coefficients in the action transforming as

(2.23)

4

~ g M2
M= —— 2.24
cy1 + ap ( )
and
o — Qx + 12apacpx — 60 px + 3 (1 4 axm)ofy
(1 + OéCDX)z ’
- 14+ ap
ap=—————1,
1+ acpx
e = OM = 2ac ap (2.25)
M™  TYac  2HO+ap)(l+ac)’
ar = (1+C¥T)(1+OzD)—1 ,
~ g — ax
o= ——
i 1+ ax

where acpx = (1 + ac)(1 + ap)(1 + ax) — 1 and, in analogy with the definition (2.15), we have
introduced

1 6°D
Tacan
We can use these transformations, which depend on the three arbitrary functions ac, ap and ax,
to set to zero any three of the parameters &, above.

Finally, the conformal and disformal coefficients associated with the respective matter Jordan
frame metrics are modified according to

o = ap(1 + ax)? + ax (2 + ax) (2.26)

~ 0D m —ap

QD m = 1+ ap

Gy = 2om — % (2.27)
’ 14+ ac

i = QX m — axX
’ 1+ ax

These transformations can be straightforwardly extended to the case of different couplings to
different species, for instance by simply replacing ap m by ap ; and apm by ap ;.
One can verify that the stability condition (2.13) is frame independent. In particular, o trans-

forms as o
N= . 2.28
@ (1 + Ochx)Q ( )

4As for the transformations in Secs. 2.1 and 2.2, we require C' > 0 and ap > —1.




It is also straightforward to check that all the propagation speeds, i.e. of tensor, scalar and matter
fluctuations, transform in the same way and that their signs remain unchanged,

& =0+ap)r, &=1+ap)?, & =(1+ap),. (2.29)
Finally, using these expressions and those in [50] it is possible to show that the parameter A2
defined in eq. (2.17), which measures the degree of KMM, is frame independent as expected.

3 Short-scale dynamics

In this section we discuss the short-scale dynamics of cosmological perturbations. We assume
universal coupling of matter species and, without loss of generality, minimal coupling. Thus,
the action describing perturbations is given by (2.5), where the gravitational metric g,, is the
Jordan frame metric. We focus on the scalar fluctuations and we employ the usual Stueckelberg
procedure [20], t — t + 7(t,Z), to move from the unitary gauge to the Newtonian gauge, whose
metric for a flat FLRW universe reads

ds? = —(1 + 2®)dt® + a%(1 — 20)dz? . (3.1)

On short scales, the gradients of the scalar field ¢ support an oscillatory regime. In the
presence of KMM, i.e. A2 # 0, the oscillations are also shared by matter, even when matter is
made of nonrelativistic species with no pressure gradients. We first describe these oscillations and
their normal modes in the next subsection, while in Sec. 3.2 we discuss the late-time quasi-static
regime occurring after the oscillations decay.

3.1 Oscillatory regime and normal modes

In this subsection, to describe matter we use a derivatively coupled scalar field o, with action

Sm :/d4x\/—g P(Y), Y =g¢"0,00,0, (3.2)

and we define the background energy density and pressure and the matter sound speed respectively
as

Py
= —26¢Py(Y) - P(Y =P(Y = 3.3
o= 2B (V) = P(Y), o= PY). = pan (33)
We also introduce the energy density contrast and the velocity potential respectively as
0 )
Oom = OPm , Um = 99 (3.4)
Pm 00

For completeness, the full second-order actions describing the gravitational and matter sectors in
Newtonian gauge in this case are given in Appendix B, egs. (B.1) and (B.2).

To study the normal modes of oscillations we consider the kinetic limit, i.e. the limit where the
spatial and time derivatives are larger than the expansion rate H. In this case, it is possible to find
a redefinition of the metric perturbations that de-mixes the new metric variables from the scalar

10



field 7 and removes the higher derivative term from the gravitational action. This is explicitly
given by [28§]

1 1 1
Op = +aH(I> —i—aM_ + ap T — ag i
1+ar 1+ar 1+ an 1+ ar (35)
ag — OB
Vp=¥+ ——H
E + 14+ ap T

Using these metric variables in the quadratic action and the definition (3.4) for vy, and writing
explicitly only the terms that are quadratic in derivatives, neglecting those that are irrelevant in
the kinetic limit, one finds the following action,

. 1
Skinetic =/d4$a3M2{ —39% + —ZgaT [(VUg)? —2VOpV ]

o H? cg 2\ .2 Q(VW)Q

+2(1+QH)2[(1+C%HA)F -2 ] (3.6)
2

Pﬂ?{ﬁ 2 (Vom)® - 20n ”“H’

22 M2 | g2 1+ o

+

where A2 is the parameter encoding KMM, defined in eq. (2.17). Since here we are using the
Jordan frame metric, where ap ., = ax,m = 0, its definition reads
2 3 o
A= —ap(l+wn)n, (3.7)
ac?

so that A is proportional to apy. Notice in the third line the presence of a kinetic coupling between
the scalar and matter fields, 0,7, proportional to ay.

Moreover, at this order in derivatives the dynamics of m and vy, is decoupled from that of &g
and Uy and we can study them separately. To simplify the analysis, we introduce the canonically
normalized fields

HM 1/2 m m 1/2
_ HMaT - UC;(P”) o (3.8)

Te =
¢ 14 an c?n

and we neglect the expansion of the universe, which is irrelevant in the kinetic limit. Then the
dynamics is described by the Lagrangian

1 2 s
e=3{ (14 50)i2 - TR+ - T 2} 3.9

2 2 m

In Fourier space, this gives the coupled system of equations

d? Te 2 Cz —ACsCm e
dat? <vc> Tk <—)\c§/cm 2 4+ \? C?) (%) =0, (3.10)

AENewm A =2\ (e
<—cg’)\/cm c? —ci) (vc) ’ (3.11)

where ¢ are the eigenvalues of the system, given by eq. (2.20).

with normal modes

11



As an example relevant for late-time cosmology, we consider the case where matter is described
by a non-relativistic fluid (for instance CDM) with wy,, = 0 and ¢, = 0. Going back to standard
normalization before setting c¢2, = 0, the eigenmodes and respective eigenvalues of the system are

aH
X_:vm+7r1+aH, 2 =c2 =0, (3.12)
1
Xy =m—vy )\Qﬂ , A =1+, (3.13)
aH

with A2 = 30O/ (ac?). While X displays oscillations with frequency w = +icy k, the speed of
the fluctuations of X_ vanishes as that of matter.

