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Spectral Bounds for the Ising Ferromagnet
on an Arbitrary Given Graph

Alaa Saade1 Florent Krzakala1,2,3 Lenka Zdeborová3,4

Abstract

We revisit classical bounds of M. E. Fisher on the ferromagnetic Ising model [1], and show
how to efficiently use them on an arbitrary given graph to rigorously upper-bound the partition
function, magnetizations, and correlations. The results are valid on any finite graph, with
arbitrary topology and arbitrary positive couplings and fields. Our results are based on high
temperature expansions of the aforementioned quantities, and are expressed in terms of two
related linear operators: the non-backtracking operator and the Bethe Hessian. As a by-product,
we show that in a well-defined high-temperature region, the susceptibility propagation algorithm
[2] converges and provides an upper bound on the true spin-spin correlations.

1 Introduction

Undirected graphical models, or Markov random fields, are a powerful paradigm for multivariate
statistical modeling. They allow to encode information about the conditional dependencies of a
large number of interacting variables in a compact way, and provide a unified view of inference
and learning problems in areas as diverse as statistical physics, computer vision, coding theory or
machine learning (see e.g. [3, 4] for examples of applications). Arguably one of the oldest and most
prototypical example of a (pairwise) Markov random field is the Ising model, defined by the joint
probability distribution

P (s) =
1

Z
exp

 ∑
(ij)∈E

Jijsisj +
∑
i∈V

hisi

 , (1)

where G = (V = [n], E) is an arbitrary undirected graph, with n vertices and m edges, s ∈ {±1}n is
a collection of binary spins, and the partition function Z is defined by

Z =
∑

s∈{±1}n

∏
(ij)∈E

exp (Jijsisj)
∏
i∈V

exp (hisi) . (2)

We will call this model ferromagnetic if the couplings (Jij)(ij)∈E and the fields (hi)i∈[n] are all
positive. It can be shown ([3]) that the couplings and the fields of the model (1) are in one-to-one
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correspondence with its magnetizations (ma)a∈[n] and susceptibility matrix χ ∈ Rn×n, defined by

ma = E(sa) =
∑

s∈{±1}n
sa P(s) for a ∈ [n] , (3)

χab = E(sasb) =
∑

s∈{±1}n
sasb P(s) for a, b ∈ [n] . (4)

The task of computing the quantities (2,3,4) knowing the joint probability distribution (1) is
sometimes referred to as inference, or direct problem. Its applications include e.g. reconstructing
partially observed binary images in computer vision [5], or similarity-based clustering into 2 groups [6].
Conversely, the task of computing the joint probability distribution (1) knowing the magnetizations
(3) and correlations (4) is usually called learning, or inverse problem. The practical importance
of this inverse task stems from the fact that the model (1) is the maximum entropy model with
constrained means and correlations. In particular, it has found numerous applications in biology
[7, 8], from predicting the three-dimensional folding of proteins, to identifying neural activity patterns.
In machine learning, a variant of this inverse problem is usually referred to as Boltzmann Machine
learning [9], and is a prototypical unsupervised learning problem. In practice, learning is done
through a local optimization of the likelihood function, which involves the partition function (2),
and which gradients involve the magnetizations (3) and correlations (4).

Despite their considerable practical importance, the estimation of these three quantities in general
is a notoriously intractable problem, except in particular cases, notably when the graph G is planar
and the external fields (hi)i∈[n] vanish. In the latter case, explicit expressions exist, originating in
the work of Kac and Ward [10, 11, 12], and allowing to devise polynomial-time inference algorithms
[13]. Recently, [14] proposed a greedy algorithm to approximate an arbitrary graph by a planar one,
thus making inference and learning tractable in a more general setting. Their approach, however,
does not provide bounds on their estimates.

For the case of the ferromagnetic Ising model (1) with positive couplings (Jij)(ij)∈E and fields
(hi)i∈[n], it is well known [15] that the ground-state, i.e. the configuration of the spins with minimum
energy, can be found in polynomial time using graph cuts. This method has been used successfully
in a number of computer vision problems, (see e.g. [16, 17, 5]), where a ferromagnetic Ising model is
used to denoise a partially observed image. Under the same ferromagnetic assumption, sometimes
called attractive or log-supermodular in the machine learning community, [18, 19] showed that the
stationary points of the Bethe free energy allow to lower bound the partition function (2). The proof
of [19] relies on a loop series expansion of the partition function first derived by [20]. In this paper,
we show how to upper bound the marginals, correlations and partition function of the ferromagnetic
Ising model. Interestingly, our results also have a strong connection with the Bethe approximation
(see section 2.3).

