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Abstract— We consider the problem of Gaussian mixture
clustering in the high-dimensional limit where the data consists
of m points in n dimensions, n,m → ∞ and α = m/n stays
finite. Using exact but non-rigorous methods from statistical
physics, we determine the critical value of α and the distance be-
tween the clusters at which it becomes information-theoretically
possible to reconstruct the membership into clusters better
than chance. We also determine the accuracy achievable by
the Bayes-optimal estimation algorithm. In particular, we find
that when the number of clusters is sufficiently large, r >
4+2

√
α, there is a gap between the threshold for information-

theoretically optimal performance and the threshold at which
known algorithms succeed.

Clustering m points in n-dimensional space is a ubiqui-
tous problem in statistical inference and data science. It is
especially challenging in the (practically relevant) context of
high-dimensional statistics when the dimension n is large (so
that there are many degrees of freedom) but the number of
points m is only linear in n (so that the available information
is limited). An important special case is the problem of
clustering points generated by Gaussian mixture models
(GMM). These are probabilistic models where all the data
points are generated from a mixture of a finite number r of
Gaussian distributions.

In this paper, we are interested in understanding the
fundamental limits on our ability to cluster points generated
from GMM in the high-dimensional regime, when m,n →
∞ while m/n = α is finite. We consider both a compu-
tational and an information theoretic viewpoint, and wish
to answer the following questions: Given data generated by
a GMM, (i) what is the best possible estimate, information-
theoretically, of the parameters of the Gaussian mixtures, and
of the individual assignments of the points? (ii) Are such
optimal estimates computationally feasible in practice by
polynomial-time algorithms? (iii) How do standard, widely
used, methods such as principal component analysis [1, 2]
compare with these optimal predictions?

We adress these questions by taking advantage of the
recent burst of activity in the related problem of low-rank
matrix factorization, using the cavity method from statistical
physics [3] and the associated approximate message passing
(AMP) algorithm [4, 5]. We shall not attempt at mathematical
rigor here, but it is worth noting that recent progress on
closely related problems [6–8] is likely transferable to the
present situation.

I. MODEL AND SETTING

Consider data generated by a GMM with r clusters: for
each k ∈ {1, . . . , r} we draw each coordinate of Vk ∈ Rn
from a Gaussian of zero mean and unit variance. We then
generate m = αn points x1, . . . , xm ∈ Rn independently
as follows: for each j, choose tj ∈ {1, . . . , r} uniformly at
random, and set xj =

√
ρ/nVtj + Uj where Uj ∈ Rn and

has mean 0 and variance ∆ in each coordinate. Here ρ is a
parameter playing the role of the signal to noise ratio and
the
√
ρ/n factor ensures that the displacement of the centers

is of the same order as the fluctuation of a high-dimensional
Gaussian point around the surface of a sphere of radius n.
We consider the limit n→∞, while α, ρ,∆ = O(1).

Using this generative model makes the clustering problem
a non-trivial one: the clusters overlap significantly; assigning
points to clusters without errors is impossible and it is also
impossible to recover exactly the parameters of the GMM.
We thus ask instead what is the best possible overlap with the
ground-truth clusters. It is instrumental to view this problem
as noisy low-rank matrix factorization. Specifically, let V
denote the n×r matrix whose kth column is Vk, and let S
be the m×r matrix where Sjk=1 if tj=k and 0 otherwise.
We denote by vi, sj ∈ Rr the ith and jth rows of V and S;
note that vi is the vector of the ith coordinate of the cluster
centroids. Then the observed data X is an n×m matrix

X =

√
ρ

n
V S> + U , (1)

where U is a Gaussian i.i.d. n×m random matrix with mean
0 and variance ∆. Thus X is a noisy observation of a matrix
V S> of rank r. We shall use without loss of generality ∆ =
1, as other values of ∆ simply cause a rescaling of the signal-
to-noise ratio ρ.

