
HAL Id: cea-01448152
https://cea.hal.science/cea-01448152

Preprint submitted on 27 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and simple decycling and dismantling of networks
Lenka Zdeborová, Pan Zhang, Hai-Jun Zhou

To cite this version:
Lenka Zdeborová, Pan Zhang, Hai-Jun Zhou. Fast and simple decycling and dismantling of networks.
2017. �cea-01448152�

https://cea.hal.science/cea-01448152
https://hal.archives-ouvertes.fr

Fast and simple decycling and dismantling of networks

Lenka Zdeborová
Institut de Physique Thérique, CNRS, CEA and Université Paris-Saclay, Gif-sur-Yvette, France

Pan Zhang and Hai-Jun Zhou
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China
(Dated: July 13, 2016)

Decycling and dismantling of complex networks are underlying many important applications in
network science. Recently these two closely related problems were tackled by several heuristic
algorithms, simple and considerably sub-optimal, on the one hand, and time-consuming message-
passing ones that evaluate single-node marginal probabilities, on the other hand. In this paper we
propose a simple and extremely fast algorithm, CoreHD, which recursively removes nodes of the
highest degree from the 2-core of the network. CoreHD performs much better than all existing
simple algorithms. When applied on real-world networks, it achieves equally good solutions as those
obtained by the state-of-art iterative message-passing algorithms at greatly reduced computational
cost, suggesting that CoreHD should be the algorithm of choice for many practical purposes.

I. INTRODUCTION

In decycling of a network we aim to remove as few
nodes as possible such that after the removal the remain-
ing network contains no loop. In network dismantling
we aim to find the smallest set of nodes such that after
their removal the network is broken into connected com-
ponents of sub-extensive size. These are two fundamen-
tal network-optimization problems with a wide range of
applications, related to optimal vaccination and surveil-
lance, information spreading, viral marketing, and identi-
fication of influential nodes. Considerable research efforts
have been devoted to the network decycling and disman-
tling problems recently [1–8].

Both the decycling and the dismantling problems be-
long to the class of NP-hard problems [6, 9], meaning
that it is rather hopeless to look for algorithms to solve
them exactly in polynomial time. However, finding the
best possible approximate solutions for as large classes of
networks as possible is an open and actively investigated
direction. Recent theoretic and algorithmic progress on
both these problems [1–3, 5, 6] came from the fact that,
on random sparse networks with degree distributions
having a finite second moment, methods from physics of
spin glasses provide accurate algorithms for both decy-
cling and dismantling. These sparse random networks are
locally tree-like and do not contain many short loops. On
such networks the decycling is closely linked to disman-
tling and asymptotically almost the same set of nodes
is needed to achieve both [5, 6, 10]. Even on real-world
networks that typically contain many small loops, best
dismantling is currently achieved by first finding a decy-
cling solution and then re-inserting nodes that close short
loops but do not increase too much the size of the largest
component [5, 6].

Both the algorithms of [6] and [5] achieve performance
that is extremely close to the theoretically optimal val-
ues computed on random networks. However, both these
algorithms are global, they need to iterate certain equa-

tions on the whole network in order to select the suitable
candidate nodes. Although they are both scalable and
can be run on networks with many millions of nodes,
they are not completely straightforward to understand
and require some experience with spin glass theory. The
close-to-optimal performance of these algorithms is theo-
retically justified only on random networks. Despite their
good performance observed empirically on networks with
many loops, there might still exist even better and ana-
lyzable strategies for real-world networks.

As usual in applied science, in many potential applica-
tions we are at first not even sure that optimal disman-
tling or optimal decycling is the best strategy to answer
the question in hand (e.g., the problem of social influ-
ence maximization [11–14]). Therefore it is extremely
important to have a really very simple and fast decycling
and dismantling strategy that can provide an accurate
assessment of whether this approach is at all interesting
for a given practical problem. However, existing sim-
ple strategies, such as removing adaptively high degree
nodes [15, 16], are very far from optimal performance
and therefore not very useful. Recently the authors of [4]
claimed that a heuristics based on the so-called collective
influence (CI) measure can be a perfect candidate for this
purpose. This algorithm has attracted a lot of enthusi-
asm in the network science community. However, more
systematic investigations performed in [5, 6, 8] revealed
that the CI algorithm is still annoyingly far from being
optimal. The CI algorithm is also not particularly com-
petitive in terms of computational time because a large
neighborhood of a node needs to be considered in order
to evaluate the CI measure.