The difficulty of inference and learning in the model (1) has prompted the development of a
wealth of numerical methods to approximate the quantities (2,3,4). In the ferromagnetic case, a
particularly important breakthrough originated in the so-called cluster Monte Carlo methods of
[21, 22]. By updating a whole cluster of spins instead of just one, these algorithms can make non-local
moves in the configuration space while still verifying the detailed balance condition. Therefore, they
provide a substantial speed-up over conventional Markov Chain Monte Carlo methods, especially
when the model (1) is near criticality. Other numerical methods are typically based on a low or high
temperature expansion of the quantities of interest, and an exhaustive enumeration of an increasing
number of the terms contributing to this expansion [23]. On the learning side of the problem, [24]
introduced a principled and accurate approximation scheme based on the identification of the clusters
of spins that contribute the most to the entropy of the model. While potentially allowing to reach an

2



arbitrary accuracy in the determination of the quantities (2,3,4), these numerical approaches do not,
by nature, admit a closed-form solution, and do not in general provide bounds on their estimates.

In this work, we prove simple and explicit upper bounds on the three quantities of interest
(2,3,4) for arbitrary graphs. These bounds are valid under two assumptions. First, we consider
the particular case where the couplings (Jij)(ij)∈E and the fields (hi)i∈[n] are positive. Second, we
require the model (1) to be in a well-defined high temperature region, specified by a condition on
the spectral radius of a linear operator associated with the model (1). Our results use the same
starting point as some the intensive numerical methods described previously, but are much simpler
in nature, and provide an efficient closed-form bound, valid on any finite graph, as long as the
couplings and the fields are positive. We therefore expect our results to find natural applications,
e.g. in the inference and learning examples listed above, where the computation of quantities such
as the partition function (2) and the marginals (3,4) play a central role.

Our approach is based on the high temperature expansion of the Ising model, reviewed in section
3.1. For ferromagnetic models, this expansion is composed of positive contributions corresponding
to certain paths on the graph G. Our upper bounds are obtained by noting that the set of such
paths is included in a tractable set of more general walks, for which an analytical expression can be
derived. In this sense, our methodology is reminiscent of the one used in [1] who derived similar
upper bounds. The crucial difference between our work and [1] is that whereas [1] derives formulas
for specific regular lattices in the thermodynamic limit, our results are applicable to arbitrary finite
graphs and arbitrary positive couplings and are therefore not only of theoretical interest, but can be
readily incorporated into data processing algorithms.

1.1 Notations and definitions

We will denote the set of edges of a graph G as E(G). We will call n the number of vertices in G
and m the number of edges. For any integer k ≥ 1, we denote by [k] the set of integers greater or
equal to 1 and lower or equal to k. For any vertex i ∈ [n], ∂i will denote the set of neighbors of i in
the graph G. Recall that the spectral radius ρ(A) of a linear operator A is defined as

ρ(A) = max
λ∈Sp(A)

|λ| , (5)

where Sp(A) denotes the eigenvalue spectrum of A. For the Ising model in vanishing fields (8) on a
finite graph G, we define the non-backtracking operator B ∈ R2m×2m, acting on the directed edges
of the graph, by its elements

B(i→j),(k→l) = tanh(Jkl)1(i = l)1(j 6= k) . (6)

Finally, we define the Bethe Hessian operator H ∈ Rn×n with elements

Hij = 1(i = j)

(
1 +

∑
k∈∂i

tanh(Jik)
2

1− tanh(Jik)2

)
− 1(j ∈ ∂i) tanh(Jij)

1− tanh(Jij)2
. (7)

The non-backtracking operator, known as the Hashimoto matrix in graph theory [25], was first
introduced in the context of inference by [26], who used it as the basis of a spectral community
detection method. Other applications of the non-backtracking operator to retrieval in the Hopfield
model and to similarity-based clustering are studied in [27, 28]. The use of the Bethe Hessian
in inference was pioneered in [29], where its connection with the non-backtracking operator is
highlighted in the context of community detection. Other applications to matrix completion and
similarity-based clustering are considered in [30, 28]. Note that the Bethe Hessian corresponds to
the Hessian of the Bethe free energy of the Ising model (8), i.e. to the inverse susceptibility matrix
in the Bethe approximation [30].
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1.2 Assumptions

Our results hold for arbitrary finite graphs G, provided the two following conditions hold.

• First, we assume that all the couplings (Jij)(ij)∈E as well as the external fields (hi)i∈[n] are
non-negative.

• Second, we assume that the model (1) is in a high temperature region, specified by the condition
on the spectral radius of the non-backtracking matrix ρ(B) < 1.