Assuming the data is generated by model (1), we want
to know how well we can reconstruct the true cluster
assignments {tj} and cluster centers {Vk}. To answer these
questions, we use Bayesian inference. The generative model
for the data is

P (X,S, V ) = P (S)P (V )P (X|S, V )

=

n∏
i=1

Pv(vi)

m∏
j=1

Ps(sj)

n∏
i=1

m∏
j=1

e
− 1

2∆

(
Xij−

√
ρv>i sj√
n

)2

,
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where Pv and Ps are the probability distributions from which
the cluster centers vi and assignments sj are drawn. We take
Pv to be Gaussian with mean zero and covariance matrix Ir.
Since the labels tj are uniform, Ps is the uniform distribution
over the r canonical basis vectors

Pv(v) =
1

(2π)r/2
exp

(
−‖v‖22

2

)
, (2)

Ps(s) =
1

r

∑
i=1···r

δ (s− ~ei) . (3)

Using Bayes’ rule to compute the posterior probability of S
and V given the data X , one gets

P (S, V |X) =
1

P (X)

n∏
i=1

Pv(vi)

m∏
j=1

Ps(sj)

e
− 1

2∆

∑
ij

(
Xij−

√
ρv>i sj√
n

)2

. (4)

We denote the ground truth cluster centers and assign-
ments used to generate X as V0 and S0. We assume that
the correct prior distributions (2) and (3) are known to the
algorithm and analysis; specifically, the correct number of
clusters r and the parameters ρ,∆. We call this the Bayes-
optimal setting. The question of what happens when the
model is incorrect is also interesting, but in this article we
let is aside. We note, however, that taking the limit ρ→∞
and ∆ → 0 in the Bayesian setting would correspond to
the minimization problem that the k-means algorithm [9] is
trying to solve. The objective of soft k-means corresponds
instead to the Bayesian setting in the limit ρ → 0 while
retaining a nonzero noise level ∆. Spectral methods, on the
other hand, are equivalent to Bayesian inference where one
abandons the hard constraint that the labels tj are discrete,
and effectively replace Ps with a Gaussian prior.

The above Bayesian approach converts the problem of
estimating an assignment of points to clusters that maximizes
the number of correctly assigned points to the problem
of computing marginal probabilities of the posterior dis-
tribution. The mean squared error in estimating V0 from
X is minimized by using the (marginalized) conditional
expectation of V given the data [10]. For estimation of S0 we
aim to minimize the number of mis-classifications. The cor-
responding Bayes-optimal estimator ŜMaxProb is constructed
by assigning each data point to the cluster that, according
to the marginals of (4), it is most likely to belong to.
Given ŜMaxProb, the overlap between the estimated cluster
assignments and the ground truth is defined as

ErrorRate =
1

m
Tr
(
Ŝ>MaxProbS0

)
(5)

Overlap =
ErrorRate− 1/r

1− 1/r
. (6)

The ErrorRate is the percentage of correctly assigned points.
This rate is 1 when the reconstruction is perfect. When
taking the assignment at random the ErrorRate is 1/r. The
normalization in (6) is introduced in order to have a quantity
that varies between 0 meaning no better reconstruction that
chance, to 1 meaning perfect reconstruction.

The marginal posterior probabilities of the vi and sj are,
however, difficult to compute in general. This is because the
interaction terms involving the observations Xij couple these
variables together. This is where we turn to techniques from
the statistical physics of disordered systems which allow
marginalization of joint distributions such as (4).

II. RELATION TO PREVIOUS WORKS

Study of the Bayes-optimal estimation in Gaussian mixture
clustering in the regime of finite α is restricted to the
statistical physics literature. Results is statistic are either
for α → ∞ or for algorithms (such as spectral ones) that
are suboptimal in the present setting. Existing literature
that treats the Bayes-optimal setting either considered the
problem only algorithmically [5] or analyzes it only for two
clusters, r = 2, [11–14]. The main contribution of this paper
is to extend the analysis to the general (finite) number of
clusters and realize that the case with several clusters behaves
considerably differently from r = 2.

Our approach relies on Approximate Message Passing
(AMP) algorithm and its theoretical analysis, a large part
of which was born in the statistical physics, along with the
cavity and replica approach [3, 15, 16]. In the present case,
the AMP algorithm is very close to the TAP equations [17].
AMP for Gaussian mixture clustering is a case of AMP for
low-rank matrix factorization as has been written in [4, 5].
State evolution (SE) [6, 18, 19] is a theoretical technique,
closely related to the cavity method [15], that allows to
exactly characterize the behavior of the AMP algorithm in
the limit of infinite system size. A number of works on low-
rank matrix factorization used recently this approach [20–
22]. The AMP, the state evolution and associated Bethe free
energy were presented recently in a rather generic form in
[22] and we use these results extensively here in the specific
case of GMM clustering and analyze the associated phase
transitions and phase diagrams.