In the present paper we introduce the CoreHD algo-
rithm that is basically as simple and fast as the adap-
tive removal of high degree nodes, yet its performance is
much closer to optimal than the CI algorithm or its ex-
tended versions, and comparably close as the best known
message-passing methods [5, 6] while several orders of
magnitude faster. It hence provides simple and tractable

ar
X

iv
:1

60
7.

03
27

6v
1

 [
ph

ys
ic

s.
so

c-
ph

]
 1

2
Ju

l 2
01

6

2

solutions for networks with many billions of nodes. The
method is simply based on adaptive removal of highest-
degree nodes from the 2-core of the network. Apart of
its simplicity and speed the performance of the CoreHD
algorithm is basically indistinguishable from the per-
formance of the message-passing algorithms on random
graphs with long-tailed degree distributions. On all real-
world network instances we tested the result by CoreHD
is within few nodes from the best one found by message-
passing and on some instances we found that it is even
slightly better. On top of all that, the simple structure of
CoreHD might be amenable to rigorous analysis provid-
ing guarantees for loopy networks that are not accessible
for the message-passing methods.

For all the above reasons we argue that in many ap-
plications of decycling and dismantling CoreHD should
be the first choice. The simple algorithmic idea gener-
alizes easily to the problem of destroying optimally the
k-core of a network - one focuses on the current k-core
and adaptively removes highest degree nodes.

II. THE COREHD ALGORITHM

We now describe CoreHD as an extremely fast algo-
rithm for decycling and dismantling of huge complex net-
works with close-to-optimal outcomes. Let us begin with
some motivating discussions.

Perhaps the simplest algorithms one can propose for
decycling and dismantling is adaptive removal of highest-
degree nodes. We call this method HD, it is indeed ex-
tremely fast, but empirically does not perform very well.
One reason why HD does not work well is that some
nodes of large degree, such as node i in Fig. 1, do not be-
long to any loop, and hence do not have to be removed for
decycling. Due to the property that trees can always be
dismantled by a vanishing fraction of nodes [10], nodes
such as i of Fig. 1 are also not useful for dismantling.
Note that the CI method of [4] shares this problem, see
the appendix.

FIG. 1. Illustration of a network with dangling trees. Each
circle denotes a node in the network, each line connecting
circles denotes an edge, and the cloud represents the other
part (nodes and edges) of the network.

The above observation motivates a very natural idea
that dismantling and decycling algorithms should always
focus only on the 2-core of the network. The 2-core is a
sub-network that is obtained after adaptive removal of all
leaves (nodes with only a single attached edge). The sim-

plest and fastest strategy is then to remove the highest-
degree nodes from the remaining 2-core. To our surprise
this simple idea provides much better performance than
other comparably simple approaches existing in the lit-
erature. We call the resulting algorithm CoreHD, it is
detailed in Algorithm 1.

Algorithm 1: CoreHD

Input: A network.
Output: A forest of small trees.

1. Find the 2-core of the network, and obtain the
degree of every node within this 2-core (edges to
outside nodes not considered).

2. Identify the node i with the largest degree in the
2-core. If there are more nodes with the same
largest degree, randomly choose one of them.

3. Remove node i, update the 2-core and the degrees
of all its nodes. If the 2-core is empty, then do
tree-breaking and stop; otherwise go to step 2.

For the decycling problem, CoreHD simply removes
highest-degrees nodes from the 2-core in an adaptive way
(updating node degree as the 2-core shrinks), until the re-
maining network becomes a forest. For dismantling, after
decycling, CoreHD also breaks the trees into small com-
ponents, see Appendix that follows tree-breaking strat-
egy from [5, 6]. In case the original network has many
small loops, a refined dismantling set is obtained after
a reinsertion of nodes that do not increase (much) the
size of the largest component, again as proposed recently
in [5, 6]. For details on implementation of the reinsertion
algorithm we refer to the Appendix.