It will prove convenient to restrict our analysis to the Ising model in vanishing external fields,
defined by

P(s) =
1

Z
exp

∑
(ij)∈E

(Jijsisj) . (8)

This is in fact not a restriction, as any n-spin Ising model with fields can be expressed as a n+ 1-spin
model without fields, so that model (8) is as expressive as model (1) [1]. To make this claim precise,
we will use proposition 1 in [14], which we recall here for completeness.

Proposition 1.1. (proposition 1 in [14]) Consider the Ising model (1) on the graph G = ([n], E(G)),
with couplings (Jij)(ij)∈E(G) and fields (hi)i∈[n], and corresponding partition function Z, mag-
netizations (ma)a∈[n], and correlations (χab)(a,b)∈[n]2. Define another Ising model on the graph
Ĝ = ([n+ 1], E(G) ∪ {(i, n+ 1), ∀i ∈ [n]}) with vanishing fields, and couplings

Ĵij =

{
Jij if j < n+ 1

hi if j = n+ 1
. (9)

Call Ẑ its partition function, and (χ̂ab)(a,b)∈[n+1]2 its correlations. Then Ẑ = 2Z and

χ̂ab =

{
χab if a < n+ 1 and b < n+ 1

ma if a < n+ 1 and b = n+ 1
. (10)

We will therefore consider model (8) in the following, and bound its partition function and
correlations, which will yield a bound on the partition function, magnetizations and correlations of
model (1). Note also that from proposition 1.1, the new couplings (Ĵij)(ij)∈E(Ĝ) are positive if and
only if both the original couplings (Jij)(ij)∈E(G) and fields (hi)i∈[n] are positive.

1.3 Algorithms

Before stating our rigorous results in the next section, we describe here the corresponding procedures
to upper bound the partition function, magnetizations and correlations of the Ising model on a given
graph. As will be apparent from the upcoming results, our bounds can be expressed either using the
non-backtracking operator or the Bethe Hessian. Compared to the former, the latter is a smaller,
real and symmetric matrix. We therefore present here algorithms relying on the Bethe Hessian in
the interest of numerical efficiency.

As stated in the previous section, when given a general Ising model with finite fields of the form
(1), our first step, common to both the two upcoming procedures, is to define an associated Ising
model in vanishing fields of the form (8). By bounding the partition function and correlations of the
resulting model in vanishing fields, we obtain bounds on the partition function, magnetizations, and
correlations of the original model using the correspondence recalled in proposition 1.1.
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Algorithm 1 Bound on the log partition function of the Ising model in vanishing fields
Input: Graph G = (n,E(G)), couplings (Jij)(ij)∈E(G)

Output: Upper bound L on the log partition function logZ
1: Build the Bethe Hessian of equation (7)
2: Output L = n log 2− 1

2 log det(H) + 2
∑

(ij)∈E(G) log cosh(Jij)

Algorithm 1 describes our procedure to estimate the logarithm of the partition function. We
will show in the following that under the assumptions of section 1.2, this simple algorithm yields
an upper bound that we expect to be most accurate on graphs containing few (or large) loops. We
note that on sparse graphs, the logarithm of the determinant of the Bethe Hessian can be computed
efficiently by first performing a Cholesky decomposition of the sparse matrix H.

Algorithm 2 Bounds on the correlations of the Ising model in vanishing fields
Input: Graph G = (n,E(G)), couplings (Jij)(ij)∈E(G)

Output: Upper bounds cab on the correlations χab, for a, b ∈ [n]
1: Build the Bethe Hessian of equation (7)
2: Output cab =

(
H−1

)
ab

for a, b ∈ [n]

Algorithm 2 yields an estimate of the correlations in the Ising model with vanishing fields which
we will show to be an upper bound under the conditions of section 1.2. Note again that this algorithm
can be used to compute an upper bound on the magnetizations of an Ising model with finite fields
using proposition 1.1. Once more, for sparse models, this procedure can be made numerically efficient
by using sparse linear solvers instead of directly inverting the Bethe Hessian.

2 Main results

We now state our main results and some of their consequences, leaving the proofs to the next section.

2.1 Bound on the partition function

Our first result is an upper bound on the partition function (2).