Proving the results presented here in full generality, for
a general case of low-rank matrix factorizations, is a task
that has attracted a lot of attention recently. In particular
the replica prediction in the symmetric rank-1 case has
been proven rigorously in a number of situations [7, 20, 21,
23] and a very generic proof now exists [8]. This strongly
strengthens the claim that the replica predictions for the non-
symmetric matrices (which we use here) are exact, despite
the conjecture being still open.

III. SUMMARY OF MAIN RESULTS

By analyzing the Bayes-optimal estimation in the Gaussian
mixture clustering we find that depending on the values of ρ,
r and α (without loss of generality we consider from now on
∆ = 1), the problem appears in one of the following three
phases:
• EASY: The theoretically optimal reconstruction is bet-

ter than chance both for the clustering problem and for
finding the centroids and the AMP algorithm described
in this article is able to reach this performance in the
limit of large systems.



• IMPOSSIBLE: The theoretically optimal reconstruc-
tion does not perform better than chance. The matrix X
contains no exploitable information on the assignment
of each point. For the centroids the best estimate is given
by taking the mean of all the data points. No algorithm
can exist to recover the assignment of the points better
than chance.

• HARD: The theoretically optimal reconstruction gives
a result that is better than chance both for the clus-
tering problem and for finding the centroids. However,
without using prior knowledge on the assignment of
the points or on the centroids, the AMP algorithm is
not able to converge toward its optimal fixed point. In
fact, the AMP fixed point reached from an uninformed
initialization does not provide any information on the
assignment of the points. From the current knowledge,
it is plausible that this phase is computationally hard
not only for AMP but for all polynomial algorithms.

Depending on the number of clusters (that is, the rank r)
and the sample-to-dimension ratio α we identified a bound-
ary between two regimes at

rc = 4 + 2
√
α . (7)

• If the number of clusters is small enough, r < rc there
are only two phases in the problem as the signal-to-noise
parameter ρ increases: The impossible and the easy one.
This among others means that in the large size limit we
are always able to reach Bayesian optimal reconstruc-
tion performance using the AMP algorithm. These two
phases are separated by a sharp impossible/easy phase
transition when

ρc =
r√
α
. (8)

The problem is easy when ρ > ρc and impossible
otherwise.

• If instead the number of clusters is large enough, r > rc
the three phases above are observed when decreasing ρ.

– When ρ > ρc = r/
√
α we are in the EASY phase.

– When ρc > ρ > ρIT we are in the HARD phase.
– When ρIT > ρ we are in the IMPOSSIBLE phase.

IT here stands for information theoretic. We also com-
pute the asymptotic behavior of ρIT for a large number
of clusters and found that

ρIT(r, α) = 2

√
r log r

α
(1 + or(1)) , (9)

This means that for r large the HARD phase is very broad.
Note that this last asymptotic result has been recently proven
rigorously in [24] using the first and second moment meth-
ods, another indication of the correctness of the cavity/replica
assumptions.

In what follows, we give statistical physics justifications
for these claims, based on the analysis of AMP and on the
interpretation of the Bethe free energy (related to the mutual
information) as the exact one. We hope this will motivate
further rigorous studies in this direction.

IV. APPROXIMATE MESSAGE PASSING (AMP)

We recall the AMP algorithm here using the notations
of [22]. Let us define two denoising functions fv(A,B) ∈
Rr×1 and fs(A,B) ∈ Rr×1 as the means of the probability
distributions

1

Zv(A,B)
Pv(v) exp

(
B>v − v>Av

2

)
, (10)

1

Zs(A,B)
Ps(s) exp

(
B>s− s>As

2

)
, (11)

where Zv(A,B) and Zs(A,B) are normalization factors.
Here B is an r dimensional column vector and A is an r×r
matrix. For GMM clustering priors (2-3), we thus find

fv(A,B) = (Ir +A)−1B , (12)

fs,k(A,B) =
exp(Bk −Akk/2)∑

l=1,··· ,r
exp(Bl −All/2)

. (13)

Taking the derivative of fv(A,B) and fs(A,B) with respect
to B yields the covariance matrices of (10) and (11), and we
thus define

f ′v(A,B) =

(
∂fv
∂B

)
∈ Rr×r , (14)

f ′s(A,B) =

(
∂fs
∂B

)
∈ Rr×r . (15)

Algorithm 1 AMP for clustering mixtures of Gaussians
Input: Data X and initial condition v̂init, ŝinit.