3.2 Quasi-static regime

Here we stick to the case where matter is non-relativistic, i.e. p, = ¢y = 0, which applies to matter
in late-time cosmology. When including the Hubble expansion, we expect the oscillations of X
to get damped [52]. In the absence of the oscillatory mode X, the time evolution is dominated
by the Hubble friction and time derivatives are of the order of the Hubble rate H. This is the
quasi-static regime. We leave for the App. C the discussion of how this regime is reached in the
cosmological evolution.

In this case, focussing on the short-scale limit k£ > k4, where ki denotes the sound horizon

scale of the oscillating mode,
aH aH
k=20 — 0 3.14
=t (3.14)

and neglecting oscillations, the second-order action in Newtonian gauge becomes®

1+ ar aH?c2  (Vr)? 0pm
_ 4 . 3ar52 2 s
S = /d za®M {a2 [(VIE)? —2VOpVTg] — A ron? & O 5. (3.16)

Variation of the above action with respect to @ yields a Poisson-like equation for ¥,

a? 2 "lron’

(3.17)

In the above limit, also the scalar field fluctuations 7 satisfy a Poisson-like equation. To derive it,
one can vary the action (3.16) with respect to 7, taking into account that ®5 and ¥ g depend on
7 through the expressions (3.5). Using eq. (3.17), ®p = Up, the definition of d,,, eq. (3.4), and
the continuity equation for matter,

. 2
5 — _Va;’m , (3.18)

one obtains

\22 _ 3HQy [(5_ aH> 5 ap(l + ap) V%m]
H m b

a? a H a?

(3.19)

5To get the last term one can replace in eq. (B.2) the time derivative of the field fluctuation §& by its density
fluctuation dpm, using the expression

3pm = (1 + é) (Pm + Pm) (g—: - <I>) (3.15)

valid for finite ¢Z,, and subsequently set ¢Z, = 0.
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where we remind the reader that £ = ap(1+ at)+ at —am — am(l+ anm) (see eq. (2.19)). Notice
the presence of the last term on the right-hand side, proportional to the matter velocity, which
stems from the KMM. Indeed, by using the definition of the “+” eigenmode X, eq. (3.13), this
equation can be rewritten as

V32X, 3HQ, ay
N U (), 320)

which shows that after the oscillating regime ends, X} (and not 7) satisfies a Poisson-like constraint
equation.

Let us now derive the constraint equations for ¥ and ®. We can rewrite equation (3.17) in
terms of U using the definition of Vg, eq. (3.5), and eq. (3.19). We can then use &g = ¥ and
solve egs. (3.17), (3.19) and its derivative to find an equation for ®. This yields

vVir 3 Vo,
¥ = S+ 3 (22 1) n e, (3:21)
a 2 O a
Ve 3 V2
= S H*QpaOm + YH —5 22
2 3 Heo0m +yYH —3— (3.22)
where py and pe are defined as
1 2(0&]3 — OéH) dH
= 14+ —— (¢ — — 3.23
i = |1+ 2B (e ) (3.23)

1 2 ' 2 i\ |
e = T 221 + an )2 {C?H % (5 B Oﬁ) +aan(l + o) [chQa (g_ C;?)] } - 02

and + is defined as

dln (14 A?)
dlna

The parameters pg and pge represent modifications of the Poisson law, respectively for ¥ and ®,
and are equal to one in the standard case. The last term on the right-hand side of egs. (3.21) and
(3.22) proportional to the Laplacian of the matter velocity potential vanishes in the absence of
KMM.

Equation (3.22), together with the continuity equation (3.18) and the Euler equation,

v = (3.25)

= —P | (3.26)

can be used to derive a closed second-order equation for the matter density contrast in the quasi-
static limit. Indeed, taking the time derivative of the continuity equation, and plugging in the
latter the Euler equation and eq. (3.22), one obtains [58],

Foo 4 (24 ) Hbm = gHQQmuq,ém . (3.27)

A comment on this equation is in order here. For aj = 0, the friction term vanishes, v = 0,
and the strength of gravitational clustering is modified by [35]

_ 2, X =0 3.28
,U’CD_CT"i_cQav (aH_ )7 ( )

s
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which, for 02T > 1,5 is always larger than one. Thus, the exchange of the fifth force tends to

enhance gravity on small scales [30,35,41,50]. On the contrary, in the presence of KMM pug — 02T
can be negative, corresponding to a repulsive scalar fifth-force, thus weakening gravity. Moreover,
the last term on the right-hand side of (3.22) can act as a friction term for structure formation.
This results in a suppression of clustering, even for a ACDM background evolution. We will see
an explicit example below.

For completeness and comparison with observations, we provide here also the expression of the
Weyl potential, obtained by summing egs. (3.21) and (3.22),

1
a’H?

2 3 aB 2 5m
_ - = — — 3.29
V ((I)+\If)—2Qm(,u\p—|—,u¢,)5m—|— 1 A vy H ( )

where we have used the continuity equation to replace the velocity vy, by 6m. Note that for ay = 0,
the equations in this section reduce to their analogous expressions derived for instance in [35].

4 Observational signatures of Kinetic Matter Mixing

In this section we discuss the effects of KMM on the power spectrum of the matter density contrast
and on the CMB. In particular, we compute the comoving matter density contrast, defined as

Amn =0m — 3Hvy, (4.1)

where d, and vy, are in Newtonian gauge. For the CMB we focus on the lensing potential and the
temperature fluctuations.

The observables are computed using COOP [47], which solves linear perturbations in Newtonian
gauge and in the Jordan frame, assuming minimal coupling of all matter species. In the ACDM
case, COOP evolves ¥, Uy = dV¥/dN, and matter perturbations, where N, = Ina is the program
time variable. The detailed algorithm and equations can be found in Ref. [71]. To describe
deviations from ACDM using the Effective Theory of Dark Energy, COOP evolves two additional
variables, p = Hm and uyn, = dpu/dNe. In the Jordan frame, only the metric perturbations are
coupled to p and ppy,. The evolution equations of Uy, and ppy, are obtained by eliminating @
from eqs. (111)-(113) in Ref. [10]. For numeric stability, COOP combines the energy conservation
equation and the pressure equation, respectively egs. (109) and (112) of Ref. [10], such that the
evolution equation of Wy, has a traceless source, i.e. it is of the form d¥y, /dN, = ...+ (0pm —
20pm)/(2M?). See Ref. [71] for more details on this technique. Once the linear perturbations are
solved, COOP computes CMB power spectra using a line-of-sight integral [72,73]. Matter power
spectra are computed via a gauge transformation from the Newtonian to the CDM rest-frame
synchronous gauge.