Theorem 2.1. Consider model (8) with positive couplings Jij > 0 for (ij) ∈ E(G). Assume that
the spectral radius ρ(B) < 1, where B is the non-backtracking matrix defined in (6), and let H be the
Bethe Hessian defined in (7). Then

Z ≤ 2n det (I− B)−1/2
∏

(ij)∈E(G)

cosh(Jij) = 2n det(H)−1/2
∏

(ij)∈E(G)

cosh(Jij)
2 . (11)

Note that the non-backtracking matrix is a large (2m×2m), non-symmetric object, non-trivial to
build or manipulate. The equality in (11) allows to compute this bound without having to build the
non-backtracking matrix, by using instead the smaller (n× n) and symmetric Bethe Hessian. This
last equality is a simple consequence of the Ihara-Bass formula, which, in its multivariate version
([31], theorem 2) states that

det(I− B) = det(H)
∏

(ij)∈E(G)

cosh(Jij)
−2 . (12)
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In particular, this formula implies that on any finite graph, H is non-singular if ρ(B) < 1. In the
thermodynamic limit n→∞, some subtleties arise, as discussed in the next section.

As will be apparent from the proof, this bound is based on an over-counting of the subgraphs of
G contributing to the high temperature expansion of the partition function (see section 3.1). These
subgraphs correspond to closed paths (i.e. closed self-avoiding walks) that are notoriously hard to
count [32]. To derive an analytical upper bound on the partition function, the set of contributing
subgraphs must be included in a larger set of walks on the graph G which contribution can be
computed analytically. A simple bound can be obtained by including the set of closed paths in the
set of all closed walks on the graph G. This approach yields an analytical bound similar to Theorem
2.1 expressed in terms of the adjacency matrix of the graph, namely

Z ≤ 2ndet (I−A)−1
∏

(ij)∈E(G)

cosh(Jij) , (13)

whenever ρ(A) < 1, where A is the weighted adjacency matrix of the graph G, with entries
Aij = tanh(Jij)1(i ∈ ∂j) (see section 3.2 for details). This bound is, however, too loose, because
it counts many spurious contributions, in particular walks that are allowed to go back and forth
on the same edge. We improve this bound by forbidding that the walk immediately backtracks to
the previous edge. This is achieved by replacing the adjacency matrix with the non-backtracking
operator. From the proof of section 3.2, it is straightforward to see that the bound (11) is less
tight if the graph G contains many loops. In practice, however, figure 1 shows that using the
non-backtracking operator instead of the adjacency matrix leads to a dramatic improvement, even
in the case of a 3D lattice Ising model, which has many loops.

2.2 Bound on the susceptibility

We now state our upper bound on the correlations, encoded in the susceptibility matrix χ of
equation (4).

Theorem 2.2. Consider model (8) with positive couplings Jij > 0 for (ij) ∈ E(G). Assume that
ρ(B) < 1, where B is the non-backtracking matrix defined in (6). Define the matrices P,Q ∈ Rn×2m
by their elements, for a ∈ [n], (ij) ∈ E(G):

Pa,(i→j) = tanh(Jij)1(a = j), Qa,(i→j) = 1(a = i) . (14)

Then
χ ≤ P(I− B)−1Qᵀ + In×n , (15)

where the inequality holds element-wise.

Once more, it is possible to express this last result in terms of the Bethe Hessian rather than the
non-backtracking operator, yielding a surprisingly simple result.

Corollary 2.3. Let H be the matrix defined in (7). Under the same assumptions as theorem 2.2, it
holds that H is invertible, and

χ ≤ H−1 , (16)

where the inequality holds element-wise.

As for the partition function, these bounds rely on the inclusion of the set of paths between two
spins in a larger, tractable set of walks on the graph G (see section 3.3). More precisely, expression
(15) follows from the inclusion of the set of paths between two fixed spins a, b ∈ [n] in the set of
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non-backtracking walks starting at a and ending at b. If we allow these walks to backtrack, i.e. if we
include the set of paths in the set of all walks, we get the looser bound

χ ≤ (In −A)−1 , (17)

whenever ρ(A) < 1 where A is the weighted adjacency matrix with elements Aij = tanh(Jij)1(i ∈ ∂j).
Once more, forbidding backtracking allows to dramatically improve the bound on the susceptibility,
as shown in figure 1.