∀t ∈ {0, 1},
v̂ti ← v̂initi , ŝtj ← ŝinitj ,

σtv,i ← 0R
r×r

, σts,j ← 0R
r×r

For t ≥ 1 compute

∀i ∈ [1;n], Bt
v,i ←

√
ρ

n

∑
j=1···m

Xij ŝ
t
j −

αρ

m

∑
j=1···m

σt
s,j v̂

t−1
i

At
v ←

αρ

m

∑
j=1···m

ŝtj ŝ
t
j
>

∀i ∈ [1;n], v̂ti ← fv
(
At

v , B
t
v,i

)
, σt

v,i ← f ′v
(
At

v , B
t
v,i

)
∀j ∈ [1;m], Bt

s,j ←
√
ρ

n

∑
i=1···n

Xij v̂
t
i −

ρ

n

∑
i=1···n

σt
v,iŝ

t
j

At
v ←

ρ

n

∑
i=1···n

v̂ti v̂
t
i
>

∀j ∈ [1;m], ŝt+1
j ← fs

(
At

s, B
t
s,j

)
, σt+1

s,j ← f ′s
(
At

s, B
t
s,j

)
Here ∀i ∈ [1;n]Btv,i ∈ Rr×1, ∀j ∈ [1;m]Bts,j ∈ Rr×1 and
Atv ∈ Rr×r, Ats ∈ Rr×r.
Iterate till convergence.

V. STATE EVOLUTION (SE)

The SE is a method for tracking the evolution of an AMP
algorithm along iterations in the large system-size limit. A
physics derivation of these SE equations can be found in



[22], rigorous proof follows from [6]. We first introduce the
following order parameters

M t
v =

1

n

∑
i=1···n

v̂tiv
>
0,i , (16)

M t
s =

1

m

∑
j=1···m

ŝtjs
>
0,j , (17)

where v̂ti ŝ
t
j are the estimators of the posterior means of the

variables vi and sj at time t defined by

v̂ti = fv(A
t
v, B

t
v,i) , (18)

ŝt+1
j = fs(A

t
s, B

t
s,j) . (19)

The r×r matrices M describe the overlap of the estimators
with the ground truth solution. The SE reads [22]

M t
v = EW,v0

[
fv

(
αρM t

s , αρM
t
sv0 +

√
αρM t

sW
)
v>0

]
, (20)

M t+1
s = EW,s0

[
fs

(
ρM t

v, ρM
t
vs0 +

√
ρM t

vW
)
s>0

]
, (21)

where W is an r-dimensional Gaussian variable with zero
mean and unit variance in each coordinate, and v0 and s0
are random variables distributed according to Pv (2) and Ps
(3) respectively.

A fixed point of the SE equations is a local extremum of
the so-called Bethe free energy φB [22]

φB(Mv,Ms) =
αρTr(MvM

>
s )

2

− EW,v0

[
logZv(αρMs, αρMsv0 +

√
αρMsW )

]
− αEW,s0

[
logZs(ρMv, ρMvs0 +

√
ρMvW )

]
, (22)

where the quantities Zv and Zs are the normalization factors
from (10) and (11). A stable fixed point of the SE equations
above is a local minimum of φB(Mv,Ms) as can be seen by
taking partial derivatives with respect to Mv and Ms.

It follows from the replica theory of statistical physics
that if there are multiple stable fixed points of (20-21),
only the one with minimal free energy φB corresponds to
the performance of the Bayes-optimal estimation. On the
other hand the performance reached by the AMP algorithm
corresponds to the fixed point of SE with largest error.

VI. ANALYSIS FOR MIXTURE OF GAUSSIANS

We analyze now the state evolution with the fv and fs
functions corresponding to the GMM (12-13) for general
number of clusters r. The difficulty here lies in the fact
that there is in general no analytic expression for updating
equations (20-21). We observe that the following form of
the order parameters is conserved under the update of SE
equations for the

M t
s =

Irb
t
s

r
+ (1− bts)

Jr
r2

(23)

M t
v = btvIr + btv,J

Jr
r
, (24)

where (bts, b
t
v, b

t
v,J) ∈ [0; 1]3, and Ir and Jr are respectively

the identity matrix and the r×r matrix filled with 1. Having

(bts, b
t
v, b

t
v,J) = (1, 1, 0) would mean that we have achieved

perfect reconstruction of the ground truth, while (bts, b
t
v) =

(0, 0) means that we are not able to extract any information
from the matrix X beyond the average of the k clusters Vk.