For the cosmological parameters we use the Planck TT+lowP parameters [67]. In particular,
we assume a physical density of baryons and CDM respectively given by Qb70h2 = 0.02222 and
Qc70h2 = 0.1197, we fix the acoustic scale at recombination as # = 1.04085 x 1072, the amplitude
of scalar primordial fluctuations A, = 2.2 x 1079, the scalar spectral tilt n, = 0.9655 and the
reionization optical depth 7 = 0.078. We assume that the background expansion history is the
same as in ACDM. This implies that A = 67.31 and {2, o = 0.315. Initial conditions are taken to
be adiabatic (see e.g. [10]).

5Cosmic rays observations put tight constraints on a propagation speed c> < 1 [69]. Another lower bound can
be put from binary pulsar orbital periods [70].
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To focus on the effects of KMM, we set
OéB:OéM:OéTZO. (4.2)

Moreover, we parametrize the time dependence of ak and ag as

Qpg(t) B Qpg(t)
9 CMH - CEH 0 9
QDE,O ’ QDE,O

aK = K0 (4.3)

where Qpg, is the fractional energy density of dark energy, defined as Qpg = 1— ) ; Q, where the
sum is over all matter species (baryons, photons, neutrinos and CDM).

For the sake of clarity, in the following discussion we will simplify the above parametrization and
consider only baryons and CDM in the matter sector. This is justified by the fact that according
to this parametrization, the effects of dark energy become relevant only at late time. However,
we stress that the numerical calculation performed with COOP contains the full matter sector,
including (massless) neutrinos. Under these simplifying assumptions the background expansion
history becomes

H? = Hf [Qmoa ™ +1 — Qo] (4.4)

Moreover, in this case the speed of scalar fluctuations (see eq. (2.18)) simplifies to

2o ot [2 + 3 (1 — o) . (4.5)
aK

Requiring the absence of ghosts (a > 0, see definition in eq. (2.13)) and gradient instabilities,
respectively implies that

2
> < <1 —_—. 4.
ag >0, 0<apg< +39m (4.6)

In the following we set the current value of ak to unity, axo = 1 and we plot the effect of ay
in terms of four different values of this parameter today, i.e. apo = 0.06, 0.12, 0.24 and 0.48,
which are always in the stability window (4.6). Note that to avoid that scalar fluctuations become
superluminal in the past we must require

1
ag < FOK - (4.7)

Just for the purpose of illustration, in the next two subsections we ignore constraints from super-
luminality, as we need large values of ayp to better visualise the effects on the observables.

4.1 Matter power spectrum

On short scales, increasing ap o suppresses the power spectrum of matter fluctuations, shown as a
function of £ in Fig. 1. On these scales we can neglect the velocity potential in the definition of the
comoving matter density contrast, eq. (4.1), which reduces to d,,, in the Newtonian gauge, Ay, & 0p,.
Moreover, to understand the power suppression we can apply the quasi-static approximation,
ie. eq. (3.27). Specializing to the case with only nonvanishing ok and aj and using the time
parametrization above, ug and «y in eq. (3.27), defined in egs. (3.24) and (3.25), become

9ap (2 — 40, — 302)
T(2430m) 2+ 3(1 — an)Qum]

po=1-v, y=- (4.8)
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Figure 1: Effect of KMM on the matter power spectrum for four different values of ay today, i.e. apy,o = 0.06,
0.12, 0.24 and 0.48, at redshift z = 0 (left panel) and z =1 (right panel). The lower plots display the ratio
of these power spectra with the respective spectra for ay = 0. For comparison, the dashed and dotted lines
in the left lower panel respectively show the quasi-static approximation and the perturbative solution of
eq. (4.20).

The friction term = as a function of redshift is plotted in Fig. 2. It starts positive and changes sign
only recently, when Q, = (v/10 —2)/3 ~ 0.39. In particular, during matter domination it behaves
as

9
7= pon+O(%g) (19)

where we have expanded in Qpg. Thus, v suppresses the power spectrum with respect to the
ACDM case and the effect is linear in ay. The modification of the Poisson equation has an
analogous effect: pg starts smaller than unity decreasing the strength of gravity, and gets larger
than one only when ~ changes sign. This has again the cumulative effect of suppressing the power
spectrum with respect to the ACDM case. We have checked that eq. (3.27), with v and pg given
above, reproduces the suppression observed in Fig. 1.

Corrections to the quasi-static approximation are expected to be of the order O(ki /k?), where
k. is the sound horizon scale defined in eq. (3.14).” Thus, on larger scales this approximation fails
to reproduce the correct spectrum, as shown in the figure. However, we can find an integral solution
for the density perturbation on the largest scales by solving the Einstein and scalar field equations
perturbatively in ag (while keeping the exact dependence on ak to avoid inconsistencies [74]). For

"The sound horizon scale is k; ~ 8.1, 5.8, 4.2 and 3.1 x 10_4h/Mpc at redshift z = 0 and k4 ~ 5.9, 4.2, 3.0 and
2.2 x 107*h/Mpc at redshift z = 1, respectively for am,o = 0.06, 0.12, 0.24 and 0.48.
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Figure 2: Friction term + given in eq. (4.8), as a function of redshift.

the parametrization chosen in this section, these equations read

k2 :
— 3V + H(Am + Apg) =0, (4.10)
d— U =ay(r—d), (4.11)
U+ H(3V + )+ (2H +3H*)® =0, (4.12)
. k*H .

where we have used the background Friedmann equations and the comoving energy density contrast
associated to dark energy, Apg, is defined as
o aK .9, . k2
ADE:—7H (ﬂ—q))—aH?(\I/—I—HT(‘) . (4.14)

Equation (4.10) has been obtained from combining the “00” and “0i” scalar components of the
Einstein equations, eqs. (4.11) and (4.12) are respectively the traceless and trace part of the
“j5” scalar components of the Einstein equations and eq. (4.13) is the evolution equation of 7.%
(The evolution equations for the matter density contrast Ay, is automatically satisfied by these
equations.)

In the absence of KMM, i.e. for ap = 0, egs. (4.10)—(4.13) are solved by the standard ACDM
solution with adiabatic initial conditions [10], i.e.

_ K He—G

_ . _ _ 0
d=—¢, U=He—C(y, Am_AU_ag =

m

y ADE =0 y (aH = 0) (4.15)

where (y is the (conserved) comoving curvature perturbation on super-Hubble scales and € is

defined as
€= % /adt . (4.16)

a

8The complete Einstein equations can be found in [10].
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Notice that, for ayy = 0, 7 = —e and thus the combination # — ® vanishes. Hence, the right-hand
sides of egs. (4.11) and (4.13) vanish also at first order in oy and eq. (4.15) keeps being a solution
of the above equations.