III. RESULTS

In this section we evaluate the CoreHD algorithm for
both random and real-world networks, by comparing the
minimum fraction of nodes we need to remove in order
to break the network into a forest or components with
size smaller than 0.01n. We compare to the Belief Prop-
agation guided Decimation (BPD) [5] and Collective In-
fluence method (CI) [4] (CI4 results are obtained using
the original code of Ref. [4]).

First, we notice that on some simple examples, e.g.
regular random graphs with degree 3, the CoreHD al-
gorithm reaches the exact optimal decycling fraction
ρ = 0.25. This matches the performance of a greedy
method of [17] that for this particular case is provably
optimal.

In Fig. 2 we compare the performance of the above al-
gorithms on an Erdős-Rényi random network with N =
50000 nodes and average degree c = 3.5. In the up-
per panel we plot the fraction of nodes in the largest
connected component (LCC, denoted q) as a function of
the fraction of removed nodes, denoted ρ. We see that
compared to HD and CI the CoreHD algorithm works

3

0.17 0.18 0.19 0.2 0.21 0.22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

q

HD
CI

4

CoreHD

BPD

0.17 0.18 0.19 0.2 0.21 0.22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ

q

HD
CI

4

CoreHD

BPD

FIG. 2. Fraction of nodes in the largest connected component
(LCC) (upper) and in the 2-core (lower) as a function of frac-
tion of nodes removed, for HD, CI4, CoreHD and BPD on an
Erdős-Rényi random graph with number of nodesN = 5×104,
and average degree c = 3.5. In all four methods nodes are re-
moved one by one.

the best by a large margin, breaking the network into
small component with size smaller than 0.01N after re-
moving fraction of only 0.1846 of nodes. While CI and
HD need to remove fraction 0.2014, and 0.2225 of nodes
respectively. This is compared to the close-to-optimal
performance of the iterative message passing BPD that
needs to remove fraction 0.1780 of nodes, and to the the-
oretical prediction for the asymptotically optimal value
0.1753 [1–3, 6, 7].

We also see from the figure that the fraction of nodes
in the LCC obtained by CoreHD encounters a first or-
der transition when ρdec = 0.1831, this is because at
this point (just at the beginning of the discontinuity) the
remaining network becomes a forest. The greedy tree-
breaking procedure then quickly breaks the forest into
small components. While the other algorithms do not
have this phenomenon, the size of the LCC goes to zero
continuously. In the lower panel of Fig. 2 we plot the
fraction q of nodes in the 2-core as a function of ρ. We
can see that for CoreHD, q reaches zero at ρ = 0.1831
indicating that the remaining network contains no loop,
thus is a forest. While for other algorithms the 2-core
remains extensive until the network is dismantled. On a
larger ER random network with N = 106, c = 3.5, the
difference between the sizes of decycling and the disman-
tling sets the CoreHD algorithm finds is not distinguish-
able within the precision of 4 valid digits and is 0.1830 for

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

ti
m

e
 (

s
)

N

A

0.14

0.16

0.18

0.20

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

ρ

N

B

FIG. 3. Performance of the CoreHD algorithm (magenta
squares) and its comparison with the BPD algorithm (blue
circles) and the CI algorithm (` = 4, grey diamonds) on ER
networks of average degree c = 3 and size N . (A) The rela-
tionship between the total running time τ and N . The simula-
tion results are obtained on a relatively old desktop computer
(Intel-6300, 1.86 GHz, 2 GB memory). (B) The relationship
between the fraction ρ of removed nodes and N . The dotted
horizontal line denotes the theoretically predicted minimum
value.

both. Note that this result is (slightly) better than yet
another approach suggested recently in the literature [8]
that achieves 0.1838 with an algorithm still considerably
more involved than CoreHD.

Besides performing much better than CI, the CoreHD
is also much faster: the 2-core of the network can be com-
puted efficiently using a leaf-removal process with O(N)
operations. After deleting a node, one only needs to up-
date the 2-core, which requires on average O(1) opera-
tions in sparse networks, and is clearly much faster than
updating the CI score. Actually, in sparse networks when
the size of the 2-core is much smaller than the size of the
network, CoreHD is even faster than the HD algorithm
which removes one by one nodes from the whole network.