Rewriting eqs. (20-21) using (12-13) and (23-23) we get
the following SE equations for the GMM

btv =
btsρ

r
α + btsρ

, bt+1
s =Mr

(
btvρr

)
, (25)

where

Mr (x) =
1

r − 1

r ∫ e
x
r
+u1

√
x
r

e
x
r
+u1

√
x
r +

r∑
i=2

eui
√
x
r

r∏
i=1

Dui − 1

 .
(26)

Where the ui are Gaussian variables of mean 0 and unit
variance. The equations close on bv and bs and do not depend
on the term bv,J . We can combine these to obtain a single
update equation for the scalar variable bts

bt+1
s = Mr

(
bts

ρ2

1
α +

ρbts
r

)
. (27)

The function Mr, including the expansions for small ρ and
for large r, has been studied previously in [22]. From a
numerical point of viewMr(x) can be effectively computed
with a Monte Carlo scheme if one takes advantage of the
permutation symmetry of the Gaussian variables.

A. Analysis of the phase transitions

Note that bs = Mr(0) = 0 is always a fixed point that
we will call uninformative. By expanding Mr(x) around 0
one gets:

bt+1
s =

αbtsρ
2

r2
+
α2bts

2

2

[
r − 4− 2r

ρ

]
ρ4

r4
. (28)

We are interested in when the uninformative fixed point
becomes numerically unstable. From the expansion of (28)
one deduces that this occurs when

ρ > ρc =
r√
α
. (29)

Looking at the second derivative of (28), we deduce that
when the uninformative fixed point becomes unstable, the
second derivative is proportional to r − 4 − 2

√
α; if this

is negative then this means that another stable fixed point
appears close to 0 for ρ > ρc. If on the other hand the second
derivative is positive when ρ increases and crosses ρc, then
the new stable fixed point will not be close to zero and we
see a discontinuous jump in the MSE achieved by initializing
the iteration close to the uninformative fixed point. This
phenomenon is known as a first-order transition. If one fixes
the number r and α, we have a first order transition in the
GMM if r > rc = 4 + 2

√
α.

It turns out that this sufficient criteria is also necessary. In
order to analyze the SE numerically we introduce two ways
to initialize the equations
• Uninformative initialization bt=0

s ≈ 0 : Initializing in
such a way is equivalent to assuming that we use
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Fig. 1. The three phase transitions as a function of the number of
clusters r and the signal-to-noise parameter ρ, for sample-to-dimension ratio
α = 2. In red is the algorithmic phase transition ρc = r/

√
α, in blue the

information theoretic threshold ρIT and in yellow the spinodal threshold
ρsp. As the number of clusters r grows the gap between the algorithmic
and the information-theoretic transition grows larger.

no knowledge about the ground truth signal. From an
AMP point of view this means starting with means of
messages close to 0. We denote bAMP the reached fixed
point.

• Informative initialization bt=0
s = 1: This means initial-

izing in the ground truth configuration. From an AMP
point of view this corresponds to start with messages
equal to the solution. Of course, in reality the algorithm
would not have access to the solution; but here we apply
this initialization in order to track the corresponding
fixed point. We denote binf the reached fixed point.

For r < 4+2
√
α iterations with these two initializations lead

to the same fixed point and the situation looks qualitatively
as in Fig. 2 for two clusters. For ρ < ρc we reach the
uninformative fixed point bs = 0, whereas for ρ > ρc we
reach a fixed point with positive overlap with the ground
truth, bs > 0.

If r > 4 + 2
√
α, then depending on the value of ρ four

different situations happen:

• ρ > ρc : Here bAMP = binf > 0: The AMP algorithm
is able to reach the information theoretically optimal
reconstruction. This is called the EASY phase.