While valid only on finite graphs, these results allow us, in certain cases, to derive a bound on
the paramagnetic to ferromagnetic phase transition. More precisely, for a sequence of Ising models,
the previous results allow to bound the scalar susceptibility, defined as

χ̄ :=
1

n

n∑
x,y=1

χxy . (18)

Corollary 2.4. Consider a sequence (Ip)p∈N of Ising models of the form (8), each of them defined
on a graph Gp, with positive couplings J (p)

ij > 0, for (ij) ∈ E(Gp), and scalar susceptibility (18)
denoted χ̄p. Define Bp to be the non-backtracking operator defined in (6) for the Ising model Ip, and
assume that ∀p ∈ N, ρ(Bp) < 1. Define Hp to be the Bethe Hessian defined in (7) for the Ising model
Ip, and let λmin(Hp) denote its smallest eigenvalue. Assume that there exists ε > 0 such that ∀p ∈ N,
λmin(Hp) > ε. Then ∀p ∈ N,

χ̄p ≤
1

ε
(19)

Proof: For any fixed p ∈ N, let np be the number of vertices of the graph Gp. Defining Up ∈ Rnp to
be the vector with all its entries equal to 1, and denoting by ||.||p the Euclidean norm, we have from
Corollary 2.3

χ̄p ≤
1

np

np∑
x,y=1

(Hp)
−1
xy =

Up
ᵀH−1p Up

||Up||2p
≤ ρ(H−1p ) =

1

λmin(Hp)
≤ 1

ε
, (20)

where we have used that the matrix Hp is symmetric.

For sequences of graphs that admit a thermodynamic limit, Corollary 2.4 implies a condition
under which the infinite Ising model is in the paramagnetic phase, therefore yielding a bound on
the paramagnetic to ferromagnetic transition. As an explicit example, let us consider the case of a
sequence (Gp)p∈N of d-regular graphs with uniform couplings Jij = β. We assume that the number
of vertices in Gp goes to infinity as p→∞. It is straightforward to check that, for any p ∈ N,

ρ(Bp) = (d− 1) tanh(β) and λmin(Hp) = 1− d tanh(β)

1 + tanh(β)
. (21)

By application of Corollary 2.4, it follows that if

(d− 1) tanh(β) < 1 , (22)

the scalar susceptibility χ̄p remains bounded. Equivalently, if the sequence admits a thermodynamic
limit with a phase transition at βc, then

βc ≥ atanh
1

d− 1
. (23)
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Interestingly, the right hand side of the last equation corresponds to the critical inverse temperature in
the Bethe approximation, which is already known to be a lower bound on βc for certain ferromagnetic
models on hypercubical lattices [1]. Our contribution generalizes such previous results, giving a
simple algorithm to derive a lower bound on arbitrary graphs, with arbitrary (positive) couplings. It
is worth noting that, perhaps unsurprisingly, this bound is tight on sparse random d-regular graphs
with uniform couplings ∀(ij) ∈ E(G), Jij = β. Indeed, on such locally tree-like graphs, the existence
of the thermodynamic limit has been proved, and, the critical temperature has been shown to verify
(d− 1) tanh(β) = 1 [33, 34]. More generally, we expect the implicit bound provided by Corollary 2.4
on the transition of the Ising model to be tight on any sparse random graph ensemble whose degree
distribution has a finite second moment.

From the Ihara-Bass formula (12), it holds that on any finite graph, λmin(H) > 0 as long as
ρ(B) < 1. Therefore one may expect that the condition on the smallest eigenvalue of Hp in Corollary
2.4 could be relaxed, e.g. by assuming instead that ρ(B) < 1− ε for some ε > 0. This relaxation
turns out to be not possible, because it may happen that the spectral radius of B is bounded away
from 1, while the smallest eigenvalue of H tends to 0, the limit p → ∞. As an example, take Gp
to be the star graph with np = p+ 1 spins and edges (i, n+ 1) for i ∈ [n], and uniform couplings
Jij = β. Since Gp is a tree, and the non-backtracking operator is nilpotent on trees, it holds that
ρ(Bp) = 0 for all p. On the other hand, the spectrum of Hp can be computed explicitly, and its
smallest eigenvalue shown to verify

λmin(Hp) ∼
p→∞

1

p tanh(β)2
−→
p→∞

.0 (24)

2.3 Relation to belief propagation and susceptibility propagation

A standard approximation to compute the magnetizations of model (8) is the belief propagation
algorithm, or cavity method in statistical physics [35], which solutions can be shown to yield
stationary points of the Bethe free energy [36]. Belief propagation is a recursive message-passing
algorithm that approximates the magnetizations mi = E(si) as

mi ≈ tanh

(∑
l∈∂i

atanh (ml→i tanh Jil)

)
, (25)

where the so-called cavity fields (mi→j)(i→j)∈ ~E(G) are defined on the set ~E(G) of directed edges of
G, and verify the fixed point equation

mi→j = tanh

 ∑
l∈∂i\j

atanh (ml→i tanh Jil)

 . (26)

In practice, starting from a random initial condition, one iterates equation (26) until convergence,
and outputs the result of (25). Belief propagation is known to be exact on trees, and widely believed
to yield asymptotically accurate results for sparse, locally-tree like graphs, as well as models with
small couplings [35].