The computational times for the CoreHG, CI and BPD
algorithms as the system size grows are shown in Fig. 3
for ER network with mean degree c = 3. The BPD al-
gorithm performs slightly better than the CoreHD algo-
rithm but it is much slower. For example, for an ER
network with c = 3 and N = 2 × 108, the solution ob-
tained by CoreHD has relative dismantling/decycling set
size ρ ≈ 0.1407 (computing time is 64 minutes), which
is only slightly larger than the value of ρ ≈ 0.1357 ob-

4

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12

ρ

c

A (ER)

CI4

CoreHD

BPD

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12

ρ

K

B (RR)

CI4

CoreHD

BPD 0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10 11 12

ρ

c

C (SF γ=3.0)

CI4

CoreHD

BPD

FIG. 4. Fraction ρ of removed nodes for (A) Erdős-Rényi (ER) random networks of mean degree c, (B) Regular Random
(RR) networks of degree K, and (C) Scale Free (SF) networks of average degree c and decay exponent γ = 3.0 generated as
in [18]. Each data point obtained by CoreHD is the over 96 instances of size N = 105. The results of CI4 and the results of
BPD are from [5]. In BPD and CI4, at each iteration a fraction f of nodes are removed (with f = 0.01 for BPD and f = 0.001
for CI4, decreasing f does not improve the performance visibly), while in CoreHD nodes are removed one by one.

TABLE I. Comparative results of the CoreHD method with CI and the BPD algorithm on a set of real-world network instances.
N and M are the number of nodes and links of each network, respectively. The number of nodes deleted by CI, CoreHD, and
BPD are listed in the 4th, 5th, and 6th column. The CI and BPD results are from [5]. The time (seconds) for dismantling is
the running time of algorithms, i.e. with time for reading network from the data file excluded.

decycling dismantling Time for dismantling
Network N M CoreHD BPD CI CoreHD BPD CI CoreHD BPD
RoadEU [19] 1177 1417 90 91 209 148 152 0.18 < 0.001 0.1
PPI [20] 2361 6646 365 362 424 357 350 0.91 < 0.001 2.09
Grid [21] 4941 6594 519 512 476 327 320 1.00 < 0.001 0.66
IntNet1 [22] 6474 12572 217 215 198 156 161 5.19 < 0.001 11.32
Authors [23] 23133 93439 8311 8317 3588 2600 2583 87.55 0.09 40.04
Citation [22] 34546 420877 15489 15390 14518 13523 13454 4166 0.2 383.91
P2P [24] 62586 147892 9557 9285 10726 9561 9292 520.59 0.21 50.24
Friend [25] 196591 950327 38911 38831 32340 27148 26696 5361 1.37 588.19
Email [23] 265214 364481 1189 1186 21465 1070 1064 6678 0.39 151.57
WebPage [26] 875713 4322051 208509 208641 106750 51603 50878 2275 9.67 2532
RoadTX [26] 1379917 1921660 243969 239885 133763 20289 20676 273.69 4.07 421.15
IntNet2 [22] 1696415 11095298 229034 228720 144160 73601 73229 19715 35.84 4243

tained by BPD (computing time is 23.5 hours [5]). We
note that in these experiments, in each step of removal,
BPD and CI4 remove 0.1% of nodes (e.g., 10000 nodes
for N = 107), while CoreHD removes only 1 node per
step. Even this way the computational time of CoreHD
is shorter than the time used for reading the network from
the data file (edge-list format, using a c++ procedure).

Fig. 4 presents results for Erdős-Rényi random graphs,
regular random graphs, and scale-free random networks
of varying average degree. In all cases CoreHD works
better than CI and worse than BPD, with the best per-
formance obtained for scale-free networks. The good per-
formance of CoreHD for the scale-free networks is of par-
ticular interest because almost all real-world networks
have a heavy-tailed degree-distribution.

A set of experiments on real-world networks is pre-
sented in Tab. I. We list the fraction of nodes we need
to remove in order to remove all cycles, and in order
to break the network into small components with size
smaller than 0.01N . For dismantling, in addition to Al-

gorithm 1 we do a refinement by inserting back some
deleted nodes that do not increase the largest compo-
nent size beyond the 0.01N . We can see that CoreHD
works excellently for real-world network instances, giving
decycling and dismantling sets very close to the state-of-
art BPD and much smaller than CI. It is also surprising
to see that in some networks e.g. RoadEU, IntNet1 and
RoadTX, CoreHD even outperforms BPD slightly. Tab. I
clearly demonstrates the time superiority of CoreHD for
real-world networks as compared with both CI and BPD.