• ρc > ρ > ρIT: Here binf > bAMP = 0, i.e. there are
two fixed points to the SE equations and binf leads to
a lower free energy (22). The AMP algorithm starting
from the uninformative initialization is not able to reach
the information theoretically optimal performance. Nev-
ertheless it is possible, although in exponential time, to
find a better fixed point with lower free energy. This is
called the HARD phase.

• ρIT > ρ > ρsp: Here still binf > bAMP = 0, but now
bAMP has a lower free energy (22). The AMP algorithm
starting from the informative state is able to reach a
good fixed point correlated with the solution. However,
finding this fixed point without prior knowledge of
the solution is information theoretically impossible:
it is hidden among an exponential number of other

fixed points of AMP that have similar likelihood. This
is called the information-theoretically IMPOSSIBLE
phase.

• ρsp > ρ: Here bAMP = binf = 0, i.e. there is only
one fixed point to the SE equations. This is also the
information-theoretically IMPOSSIBLE phase.

To compute these transitions ρIT and ρsp numerically we
consider one value of bs =Mr(x) and ask what is the value
of ρ such that bs =Mr(x) is a fixed point. Using (27) the
answer is

ρ(x, r) =
x

2r
+

√
x2

4r2
+

x

αMr(x)
. (30)

The spinodal transition ρsp is the minimum value of ρ for
which a fixed point other than 0 exists. We can estimate
this by minimizing ρ(x, r) (30) with respect to x and at
fixed r. The information-theoretic transition ρIT is obtained
by expressing the difference in the free energy between bs =
0 and Mr(x) at a given ρ and then requiring this quantity
to be 0. It is possible to express the Bethe free energy using
Mr. If one integrates the gradient of φB along the path g(u)
defined by

∀u ∈ [0,Mr(x)], g(u) =

(
u, u

ρ(x)2/r
1
α + ρ(x)u

r

)
, (31)

after integrating by parts

φB(0, ρ(x, α, r), α; r) (32)
− φB(Mr(x), ρ(x, α, r), α, r)

= α
r − 1

2r2

 x∫
0

duMr(u) +

Mr(x)∫
0

du
uρ2

1
α + uρ(x)

r

− xMr(x)

.
The information-theoretic transition is found where
bAMP(r, α, ρ) and binf(r, α, ρ) both have the same free
energy. The behavior of ρc, ρIT and ρsp as a function of ρ
for α = 2 is illustrated in Fig. 1.

B. Large number of clusters

Formulas (30-32) also allow us to explore the large r limit
of these solutions. From [22] we know that

∀β > 0, lim
r→∞

Mr(βr log r) = 1β>2 . (33)

We can compute the asymptote of ρIT and ρsp when r →∞.
We can do that by setting x = βr log(r) and then replacing
Mr by (33) in (30) and (32).

To get ρsp one minimizes (30) with respect to β. After
some computation one gets

lim
r→+∞

ρ(βr log(r), α)√
r log(r)

=

{
+∞, if β < 2√
β/α, if β ≥ 2

(34)

Therefore in the large r limit ρ(βr log(r)) is minimized by
taking β = 2 and one gets

ρsp(r, α) =

√
2r log r

α
(1 + or(1)) . (35)



To get ρIT one finds the β such that (32) is set to 0.
In order to do that we write xIT = βITr log(r). We take
βIT > 2 since we want to have ρ to be above ρsp so that
there are multiple fixed point to the SE equations. For β > 2
to leading order one has

ρ(x = βr log(r), r) =

√
βr log(r)

α
(1 + or(1)) . (36)

Therefore,
ρ(x = βr log(r), r)

r
� 1

α
. (37)

Using this, equation (32) can be further simplified. One gets

φB(0, ρ(xIT, α, r), α; r)−φB(Mr(xIT), ρ(xIT, α, r), α, r)

= 0 ≈ αr − 1

2r2

 xIT∫
0

duMr(u)− xITMr(xIT)

2

, (38)

By setting xIT = βITr log(r) in this equation and taking the
r →∞ limit one gets

0 =

βIT∫
0

du1(u > 2)− βIT1(βIT > 2)

2
. (39)

This is solved for βIT = 4, therefore one has

ρIT(r, α) = 2

√
r log(r)

α
(1 + or(1)) . (40)

Thus, for large number of clusters r, the gap between
the information-theoretic detectability threshold ρIT and the
algorithmic threshold ρc = r/

√
α becomes large.