The message-passing approach can be extended to allow the computation of the correlations
χij for any i, j ∈ [n] using the fluctuation dissipation theorem. The resulting algorithm is called
susceptibility propagation [37, 2], and approximates χij as

χij ≈ (1−m2
i )

(
1(i = j) +

∑
l∈∂i

χl→i,j tanh Jil

1−m2
l→i tanh2 Jil

)
, (27)
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where the (mi→j)(i→j)∈ ~E(G) are the fixed point of (26), the (mi)i∈[n] are the belief propagation
estimates of the magnetization derived from (25) and the (χi→j,k)(i→j)∈ ~E(G),k∈[n] verify the fixed
point equation

χi→j,k = (1−m2
i→j)

1(i = k) +
∑
l∈∂i\j

χl→i,k tanh Jil

1−m2
l→i tanh2 Jil

 , (28)

Similarly to belief propagation, starting from a random initial condition, equation (28) is first
iterated until convergence, and the correlations are then estimated from equation (27). Note that
it is possible to invert the relation between the susceptibilities and the couplings, resulting in an
inference algorithm for solving the inverse Ising model. This algorithm has been shown to yield
better results than other mean field approaches on certain problems ([37, 38]).

While only exact on trees, both belief propagation and susceptibility propagation have been
observed to yield good approximate results on more general topologies, when they converge. However,
these algorithms are based on the Bethe approximation [36], which, unlike the naive mean-field
approach, does not provide bounds on the actual partition function [3]. The following result might
therefore appear surprising.

Corollary 2.5. Consider model (8) with positive couplings Jij > 0 for (ij) ∈ E(G). Assume that
ρ(B) < 1, where B is the non-backtracking matrix defined in (6). Then (mi→j = 0)(i→j)∈ ~E(G)

is a stable fixed point of the belief propagation recursion (26). Additionally, the corresponding
susceptibility propagation algorithm converges, and yields an upper bound on the true correlations,
regardless of the topology of the graph.

Proof: The fact that (mi→j = 0)(i→j)∈ ~E(G) is a fixed point of belief propagation is readily checked
on equation (26). To see that it is stable, starting from a small perturbation δm0

i→j , we have at first
order at iteration t ≥ 1

δmt
i→j =

∑
l∈∂i\j

δmt−1
l→i tanh Jil , (29)

which in matrix form can be written δmt = B δmt−1. The stability of this fixed point follows from
the assumption ρ(B) < 1. The corresponding belief propagation solution is mi = 0,∀i ∈ [n]. The
corresponding susceptibility propagation recursion reads

χi→j,k = 1(i = k) +
∑
l∈∂i\j

χl→i,k tanh Jil . (30)

Define a vector χk ∈ R2m with elements χi→j,k, for (i→ j) ∈ ~E(G), and call Qk the k-th line of the
matrix Q defined in Theorem 2.2. Then equation (30) can be rewritten in matrix form as

χk = Qk
ᵀ + Bχk . (31)

which solution χk = (I − B)−1Qk
ᵀ exists and is unique, since ρ(B) < 1. Iterating equation (30)

starting from the initial condition χ0
k, we get at iteration t ≥ 1

χtk − χk = B
(
χt−1k − χk

)
, (32)

so that χtk → χk as t → ∞, using again that ρ(B) < 1. Finally, using equation (27), it is
straightforward to check that the correlations output by susceptibility propagation are given in
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matrix form by P(I − B)−1Qᵀ + In×n, which is, by Theorem 2.2, an upper bound on the true
correlations.
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Figure 1: Numerical simulation of the 3D lattice Ising model with n = 323 spins, with periodic
boundary conditions, and uniform couplings Jij = β. The left panel is the scalar susceptibility χ̄ of
equation (18), and the right panel is the logarithm of the partition function defined in equation (2).
For both quantities we represented the exact value obtained via a computationally expensive Monte
Carlo simulation (using the Wolff algorithm [22]), and the upper bounds (11) and (16) expressed
in terms of the Bethe Hessian operator. The dashed lines signal the critical temperature βc of the
3D Ising model as computed numerically in [39], and the lower bound on this critical temperature
provided by the Bethe Hessian (23). Finally, we included for comparison the upper bound obtained
by using the adjacency matrix A instead of the non-backtracking matrix (equations (13) and (17)).