The combination 7 — ® does not vanish at first order in agg. Using in eq. (4.14) that Apg =0
at this order, one obtains
k2
a2HZ? o
Thus, deviations from ACDM arise at second-order in «g, as the backreaction effect of m on
gravity. This is similar to what happens in the context of the Ghost Condensate, where the
mixing of the scalar fluctuations with gravity gives rise to a Jeans-like instability also on a ACDM
background [5,75]. It is now straightforward to find the solution for Ay, at this order in ayy, by
replacing the second-order solution for ¥ and Apg in eq. (4.10). The former can be derived by
solving eq. (4.12) after replacing ® from eq. (4.11). This yields

F—® =20 a—H+O( 2). (4.17)

of k2 dt
U= He—<0+2g0 WYTE (1_aH5/aH4> + O(agy) . (4.18)
The latter can be derived from eq. (4.13), which yields
2 k* aH? dt
App = 20 B 92 [ 4 0d). (4.19)

akat H aH?3

Thus, one obtains

2 k? dt
1 - 2qg2 20" /—H/ 1—/
W ok a2 ( aH3 aH* adt +O i)

Notice that this solution breaks down on small scales because the quasi-static limit assumes ag # 0.
On very large scales, i.e. for

— 1/2 —1/2
k<ke= oK a 1—H/adt a/dt—Ha/dt
ﬂaHH a aH3 aH4 (4.21)

[0
B0 5.4 x 10741/ Mpc |,

Ap =AY (4.20)

]

12

Q'H,0

the power spectrum is unmodified by KMM, although this restricts only to the case where the
background expansion is that of ACDM. On intermediate scales, k. < k < k4, the power spectrum
drops as k? due to the second term on the right-hand side of eq. (4.20).

4.2 Cosmic Microwave Background
In Fig. 3, on the left panel we plot the angular power spectrum of the CMB lensing potential,
defined as [76]"

Zx

_ dz x(z«) — x(2) [(I)(
o H(z) x(z)x(2)

where x = [ dz/H(z) is the conformal distance and z, denotes the redshift of last scattering. On

the right panel, we plot the angular power spectrum of the CMB anisotropies as a function of the

n,z) + U(xn, z)] , (4.22)

9This is not to be confused with the scalar field ¢ introduced in Sec. 2.
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Figure 3: Effect of KMM (ag) on the CMB lensing potential (left panel) and on the CMB anisotropies
(right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the
respective spectra for ag = 0.

multipole [. As a rough approximation, we can understand the CMB lensing potential by looking
at the Weyl potential (& + ¥)/2 in the quasi-static regime, i.e. using eq. (3.29). Indeed, the bulk
of the CMB lensing kernel is at 0.5 < z < 6 [76], where deviations from this approximation are
below ~ 5% for the values of ayy that we considered.

Let us define the quantity [50]

2V2(® + )

For ACDM, pwr, = 2; in general, this quantity characterizes the deviations in weak lensing ob-
servables from the ACDM case. This definition cannot be directly applied to eq. (3.29), because
of the presence of the terms proportional to 5 on the right-hand side of this equation. In the
presence of KMM, ay # 0, these terms equally contribute to the modifications of the Weyl po-
tential as those proportional to d, and cannot be neglected. However, a fair approximation to
simplify the discussion is to replace oy, by its expression in matter domination, 6m ~ Hop. Setting
ap = ay = ar = 0 and employing the approximation above in eq. (3.29), the effect of gy in weak
lensing observables can be rewritten as

87 9 (14 Q)
T30 — ap) O

HWL — 2 (4.24)

One can verify that this quantity is negative for z 2 0.5, i.e. inside the bulk of the CMB lensing
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kernel. Therefore, the lensing potential is suppressed by the modification of gravity induced by
ap. For small Qpg, in matter domination this suppression is roughly proportional to aj, as
observed in Fig. 3. Expanding at linear order in Qpg, the above relation simplifies to pwy, — 2 =
—2og + O(Q%E)

Let us now turn to the CMB anisotropies, right panel of Fig. 3. At large [, the anisotropies
are completely unaffected by the KMM because they are generated at recombination,'’ when agy
vanishes. The only visible effect is an oscillating pattern observed at high [ (noticeable in the lower
right panel of Fig. 3.), due to the change in the CMB lensing discussed above. Indeed, lensing
smears the CMB acoustic peaks; for larger values of ap the smearing is suppressed and CMB
peaks enhanced.

At low [, the deviations from the ACDM case are dominated by the ISW effect, which depends
on the time variation of the Weyl potential, i.e.

AT ISW

= ()=- /0 2 [0.0(xi 2) + 0.9 (x, )] - (4.25)

Taking the derivative of eq. (4.23) with respect to the e-foldings, one obtains the following relation,
which only holds in the quasi-static limit:

din(®+ W) dIn pwr,
dlna Qs = fas =1+ dlna ’ (4.26)
where s
1 Oy
= 4.27
fas = . (4.27)

is the growth rate computed using the quasi-static approximation. In ACDM, uwr, = 2 and the
time variation of ® 4+ W is given by the first two terms on the right-hand side, i.e. the deviation of
the matter growth rate from unity, which is negative. When gravity is modified, the last term on
the right-hand side does not vanish. In the case of KMM, it contributes with the same sign as the
first term, enhancing the ISW effect. For example, assuming matter domination and expanding in
ap one finds

dln pwr,

dlna

which explains the enhancement in the ISW effect observed in the right panel of Fig. (3), roughly
proportional to agy.

= —3om + O(Wpy) (4.28)

4.3 Short-scale tension

An intriguing issue that recently came up is the tension between the overall normalization of
density fluctuations on large scales, inferred from the CMB anisotropies, and the amplitude of
density fluctuations on small scales, measured with the large scale structures at low redshift. In
particular, the value of og—defined as the rms of the fractional density fluctuation in a sphere of
8h~'Mpc—computed from the weak lensing measurements of the Canada-France Hawaii Telescope
Lensing Survey (CFHTLens) [77-80] and from cluster counts [81-83] appears to be lower than the
one inferred from CMB measurements by Planck [66,67]. This tension has been recently confirmed
by the tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KiDS) [84],

10Because of this, polarization is also unaffected. For this reason we only show the temperature spectrum.
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Figure 4: Relation between apo and the corresponding og at redshift z = 0, calculated using eq. (4.29),
respectively in the top and bottom z-axes. The apo = 0 line corresponds to ACDM and the region
ap, < 0 is shaded because it is out of the stability window (4.6). The plot also shows the measurements
of og and their respective 1-¢ errors from several collaborations.'' In particular, the constraints based on
cluster counts (red dashed lines) are from Planck 2013 [81] and SPT 2016 [83]. The constraints based on
weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, by Kilbinger et
al. 2013 [77], Kohlinger et al. 2015 [80] and Hildebrandt et al. 2016 [84], and from the cosmic shear study
of DES 2015 [87].

while it has been alleviated by the analysis of the latest data of the SDSS-III Baryon Oscillation
Spectroscopic Survey [85]. Another aspect of this tension is reflected in redshift space distortion
measurements [86], which indicate that the combination of fog—where f = dIndy,/dlna is the
growth factor—is lower with respect to the value inferred from the Planck results.