C. Algorithmic comparison

Fig. 2 and 3 contain numerical experiments with the AMP
algorithm, and comparison with the theoretically predicted
performance given by state evolution analysis. Data for both
r = 2 and r = 20 clusters are presented. These two cases
have qualitatively different properties. As predicted, the case
with r = 20 clusters exhibits a first order transition: there
is a sharp jump in the overlap at ρc. Instead the case r = 2
exhibits a second order transition: the overlap is continuous,
only its derivative has a discontinuity.

In both Fig. 2 and 3 we also compare to the performance
of the principal component analysis (PCA) performed on
the matrix X . PCA is a standard spectral method to solve
data clustering, one computes r leading singular vectors
of X and instead of clustering m points in n dimensions,
one concatenates the singular vectors into m r-dimensional
vectors and clusters in the r-dimensional space which is
much simpler. The overlap reached with the PCA clustering
follows from a more general theory of low-rank perturbations
of random matrices [2], but it can also be derived from
the state evolution analysis of AMP as we present in the
appendix. In this case of GMM with equal-size clusters
the phase transition observed in PCA coincides with the
phase transition of AMP ρc. Concerning the performance
as measured by the overlap (6), we observe that although
for two clusters the difference between the performance of
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Fig. 2. Bayes-optimal overlap for clustering with r = 2 clusters (full lines,
using State Evolution), together with the results of numerical simulations
(points), for α = 2, n = 1000 and m = 2000. The overlap is defined
in (6). The information-theoretic threshold at ρc ≈ 1.41 is materialized
by the green dashed line. Both AMP and PCA are able to perform better
than chance beyond this transition. The performance of AMP and PCA are
comparable in this case.
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Fig. 3. Bayes-optimal overlap for clustering with r = 20 clusters
(full lines, using State Evolution), together with the results of numerical
simulations (points), for α = 2, n = 10000 and m = 20000. In
this case one observes an algorithmically hard phase, at ρc ≈ 14.1 the
overlap achieved by AMP in infinite size systems has a discontinuity. The
algorithmic and information-theoretic thresholds are depicted by the vertical
blue line and the dashed black line. Because of the discontinuous nature of
the transition, the finite size effects are sizable in the hard region: the red
points with non-zero overlap below ρc show that AMP is able to reconstruct
a fraction of the r = 20 clusters. Increasing n decreases these effects.

the sub-optimal PCA and the Bayes-optimal AMP is hardy
visible, for 20 clusters the performance of AMP close to the
algorithmic transition ρc is considerably better.

VII. CONCLUSION

We analysed the problem of clustering high-dimensional
data generated by the Gaussian mixture model. We computed
the asymptotic accuracy of the Bayes-optimal estimator and
compared it to the accuracy obtained by the approximate
message-passing algorithm. We located phase transitions in
both the information-theoretic and algorithmic performance.

Our main result is that, when the number of clusters
is sufficiently large, eq. (7), there is a gap between the
information-theoretic threshold—where it becomes possi-
ble to label points and find the cluster centers better
than chance—and the computational threshold, at which
polynomial-time algorithms such as PCA or AMP suc-
ceed. This suggests that, as has been conjectured for



analogous problems in statistical inference, there is a
hard-but-detectable regime where clustering is information-
theoretically possible, but computationally intractable.
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APPENDIX I
PERFORMANCE OF PCA

Using state evolution one can analyze the distribution of
the top eigenvectors of X and therefore the performance of
PCA on the Gaussian mixture clustering problem. Let us
write the density evolution equation the posterior measure (4)
with X created using a GMM, and where we have replaced
the Bayes-optimal prior on vi and sj with Gaussian priors

Pv(vi) =
exp

(
−‖vi‖22

2

)
√

2π
r , Ps(sj) =

exp
(
−r‖sj‖22

2

)
√

2π/r
r . (41)

Let us define VPCA, SPCA the matrices containing the first r
singular vectors of X . Where VPCA ∈ Rn×r, SPCA ∈ Rm×r.
SPCA defines m points in a r dimensional space. We expect
the r dimensional points extracted from SPCA to form a
mixture of Gaussians. Let us write the AMP for Gaussian
priors. The general AMP equations for the mismatching
priors can be found in [5]. One gets

V̂ t =

(√
ρ

n
XŜt − ραV̂ t−1Σts

)
Σtv , (42)

Σtv =
(
Ir + ρ/nŜt

>
St
)−1

, (43)

Ŝt+1 =

(√
ρ

n
X>V̂ t − ρŜtΣtv

)
Σt+1
s , (44)

Σt+1
s =

(
rIr + ρ/nV̂ t

>
V t
)−1

. (45)

We aim to prove that at a fixed point V̂ and Ŝ will be singular
values of X .