3 Proofs

3.1 High temperature expansion

Central to our results is the high temperature expansion of the partition function, which we quickly
rederive here. We use the following rewriting of the Boltzmann weight, relying on the fact that the
spins are binary variables equal to ±1

exp (Jijsisj) = aij(1 + bijsisj) , (33)
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with aij = cosh(Jij), bij = tanh(Jij). The partition function of model (8) is given by

Z =
∑

s∈{±1}n

∏
(ij)∈E(G)

exp (Jijsisj) (34)

=

 ∏
(ij)∈E(G)

aij

 ∑
s∈{±1}n

∏
(ij)∈E(G)

(1 + bijsisj) (35)

=

 ∏
(ij)∈E(G)

aij

 ∑
s∈{±1}n

1 +
∑

(ij)∈E(G)

bijsisj +
∑

(ij),(kl)∈E(G)

bijbklsisjsksl + · · ·

 . (36)

After summing on the spin configurations s ∈ {±1}n, the only terms in the expansion that do not
vanish are the ones supported on a subgraph of G where all nodes have even degree. These are
closed paths (not necessarily connected). Each of these closed paths contribute a factor 2n to the
partition function. We can therefore rewrite the partition function in the following form, called high
temperature expansion

Z = 2n

 ∏
(ij)∈E(G)

aij

1 +
∑
g∈C

∏
(ij)∈E(g)

bij

 , (37)

where C is the set of closed paths, possibly disconnected.

3.2 Proof of Theorem 2.1

We now introduce the set Ccl of connected closed paths of length l. We denote by Wc
l the sum of all

contributions to the partition function coming from connected closed paths of length l ≥ 1, i.e.

Wc
l =

∑
g∈Ccl

∏
(ij)∈E(g)

bij . (38)

We have the inequality

Z ≤ 2n

 ∏
(ij)∈E(G)

aij

1 +
∑
l≥1

∑
nc≥1

1

nc!

∑
l1+l2+···+lnc=l

Wc
l1W

c
l2 · · ·W

c
lnc

 (39)

≤ 2n

 ∏
(ij)∈E(G)

aij

1 +
∑
nc≥1

1

nc!

∑
l≥1
Wc
l

nc
 . (40)

Indeed, the product Wc
l1
Wc
l2
· · ·Wc

lnc
contains all the contributions coming from disconnected closed

paths which connected components are of size l1, · · · , lnc . The factor nc! accounts for all the
permutations of the factors in this product. This is only an inequality because we are counting
graphs in which some edges appear more than once. However, the factors Wc

l are still hard to
compute, and we will look for an upper bound. A simple upper bound can be derived by considering
a weighted version of the adjacency matrix of the graph. Define A ∈ Rn×n by its entries

Aij =

{
bij if (ij) ∈ E(G)
0 otherwise , (41)
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then it holds that

Wc
l ≤

TrAl

l
. (42)

Indeed, the right hand side contains all contributions coming from closed walks that start and end
at the same point. The factor 1/l accounts for the choice of the starting point. However, as hinted
at in section 2.1, this upper bound is loose, because the adjacency matrix allows backtracking, and
therefore going back and forth on the same edge, whereas such contributions do not appear in the
partition sum. To improve this bound, we use a matrix that forbids backtracking: the operator B of
equation (6). Since connected closed paths are closed non-backtracking walks (although the converse
is not true), it holds that

Wc
l ≤

TrBl

2l
. (43)

where the additional factor 1/2 accounts for the degeneracy due to the orientation of the non-
backtracking closed walk. Under the assumption that ρ(B) < 1, the following bound holds:

∑
l≥1
Wc
l ≤

∑
l≥1

TrBl

2l
= −1

2
Tr log(I− B) = −1

2
log det(I− B) , (44)

where I ∈ R2m×2m is the identity matrix. This, along with the Ihara-Bass formula (12) completes
the proof of Theorem 2.1.

3.3 Proof of Theorem 2.2

The correlation functions are given, for any x, y ∈ [n], by

E(sxsy) =

∑
s∈{±1}n

sxsy
∏

(ij)∈E(G)

(1 + bijsisj)∑
s∈{±1}n

∏
(ij)∈E(G)

(1 + bijsisj)
=

∑
g∈Pxy+C

∏
(ij)∈E(g)

bij

1 +
∑
g′∈C

∏
(ij)∈E(g′)

bij
(45)

where:

• Pxy is the set of paths from x to y.

• C is, as in the previous section, the set of closed paths.

• Pxy + C is the set of diagrams made of a path from x to y and any number of disconnected
closed paths such that each edge is selected at most once. The closed paths therefore do not
intersect the path from x to y.