Even though the tension is not extremely significant and depends on the uncertainties of the
modeling of the non-linear scales and, for the redshift-space distortion measurements, of the galaxy
bias, it might indicate a deviation from the concordance model. For instance, some attempts have
been made to solve this tension using massive (active and sterile) neutrinos [89,90]. However, the
most recent Planck analysis seems to disfavour this solution [67].

Given that little is known of the clustering properties of dark energy, it is natural to try
to explain this tension by considering a model where deviations from the concordance one are
restricted only on short scales. A recent proposal in this direction has been undertaken in [91] by
exploiting the so-called “dark degeneracy” between dark matter and dark energy [92] and replacing
part of the dark matter by a perfect-fluid clustering dark energy with sound speed of fluctuations
smaller than unity (see for instance [93,94] for a phenomenological study of clustering dark energy

' An analysis of the effects of systematics on the CFHTLenS data, not shown in Fig. 4, has been carried out by
Joudaki et al. in [88]. Moreover, we show the Planck 2013 cluster-based constraint because the more recent analysis
by the Planck collaboration [82] did not release numerical values. However, the Planck 2015 results were found in
agreement with the previous ones [83].
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Figure 5: The quantity fog as a function of redshift for different values of ag. The plot also shows the
measurements of fog and their respective 1-o errors from several redshift surveys: 6dF GRS [96], SDSS
DR7 MGS [97], GAMA [98], SDSS DR12 LRG [85], WiggleZ [99] and VIPERS [100]. When possible, we
plotted conditional constraints assuming a ACDM background cosmology with Planck 2015 parameters. In
particular, the WiggleZ constraints were taken from Fig. 16 of [67].

in the zero sound-speed limit).

More generally, one could try to leave untouched the dark matter sector and employ less specific
scalar-tensor theories. For instance, it has been noted in [34] (see also [95]) that self-accelerating
models within the Horndeski class with the same expansion history as ACDM generally supress
the linear growth rate around redshift 0.5 < z < 1, despite the scalar fifth-force being attractive
(see eq. (3.28)). Looking at eq. (3.27), this can be understood by the fact that €, on the right-
hand side, defined in eq. (2.14), contains the time-dependent effective Planck mass M? at the
denominator. The enhancement of the latter due to self-acceleration lowers €2, with respect to
the standard ACDM case at intermediate redshifts, overcompensating e > 1.

As we have seen above, when the stability condition (4.6) is imposed the scalar force exchanged
by 7 in the presence of KMM is repulsive and small-scale structures are damped by a friction
stronger than that provided by the Hubble expansion, see eq. (4.8), even in the absence of self-
acceleration and for a ACDM background expansion. In light of these facts, we consider the
possibility of solving the aforementioned tension with KMM.

To illustrate this, we compute og at redshift z = 0 as a function of oy using COOP for the
cosmological parameters given at the beginning of the section. As expected from our discussion
above, this yields a linear relation with o, i.e.

As

(4.29)
In Fig. 4 we show this relation together with a set of large scale structure (weak lensing and cluster

counts) measurements constraining og. Two remarks are in order. First, it would be misleading to
compute the value of gy that best fits the data. Indeed, the constraints on og reported from the
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respective articles have been extracted from data assuming standard gravity. Second, as explained
above large values of ap yields superluminal scalar propagation. However, it is straightforward
to choose a value of ak o such that the subluminality constraint (4.7) is satisfied, without affecting
the redshift-survey scale evolution (as long as ¢; > 0.1, see footnote 1).

Moreover, to illustrate the effect of KMM on the growth rate, in Fig. 5 we plot the combination
fos as a function of redshift for different values of ayy 9. Although in the presence of KMM the
growth rate f is scale dependent, we can confidently use its scale-independent value computed in
the quasi-static regime, fqg, see eq. (4.27), because this approximation holds on redshift-survey
scales. As discussed above, we do not try to consistently fit the value of ag  to these observations
but we note that apo ~ few x 0.1 would provide the hinted small-scale suppression. A too
large value of ap may give an unreasonably large ISW effect, see Fig. 3. However, this could
be compensated by a small change in another parameter, such as the dark energy equation of
state. We postpone for a future publication a more consistent analysis of the CMB and large scale
structure measurements that takes into account the effects of modified gravity on the observables.

5 Summary and conclusions

Using the framework of the Effective Theory of Dark Energy, in this paper we studied the observa-
tional effects of Kinetic Matter Mixing, i.e. a kinetic coupling between matter and the cosmological
scalar field, which is present if matter is disformally coupled to the gravitational sector with a
disformal coupling that depends on the first derivative of the scalar field or in theories beyond
Horndeski.

In Sec. 2, we started by discussing the most generic quadratic action for cosmological pertur-
bations in the presence of conformal and disformal couplings of matter to the gravitational sector,
under the assumption that the disformal factor depends as well on the first derivative of the scalar
field, other than its value. Moreover, we showed that a change of frame does not change the
structure of the action but redefines the coefficients of the various operators. In particular, the
coefficient of the operator that characterizes theories beyond the Horndeski class is redefined only
by the dependence of the disformal coupling on the field derivative. This is explicitly shown by
the frame-independent parameter A2, defined in eq. (2.17), which measures the degree of Kinetic
Matter Mixing. By diagonalizing the kinetic action, we derived the conditions that one must re-
quire for the perturbations to be free of ghosts and of gradient instabilities (the generalization to
multiple matter species is given in App. A).

After this general frame-independent description, in Sec. 3 we assumed that matter is uni-
versally coupled and, without loss of generality, we considered the case where it is also minimally
coupled, i.e. the Jordan frame description, where observational predictions are more easily derived.
We then discussed the short-scale regime and derived the eigenmodes of the acoustic oscillations,
which are mixed states of matter and the scalar field waves. Focussing on the case where matter is
made of nonrelativistic particles (such as cold dark matter or baryons) we derived the equations in
the quasi-static approximation and discussed (see App. C) how the quasi-static regime is reached
during the cosmological evolution. These equations allow for a clear analytical understanding of
the effects of modifications of gravity due to Kinetic Matter Mixing. In particular, while models
in the Horndeski class only modify the Poisson equation with an effective Newton constant, Ki-
netic Matter Mixing also induces an additional friction term. Remarkably, requiring the stability
conditions implies that gravity is weakened on short scales, an effect which is hard to reproduce
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in models within the Horndeski class. Finally, by comparing the quasi-static solution to the full
numerical one, we showed that the quasi-static limit approximates very well the dynamics on scales
shorter than the sound horizon.