IV. CONCLUSION AND DISCUSSIONS

We have presented that iteratively removing nodes
having the highest degree from the 2-core of a network
gives an ultra-fast while very efficient algorithm for de-
cycling and dismantling of networks. Our algorithm is
so fast that its running time is shorter than the time of
reading the network file.

5

It is still surprising to us that such a simple algorithm
could work much better than more sophisticated algo-
rithms: We have tried running CI (see Appendix), ad-
jacency matrix centrality on the 2-core of the network,
and HD on 3-core of the network, they are all slower
but perform no better than CoreHD. Our experiments
also show that CoreHD outperforms centrality measures
using left and right eigenvector of the non-backtracking
matrix [27], an idea that originally inspired us to propose
the CoreHD algorithm. More detailed understanding of
why this is the best performing strategy is let for future
work.

On the real-world networks which typically have many
short loops and motifs, decycling is quite different from
dismantling. A natural idea to generalize our CoreHD
would be consider a factor graph treating short loops

and motifs as factors, then do CoreHD on the 2-core of
the factor graph.

Finally, CoreHD can be generalized naturally to re-
moval of the k-core, again running the adaptive DH
heuristics on the k-core or the current graph. Compar-
ison of this strategy to existing algorithms [2, 28] is in
progress.

ACKNOWLEDGMENTS

H.J.Z was supported by the National Basic Research
Program of China (grant number 2013CB932804), the
National Natural Science Foundation of China (grant
numbers 11121403 and 11225526), and the Knowledge
Innovation Program of Chinese Academy of Sciences
(No. KJCX2-EW-J02).

[1] H.-J. Zhou. Spin glass approach to the feedback vertex
set problem. Eur. Phys. J. B, 86:455, 2013.

[2] F. Altarelli, A. Braunstein, L. DallAsta, and R. Zecchina.
Optimizing spread dynamics on graphs by message pass-
ing. Journal of Statistical Mechanics: Theory and Exper-
iment, 2013(09):P09011, 2013.

[3] A. Guggiola and G. Semerjian. Minimal contagious sets
in random regular graphs. Journal of Statistical Physics,
158(2):300–358, 2015.

[4] F. Morone and H. A. Makse. Influence maximization in
complex networks through optimal percolation. Nature,
524:65–68, 2015.

[5] S. Mugisha and H.-J. Zhou. Identifying optimal targets
of network attack by belief propagation. arXiv preprint
arXiv:1603.05781, 2016.

[6] A. Braunstein, L. Dall’Asta, G. Semerjian, and
L. Zdeborová. Network dismantling. arXiv preprint
arXiv:1603.08883, 2016.

[7] S.-M. Qin, Y. Zeng, and H.-J. Zhou. Spin glass phase
transitions in the random feedback vertex set problem.
arXiv preprint arXiv:1603.09032, 2016.

[8] P. Clusella, P. Grassberger, F. J. Pérez-Reche, and
A. Politi. Immunization and targeted destruction of
networks using explosive percolation. arXiv:1604.00073,
2016.

[9] R. M. Karp. Reducibility among combinatorial problems.
In Complexity of computer computations, pages 85–103.
Springer, 1972.

[10] S. Janson and A. Thomason. Dismantling sparse ran-
dom graphs. Combinatorics, Probability and Computing,
17(02):259–264, 2008.

[11] M. Richardson and P. Domingos. Mining knowledge-
sharing sites for viral marketing. In Proceedings of 8th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 61–70, New York, NY,
2002. ACM.

[12] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. Theory of
Computing, 11:105–147, 2015.

[13] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In 2012 IEEE

12th International Conference on Data Mining, pages
918–923. IEEE, 2012.

[14] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Max-
imizing social influence in nearly optimal time. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 946–957. Society for
Industrial and Applied Mathematics, 2014.