We assume without loss of generality that x 6= y. From the previous definitions, we have that

E(sxsy) ≤

( ∑
g∈Pxy

∏
(ij)∈E(g)

bij

)(
1 +

∑
g′∈C

∏
(ij)∈E(g′)

bij

)
1 +

∑
g′∈C

∏
(ij)∈E(g′)

bij
=
∑
g∈Pxy

∏
(ij)∈E(g)

bij . (46)

Indeed, developing the product at the numerator gives a sum of positive contributions including the
ones in Pxy + C and also (positive) spurious contributions coming from diagrams where the closed

12



loops intersect the path from x to y. We now introduce the set N l
(x→x′),(y′→y) of non-backtracking

walks of length l, starting on the directed edge (x→ x′) and terminating on the edge (y′ → y). For a
non-backtracking walk w, we denote by E(w) the list of edges crossed by w, where each edge appears
with a multiplicity equal to the number of times w crosses this edge. Since any path in Pxy is a
non-backtracking walk (though the reverse is again, in the presence of loops, not true), it holds that

E(sxsy) ≤
∑
l≥1

∑
x′∈∂x
y′∈∂y

∑
w∈N l

(x→x′),(y′→y)

∏
(ij)∈E(w)

bij (47)

where ∂x denotes the set of neighbors of x in the graph G. In order to write this last expression
in terms of the non-backtracking operator, we introduce the vector ux→x′ ∈ R2m with entries all
equal to 0 except for the (x → x′) entry, which is equal to 1. Similarly, we introduce the vector
vy′→y ∈ R2m which only non-zero entry is equal to byy′ , in position (y → y′). Then we have∑

g∈N l
(x→x′),(y′→y)

∏
(ij)∈E(g)

bij = (vy′→y)
ᵀ Bl−1 ux→x′ , (48)

so that

E(sxsy) ≤

∑
y′∈∂y

vy′→y

ᵀ∑
l≥1

Bl−1

(∑
x′∈∂x

ux→x′

)
(49)

≤

∑
y′∈∂y

vy′→y

ᵀ

(I− B)−1

(∑
x′∈∂x

ux→x′

)
(50)

where we have used the assumption ρ(B) < 1, so that the series of powers of B is summable. To
write this last equation in a more compact way, recall the definition of the susceptibility matrix
χ ∈ Rn×n, with elements χxy = E(sxsy). Then it holds element-wise that

χ ≤ P(I− B)−1Qᵀ + In×n (51)

where P,Q ∈ Rn×2m are defined in equation (14). Note that the addition of an identity matrix
ensures that the inequality also holds on the diagonal of χ. This completes the proof of Theorem 2.2.

3.4 Proof of Corollary 2.3

The corollary will follow from the following lemma, which is of independent interest because it
provides another connection between the non-backtracking matrix and the Bethe Hessian, besides
the Ihara-Bass formula (12).

Lemma 3.1. Let B be the non-backtracking matrix matrix defined in (6), and H the Bethe Hessian
defined in (7). Let P,Q be the matrices defined in (14). Assume that I− B is invertible. Then H is
also invertible, and

P(I− B)−1Qᵀ + In×n = H−1 . (52)

Proof: The fact that H is invertible if I− B is invertible follows from the Ihara-Bass formula (12).
Take x ∈ Rn, and call y = (I− B)−1Qᵀx. We wish to show that HPy + Hx = x. Denoting by (Py)i
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for i = 1 · · ·n the i-th component of the vector Py, we have

(Py)i =
∑
(k→l)

bklδilyk→l (53)

=
∑
k∈∂i

bkiyk→i . (54)

y verifies the following equation

(I− B)y = Qᵀx (55)

so that for all directed edges (i→ j)

yi→j −
∑
k∈∂i\j

bikyk→i = xi (56)

which can be rewritten as

yi→j − (Py)i + bijyj→i = xi , (57)
yj→i − (Py)j + bijyi→j = xj , (58)

where the second equation is for the link (j → i). Together, these two questions form a closed set of
equations allowing to compute yi→j and yj→i. More precisely, we get

yi→j =
1

1− b2ij

(
xi + (Py)i − bij (xj + (Py)j)

)
. (59)

We can now insert this expression in eq. 54 and get

(Py)i =
∑
k∈∂i

bikyk→i =
∑
k∈∂i

bik
1− b2ik

(
xk + (Py)k − bik (xi + (Py)i)

)
(60)

which is equivalent to(
1 +

∑
k∈∂i

b2ik
1− b2ik

)
(Py)i −

∑
k∈∂i

bik
1− b2ik

(Py)k =
∑
k∈∂i

bik
1− b2ik

xk −

(∑
k∈∂i

b2ik
1− b2ik

)
xi (61)

which in matrix form reads

HPy = −Hx+ x (62)

which completes the proof.
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