In Sec. 4 we focussed on the cosmological effects of the beyond Horndeski operator, obtaining
the full numerical solutions using the publicly available Einstein-Boltzmann solver of COOP [47].
Using these solutions, we derived the matter power spectrum at two different redshifts, and the
angular spectra of the CMB lensing potential and of the CMB anisotropies. On small scales,
i.e. for k > few x 107>Mpc, the solution matches the quasi-static regime and the matter power
spectrum is suppressed independently of k. An analytical study of the large scales is complicated
by the complexity of the full system of equations. However, we obtained analytical solutions on
these scales by perturbing around the ACDM solutions for small Kinetic Matter Mixing. The
agreement with the numerical solution is excellent. Moreover, its simplicity allows an immediate
understanding of the behavior of the perturbations and their observables. Similarly to the matter
power spectrum, also the angular spectrum of the CMB lensing potential is suppressed. The CMB
anisotropy is affected at very low multipoles through the ISW effect, which is enhanced, and on
very high multipoles because of the suppression of the lensing potential.

In App. D, we compared this case with the one of kinetic braiding, which displays qualitatively
opposite effects. Also in this case we studied analytically the large-scale behavior and derived
the value of the crossing scale, i.e. the scale at which the power spectrum displays the transition
between the short-scale enhancement and large-scale suppression.

As mentioned above, Kinetic Matter Mixing appears as the only modification of gravity in
the context of single-field models that weakens the strength of gravity on small scales. Therefore,
in Sec. 4.3 we entertained the possibility that the tension between the Planck data and small-
scale observations can be explained by this effect. In particular, as shown in Figs. 4 and 5, KMM
predicts a lower value of og and fog, which could be made compatible with those measured by weak
lensing and redshift-space distortion observations. We postpone to future work a more consistent
dedicated analysis that marginalizes over the other cosmological parameters.

In summary, we presented a robust theoretical understanding of the effects of Kinetic Matter
Mixing across different observables and scales. These effects may be a smoking gun of modi-
fied gravity for the next observational missions and a complete forecast, taking into account the
characteristics of the next missions, is an obvious next step.
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A Quadratic action and stability for multiple species

Here we study the linear stability of the gravitational and matter action, extracting the propagating
degrees of freedom and their speed of propagation. To this end, we will expand the total action up
to quadratic order in linear scalar fluctuations around a FLRW solution and solve the constraints,
generalizing the treatment of [50] by including oy and the dependence on X of the disformal
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functions Dj. When not explicitly given, the details of the calculation can be found in this
reference.

To describe the matter sector, we extend the treatment of the main text and assume that the
universe is filled by Ng matter species labelled by an index I, with I = 1,..., Ng, each minimally
coupled to a different metric. For each species I, we denote the corresponding metric by g,(jj) and
we call this the Jordan frame metric associated with this species. The total matter action is thus

given by N
Sy = isl, /d4 V=30 Li (a8 wr) (A1)
I

3D = O () g + DI (6, X)80u6 0,6 . (A.2)

with

(C'j(~¢) > 0 in order to preserve the Lorentzian signature of the Jordan-frame metric of the species
I.) As usual, one can use the arbitrariness in the choice of the gravitational metric g, to choose

one particular matter species, say I, to be minimally coupled to it, in which case we have C}f) =1

and Dg‘f) = 0. This defines its Jordan metric as the gravitational metric.
It is convenient to introduce the parameters

V=X dInC\’ XD x2 op{¥

OC I = (17 7.

, apI=——Fri——— ax,r = —, (A.3)
oH  do @ 1 XD o9 oX

where the right-hand side is evaluated on the background. (Requiring a Lorentzian Jordan frame
metric implies ap ;y > —1 [51].) In unitary gauge, eq. (A.2) reads

358 = Cr(t)guw + Di(t, N)3365 (A4)
with ‘ .
Cr(t) = C? (1), Dit;N) = (D" (6(t), —(1)*/N?) . (A.5)
Then, the above parameters read
Cr D; 1 aD;
= oA =0 =——F A.
“r=smc,; T o —bp;r T a0, 0N (8.6)

Let us start by expanding the matter action. For simplicity, we assume that each matter species
can be described by a perfect fluid with vanishing vorticity. It is then easy to write an action in
terms of derivatively coupled scalar fields with Lagrangians of the form [101-103]

Ly (51,39,1#1) = Pr(Y1), Y = g‘”)a 010,07 . (A7)

Splitting each scalar field o7 into a background value and its perturbations, oy = ;(t) 4+ do(t, x),
the second-order expansion S; reads

3 2
@ [ 5. 001 2 1+ +oapus 1 2 (0i60)
SI —/d xdt Z {95N2,I(5N (1 n O[D’I)Q 20_ (50’[ Cq N QQ

1+(1+aD1)w1 1
(1+aps)? o1

(A.8)

[501 (5N . I(sf) + 2N, 501] } ,
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where we have defined
_ 2 eff 2
gsnz,g = ¢y + (14 ax)?[1+wr(1+ ap 1)] (A.9)

with the combination

1 9%D;

eff _ 2
O‘D,[ aD,I( aX,[) aX,I( aX,I) 20 9N2 )

and the fluid quantities

2
CI P, p[EC%\/1+aD](2Y}PI,—PI) ,

Pl = —F——
v1+apr ’
Pl (A.11)
2

-1
Gl = P’+2Y1P”( Tap)

Here a prime denotes a derivative with respect to the variable Y;. We have omitted in the action
irrelevant terms that vanish when imposing the background equations of motion.
We can now investigate the stability of scalar perturbations. The full second-order action

52 — Sé2) + 5@

m

(A.12)
where the gravitational part Sg) is given in eq. (2.5), governs the dynamics of linear scalar fluctu-
ations. The scalar modes can be described in unitary gauge by defining ¥ = 0720;N* and writing
the spatial metric as h;; = a?(t)e*d;; [104]. Variation with respect to ¢ yields the (scalar part of)
the momentum constraint, and its solution can be used to replace N in terms of Q and doy into
the second-order action (see details in Ref. [50]). Re-expressing the scalar field perturbations doy
in terms of the gauge invariant variables Q; = do — (67/H)(, the total second-order action reads,
focusing only on the kinetic and spatial gradient parts,