[15] R. Albert, H. Jeong, and A.-L. Barabási. Error
and attack tolerance of complex networks. nature,
406(6794):378–382, 2000.

[16] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin.
Breakdown of the internet under intentional attack.
Physical review letters, 86(16):3682, 2001.

[17] S. Bau, N. C. Wormald, and S. Zhou. Decycling num-
bers of random regular graphs. Random Structures &
Algorithms, 21(3-4):397–413, 2002.

[18] K.-I. Goh, B. Kahng, and D. Kim. Universal behavior of
load distribution in scale-free networks. Phys. Rev. Lett.,
87:278701, 2001.

[19] L. Šubelj and M. Bajec. Robust network community de-
tection using balanced propagation. Eur. Phys. J. B,
81:353–362, 2011.

[20] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang,
S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen. Topolog-
ical structure analysis of the protein-protein interaction
network in budding yeast. Nucleic Acids Res., 31:2443–
2450, 2003.

[21] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ netowrks. Nature, 393:440–442, 1998.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and pos-
sible explanations. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discov-
ery in data mining, pages 177–187. ACM, New York,
2005.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolu-
tion: Densification and shrinking diameters. ACM Trans-
actions on Knowledge Discovery from Data, 1:2, 2007.

[24] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design. IEEE Inter-

6

net Comput., 6:50–57, 2002.
[25] E. Cho, S. A. Myers, and J. Leskovec. Friendship and

mobility: User movement in localation-based social net-
works. In ACM SIGKDD International Conference o
Knowledge Discovery and Data Mining, pages 1082–1090,
San Diego, CA, USA, 2011.

[26] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Ma-
honey. Community structure in large networks: Natural
cluster sizes and the absence of large well-defined clus-
ters. Internet Math., 6:29–123, 2009.

[27] P. Zhang. Nonbacktracking operator for the ising model
and its applications in systems with multiple states.
Phys. Rev. E, 91:042120, Apr 2015.

[28] S. Pei, X. Teng, J. Shaman, F. Morone, and H. A. Makse.
Collective influence maximization in threshold models of
information cascading with first-order transitions. arXiv
preprint arXiv:1606.02739, 2016.

[29] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly,
L. Zdeborová, and P. Zhang. Spectral redemption in
clustering sparse networks. Proc. Natl. Acad. Sci. USA,
110(52):20935–20940, 2013.

Appendix A: Greedy Tree Breaking and Refinement
by Insertion

Optimally breaking a forest into small components can
be solved in polynomial time [10]. Empirically a greedy
tree-breaking procedure works very well. In such a greedy
dynamics we iteratively find and remove the node which
leads to the largest drop in the size of the largest con-
nected component.

In more details, the largest component caused by re-
moval of each node in a tree can be computed iteratively
(see, e.g. [5, 6]). Starting from a leaf, each node sends
a message to each of its neighbors, reporting the largest
component caused by removing the edge between them.
After the messages arrive at the root of the tree, we can
then easily identify the node such that its removal de-
creases maximally the component size.

For the refinement, we also use a simple greedy strat-
egy to insert back some of the removed nodes [5, 6]. In
each step of re-insertion, we calculate the increase of the
component size after the insertion of a node, and then
identify the node which gives the smallest increase.

Appendix B: Dangling-tree problem of the CI index

The collective influence index was proposed in [4] as a
measure of node’s importance in influence spreading. At
a given level ` the CI index of a node i is defined as

CI`(i) = (di − 1)
∑
j∈∂`

i

(dj − 1) , (B1)

where di is the degree of node i in the remaining network,
and ∂`i denotes the set of nodes that are at distance `
from node i. In the CI algorithm, a small fraction f
(e.g., f = 0.001) of nodes with the highest CI values
are removed from the network and then the CI indices
of the remaining nodes are updated. The authors of [4]
claimed that the CI`(i) approximates the eigenvector of
the non-backtracking operator [29].

However we can see immediately that CI has a draw-
back which does not reflect the functioning of the non-
bactracking operator. We illustrate this in an example
network shown in Fig. 1. Without loss of generality let
us consider ` = 2, then it is easy to see that the node
i of this figure has CI2(i) > 0 and in some cases can
be larger than the CI indices of the other nodes. So
the CI algorithm may say node i is more important to
remove first, as its removal decreases mostly the eigen-
value of the non-backtracking matrix. After a moment
of thought we see that this conclusion is not correct, as
removing node i does not change the eigenvalue of the
non-backtracking matrix at all, because the eigenvalue
of the non-backtracking matrix is the same as the 2-core
of the network, while node i does not belong to the 2-core
of the network.