M? : 9;¢)? HHQ aiQ ’

o1 sI
! (A.13)
+22 2 6 (994 191C — 969841 5 0iQ10; C)]
with
_ 2
gCC: (1+aB { +Z 1—|—O¢B—(1—|—04X7])(1+Oé[)7[)] } s (A14)
2
sO(aK +6aB) KT
= 1 —2(1 1 Al
9o¢ac (1 +ap)? +Zl—|—a}3[ +ap—2(1+an)(l+apr)], (A.15)
KT
9oir = 1+ on [1+OJB—(1+C¥X1)(1+O¢DJ)] , (A.16)
K
94o08¢,1 = 1 +IaB [1 + ap — (1 + aH)(l + OzDJ)] , (A17)
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where we defined the dimensionless coefficient

aEaK+6a%+3ZaefoIQ120, (A.18)
I
1+ (1+apr)wr
= : Q Al
5 _ (1+ap)? 2 d[aM?*(1+ an)
= —77F142(1 — — . A2
C.0 ak + 60} (1+az) aM?dt| H(1+ ap) (4.20)

Absence of ghosts is ensured by requiring that the matrix of the kinetic coefficients is positive

definite, which yields the conditions « > 0 and k; > 0. The second condition reads py + (1 +

ap,r)pr > 0, which is the usual Null Energy Condition written in a disformally related frame.
Requiring that the determinant of the kinetic matrix vanishes yields the dispersion relation

Ng Ng

3
(w?—c2k?) 1;[(w2—c§71k‘2) = w?k? ; [1—1—(1+aD,])w1} Qr (am—ax 1)? };[I(wQ—ciJk‘Q) , (A.21)

where the scalar sound speed squared c? is given by
2
S

C

ax + 60 1+ 2
Cg’o K B _ ( on) Z k(1 + OJDJ)Q . (A.22)
I

a e
For a single matter fluid this yields eq. (2.16). In the absence of a disformal coupling, ap; =

ax,; = 0, we recover the results of [27,28]. If the disformal coupling does not depend on X,
ax,; = 0, and we restrict to Horndeski theories, ag = 0, we recover the results of [50].

B Quadratic action in Newtonian gauge

The second-order action (2.5) can be written in Newtonian gauge, eq. (3.1), after a time diffeo-
morphism ¢ — t + (¢, ). This reads

: 1 . 1
S, :/d4xa5M2{2H2aK7'r2 + [H + = (pm + pm + 2(M*H (o — am))’)

20M?
vm)? o V)2 \iAvav}
—}—HZ(QB—aM—I—aT—aH)]( 7;) —3‘1’2—|—(1+O¢T)( 2) —2(1—{-041-1) 3
a a a
TV v .
+ 2o VT;Z + 2H(0413 — OJH)V(I)VTF — 2H(O¢M — CtT)v a2V7T + GHOzBﬁ'\I/
+ H2(6ag — ax)®i — 6H(1+ap)¥d — 6 ( 22 Pm 4 g
B — aK)®7 aB SSVE ™ (B.1)

1 p: 9pm 3prn
2 m 2 2
+{H (QQK—3(1+2aB)>+2 2]@ — S0 - Loaw

. Pm T Pm :
3H <2M2 + H(1+ aB)> o

_3 [H (Wﬂ 4 H> + H(agH) + H*Hap(3 + o) + aBHZ} wQ} .
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In Newtonian gauge, the matter action (3.2) expanded at second-order reads

1[pm+ (1 —c2)pm

Sr(f):/d‘*x a3{9pmw2+[p (1= cn)p }¢2+3pmw
2 2 2

Pm + Pm |:50_2 _ 2 (V5U)2:| _ Pm +pm(

+ - -
2¢2,63 a? 2,00

d + 3c3n\11)5'a} .

C From the oscillating to the quasi-static regime

We can discuss the transition from the oscillating to the quasi-static regime starting from the
linearized equations of motion for ¥ in the presence of matter, once the 7 field has been integrated
out [10,26,33]. On short scales, in Fourier space the variation of the action with respect to ¥ and
the relation & = U read, respectively,

.. . k2 3 20 (ag — ayg) k2
U HU + 220 = -0, H? | Puydy, — Hoy, 1
+ (3+b1) +c; 2 5 [csu\pé o g Hvm| (C.1)
ag W 3 . a?H? 3 apm
— U —d =0 bydm + ———— QO Hom C.2
aB_aHH+2 2 K2 +2aB—aH ! (©-2)

where the specific form of the coefficients b1, bo and bs are explicitly given by

2 . . .
_ ap (oK 2 g am 3
bl_3+aM+Ha <a]23> + an [QH—QB (HaB HaH> +4Qm] , (C.3)
1 H 3
by = m apé + an(l+ ap) <H2 + 29m>] ) (C4)
1 H 3
b3 = m [O&B(O&T — OéM) —+ ag (1_1’2 + 20m>] . (05)

In the standard quintessence case, for ag = ar = ayr = agp = 0, we have by = 0, bo = 1 and
bs = 0. Matter is described by the usual continuity and Euler equations, egs. (3.18) and (3.26).
One cannot find an analytical solution to egs. (C.1) and (C.2) but we can assume that the
full solution can be separated into an oscillating part, with characteristic frequency w ~ cyk/a =
csV1+ A2 k/a, and a “quasi-static” part, slowly evolving at a rate given by ~ H [52]. For instance,
for ¥ one can write
U = Wese + \IIQS . (CG)

We also assume that Ve has a slowly decaying envelop due to the expansion of the universe, such
that ' ' ' '
U = W +iw¥os + ¥qs , f~OH), (In¥qs) ~O(H) . (C.7)

To count the importance of each term in the above equations, we consider the limit w > H and
we define the following two expansion parameters,

H H H
ekz%<<l, ewE;::—k<<1. (C.8)
+
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Starting by defining ¥ ~ O(1), and using eq. (C.1) and the continuity and Euler equations, one
can find
Hugs ~O(1),  ®qs~O(1),  bgs ~O(e,”),
Huose ~ O(1) Do ~ O(e;l) , Oosc ~ (9(6,;26w) .
At this point, we can expand the above equations in these expansion parameters. At the lowest

order in €, the quasi-static solutions satisfy the relations discussed in Sec. 3.2, not surprisingly.
For the oscillating piece, egs. (C.1) and (C.2) become, retaining only the lowest order in ¢, and

€k,

(C.9)

k2 — on) K?
0 Wong + € =5 Woe = s onles —am kg (C.10)

a a?
ag LW

ap — aHZE\IIOSC = Pose =0, (C.11)
where we have used f/H ~ —(3+4 b1) + O(e,). For by > —3, this implies that the oscillating
part decays in time. For instance, for a constant b; the oscillating solution decays as a~ (301,
Combining the Euler equation iwvese = —®Poge with eq. (C.11) we get a simple relation between
the velocity and the curvature, i.e. Hvgse >~ —az/(ap — am)Wese. Replacing this expression in the
first equation, we find the expected dispersion relation for the oscillating normal mode,

2 2k” N
w —csa2+3Qm 5 =Ci—-

- (C.12)

o a

D Observational signatures of Kinetic Braiding

It is interesting to compare the results of Sec. 4 with the case of kinetic braiding. Indeed, this
modification of gravity is expected to lead to similar effects as KMM on the power spectrum and
CMB anisotropies. We assume the same background expansion history as in eq. (4.4) and set, this
time,

aH:aM:aTzo. (Dl)
Moreover, we parametrize the time dependence of ak and ap as

Qpg(t) B Qpg(t)
0 ) aBp = aB,o .
" Qpep ™ QpEo

aK = QK (D.2)
Recently, in Ref. [45] an analogous parametrization has been used to discuss the effect of ap—as
well as of other parameters—on the power spectrum and the CMB anisotropies (see also [39,50]).