Appendix C: Comparing CoreHD and CoreCI

Since performing node deletion on the network 2-core
is the key of CoreHD’s good performance, it is natural
to expect that the CI algorithm can also be improved by
adding the 2-core reduction process. To confirm this, we
implement an extended CI algorithm (named as CoreCI)
as follows. At each elementary node removal step, (1)
the 2-core of the remaining network is obtained by cut-
ting leaves recursively as in CoreHD, and then (2) the CI
index of each node in the 2-core is computed by consid-
ering only nodes and links within this 2-core, and finally
(3) a node with the highest CI index is deleted from the
2-core. Similar to CoreHD and BPD, after a forest is pro-
duced by CoreCI, we then perform a greedy tree-breaking
process if necessary and then re-insert some nodes back
to the network as long as the size of the largest con-
nected component is still below the threshold value of
(say) 0.01N .

We indeed observe that CoreCI performs considerably
better than the original CI algorithm. However it does
not outperform CoreHD. We list in Table II the com-
parative results of CoreHD versus CoreCI on ER, RR,
and SF random networks. Notice that the fractions ρ of
deleted nodes by CoreHD and CoreCI are very close to
each other, with CoreHD performs slightly better. These
results clearly demonstrate that the CI index is not a
better indicator of node importance than the degree in
the 2-core. Because repeatedly computing the CI indices
within the 2-core is still very time-consuming, we recom-
mend CoreHD rather than CoreCI as an efficient heuristic
for practical applications.

7

TABLE II. Comparing the dismantling performance of CoreHD and CoreCI on ER, RR, and SF random networks. Each data
point is the mean and standard deviation of ρ (the fraction of deleted nodes) over 96 dismantling solutions obtained by CoreHD
or CoreCI on 96 independent network instances of size N = 105 and mean degree c (ER and SF) or degree K (RR). The ball
radius of CoreCI is fixed to ` = 4. The SF network instances are generated by the static method [18].

ER RR SF (γ = 3.0)
c CoreHD CoreCI K CoreHD CoreCI c CoreHD CoreCI

3.0 0.1413(3) 0.1427(3) 3 0.25043(3) 0.2539(2) 3.0 0.0886(3) 0.0893(3)
4.0 0.2226(4) 0.2249(4) 4 0.3464(2) 0.3564(3) 4.0 0.1373(4) 0.1383(4)
5.0 0.2908(4) 0.2937(4) 5 0.4110(2) 0.4239(3) 5.0 0.1820(5) 0.1833(5)
6.0 0.3476(4) 0.3509(4) 6 0.4605(3) 0.4733(3) 6.0 0.2222(5) 0.2237(5)
7.0 0.3954(4) 0.3990(4) 7 0.5004(3) 0.5128(3) 7.0 0.2582(5) 0.2560(5)
8.0 0.4361(4) 0.4400(5) 8 0.5335(3) 0.5455(3) 8.0 0.2906(6) 0.2925(6)
9.0 0.4712(4) 0.4752(5) 9 0.5617(3) 0.5733(3) 9.0 0.3196(5) 0.3217(5)

10.0 0.5018(4) 0.5060(4) 10 0.5861(3) 0.5974(4) 10.0 0.3460(6) 0.3481(6)
11.0 0.5288(4) 0.5330(4) 11 0.6075(3) 0.6182(4) 11.0 0.3699(6) 0.3723(6)
12.0 0.5527(4) 0.5571(4) 12 0.6264(3) 0.6367(3) 12.0 0.3918(6) 0.3943(6)

	Fast and simple decycling and dismantling of networks
	Abstract
	I Introduction
	II The CoreHD Algorithm
	III Results
	IV conclusion and discussions
	 Acknowledgments
	 References
	A Greedy Tree Breaking and Refinement by Insertion
	B Dangling-tree problem of the CI index
	C Comparing CoreHD and CoreCI