We agree with the results of Fig. 2 of this reference, for the corresponding values of apg and
12
O¢K70.

From the above assumptions it follows that the speed of scalar fluctuations is
5 o [2(1+ ag) + 30|

= — . D.3
s ok + 6a2B (D-3)

Absence of ghosts and gradient instabilities therefore imply respectively that ak + 604123 > 0 and
—1—-(3/2)Qm < ap < 0. As in Sec. 4, we set ak g = 1; then we study the effect of ap for four
negative values of ap to avoid instabilities: ap g = —0.06, —0.12, —0.24 and —0.48.

!2We can compare with Ref. [45] by the following correspondence between our parameters ap,o and ak,o and
their parameters &g and ax: ap,o = —&spr,0/2 and ak,0 = GkpEo-
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Figure 6: Matter power spectrum for four different values of ap today, i.e. a9 = —0.06, —0.12, —0.24 and

—0.48, at redshift z = 0 (left panel) and z = 1 (right panel). For comparison, the dashed and dotted lines
in the left lower panel respectively show the quasi-static approximation and the perturbative solution of
eq. (D.10).

D.1 Matter power spectrum

We plot the matter power spectrum in Fig. 6. The effect of ap is to enhance the power on short
scales, due to strengthening of gravity. Indeed, the modification of the Poisson equation (3.24)

reads
aB

C1+ap+30m/2°

and one can use this relation in eq. (3.27) (with v = 0) to predict the corresponding enhancement.
On large scales we observe the opposite effect, i.e. a suppression of power, and a crossover scale
between these two regimes independent of ag .

To study the large scale regime we proceed analogously to what done in Sec. 4.1 and solve the

po =1 (D.4)
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Einstein equations perturbatively in apg. In this case, the relevant equations are

®+ H® — Hoy = agH(7 — @) , (D.5)
kz . QK .9, . . . kz
—Z®4+ HA, — —H*(7 —®) = apH |3® + 3H® + 3Hr — — Hr| , (D.6)
a? 2 a?
$ +4HS + (2H + 3H?)® = ap[i — & + (3H? — H)(7 — ®)] (D.7)

1 _ad , k2 :
5 (oK + 6a3)Ha 3% [a®(7 — ®)] = aB{a2 [H® + (H® — H)7|

+3H 29 + 2H® + H(m — vp)] } . (D.8)

Equation (D.5) is the “0¢” scalar component of the Einstein equations, eq. (D.6) follows from
combining the “00” component with eq. (D.5), eq. (D.7) is the trace of the “ij” components and
we have used ¥ = &, which follows from the traceless part of the “ij” components. Finally,
eq. (D.8) is the evolution equation for 7

For ap = 0, these equations have the solution given in egs. (4.15) and m = —e. As in the case
of ap, ap does not affect the metric and matter perturbations at first order: eq. (4.15) remains a
solution with

dt
= —e— 2@}(;@/ ;H FO®) . (D.9)

In order to see the effects of braiding we need to go at second order in ap [5]. The matter
density contrast Ay, can be computed from eq. (D.6), similarly to what discussed in Sec. 4.1. We
can solve for ® at second order from eq. (D.7), where we use the first-order solution on the right-
hand side. To derive © — ®, we can solve eq. (D.8) after replacing vy, using (D.6). In conclusion,
the density constrast reads

o k2 H =
Ap = Ay 1-2- 8 (P - ——F 1—-— + O(at
,ACDM [ ( S e 2) ( . /adt) O(ag)

e (3 fon ).
et g (3 fou [5) ] o]

Equation (D.10) explains the large scale suppression in the power spectrum and why the crossover
scale, which can be derive from the above equation as

kC:aH\/Fl/FQ s (D12)

is independent of ap. However, in Fig. (6) we observe a large discrepancy between eq. (D.10) and
the output of COOP. It can be checked that the difference grows as o/é and it is thus due to the
neglected corrections to eq. (D.10).

: (D.10)

where

(D.11)
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Figure 7: Effect of braiding (ap) on the CMB lensing potential (left panel) and on the CMB anisotropies
(right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the
respective spectra for ag = 0.

D.2 Cosmic microwave background

In Fig. 7 we plot the angular power spectrum of the lensing potential (left panel) and of the CMB
anisotropies (right panel). A negative braiding parameter ap induces an enhancement in the
lensing potential. Similarly to what done in the previous section, we can understand this effect as
a modification of the Weyl potential, expressed in terms of the parameter uwr, in eq. (4.23). Setting
ay = ar = ap = 0, this reads (see also [35] for an analysis using the quasi-static approximation)

2ap
1+ ap +30m/2

HWL — 2 = (D.13)
This relation shows that for negative values of ap, the Weyl potential is enhanced for all redshifts.
Comparing with the effect of ayy shown in Fig. 3, we notice that here the effect is larger at smaller
l; this is due to the fact that, contrarily to the ap case, here pwr, — 2 does not change sign at low
redshift, and contributes also to low multipoles.

Let us turn now to the CMB angular power spectrum, right panel of Fig. 7. Increasing —ap
enhances the lensing potential, thus increasing the smearing effect on the CMB acoustic peaks, as
shown on the right lower panel. The suppression of the ISW effect can be understood again by
looking at eq. (4.26). Now

dln pwr, 15apn
= - D.14
dlna (24 30m)(1 + ap + 3Qm/2) ’ (D-14)
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which for negative values of ap is positive, i.e. has opposite sign as the standard ACDM contribution
coming from the first two terms in the right-hand side of eq. (4.26). For small values of —ag,
dIn pwr/dIna is smaller than 1 —dlndy,/dIna: the time derivative of the Weyl potential remains
negative and the net ISW effect is suppressed by kinetic braiding. For large values of —agpp,
ie. —apo 2 0.3, the right-hand side of eq. (4.26) changes sign and increasing ap enhances the

ISW effect.
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