After simplifications of the above equations one gets

V̂ =

√
ρ

n
XŜ

(
Σ−1v + ραΣs

)−1
, (46)

Ŝ =

√
ρ

n
X>V̂

(
Σ−1s + ρΣv

)−1
. (47)

By putting this in (46) in (47) one gets

Ŝ =
ρ

n
X>XŜ

(
Σ−1v + ραΣs

)−1 (
Σ−1s + ρΣv

)−1
. (48)

This means that the columns of Ŝ are a linear combination
of eigenvectors of X>X that is right eigenvector of S.

We can also write the corresponding state evolution equa-
tions. One gets

M t
v = EW,v0

[
fv
(
αρM t

s , αρM
t
sv0 +

√
αρM t

sW
)
v>0

]
,

Qt
v = EW,v0

[
fv
(
αρM t

s , αρM
t
sv0 +

√
αρM t

sW
)
fv(· · · , · · · )

]
,

M t+1
s = EW,s0

[
fs
(
ρM t

v, ρM
t
vs0 +

√
ρM t

vW
)
s>0

]
,

Qt+1
s = EW,s0

[
fs
(
ρM t

v, ρM
t
vs0 +

√
ρM t

vW
)
fs(· · · , · · · )

]
,

With the Gaussian priors (41) this gives us

M t
v = (Ir + αρQts)

−1αρM t
s , (49)

Qtv = (Ir + αρQts)
−2 (α2ρ2M t

s + αρQts
)
, (50)

M t
s = (rIr + ρQtv)

−1ρM t
v/r , (51)

Qts = (rIr + ρQtv)
−2 (ρ2M t

v/r + ρQtv
)
. (52)

Experiments with these equations show that stable fixed point
are always of the form

M t
v = mt

vR, Qtv = mt
vIr , (53)

M t
s =

mt
sR

r
, Qts =

mt
sIr
r

, (54)

where R is some rotation matrix. The new update equation
become

mt+1
v =

ραmt
s

1 + ραmt
s

, (55)

mt+1
s =

ρmt
v

r + ρmt
v

. (56)

Let us write

mv = mt→∞
v = max

(
αρ2 − r2

r + ρα
, 0

)
, (57)

ms = mt→∞
s = max

(
αρ2 − r2

rρα+ ρ2α
, 0

)
, (58)

By combining (45), (43), (53) and (54) one sees that in
the large n limit Σv and Σs are proportional to the identity.
Therefore using (48) one gets

Ŝa =
ρ

n
X>XŜ , (59)

where a is some number. This means that Ŝ is proportional
to the first eigenvectors. But the AMP analysis also tells us
how Ŝ will be distributed. The details of the analysis of state
evolution can be found in [22] in the XX> case

ŝj = fs (ρmvIr, ρmvRs0,j +
√
ρmvW ) . (60)

Where W is a Gaussian variable given by N (0, Ir). Up to
a proportionality constant one has.

ŝj =
√
ρmvRs0,j +W . (61)

This means that the first r right eigenvectors of R are
distributed as a mixture of Gaussians in a r dimensional
space where the centers are placed at positions

√
ρmvRek

and the noise is a Gaussian white noise of zero mean and
covariance matrix Ir. The questions now becomes how well
can one cluster this mixture of Gaussians? Since we are
dealing with a finite-dimensional space r = O(1) and a large
number of points m→∞ then we know that we should be
able to learn the parameters from this mixture of Gaussian
perfectly.

The problem now becomes given a point v̂j what is the
chance that it was created using point v0,j this is done by



maximizing the likelihood. To find back with what ek v̂j was
created one needs to compute.

k̂(v̂j) = argmax

{
k ∈ [1; r],

1

r
√
2π

exp

(
−‖v̂j −

√
ρmv~ek‖22
2

)}
or

k̂(v̂j) = argmax {k ∈ [1; r], 〈v̂j ;~ek〉} . (62)

One need to compute with what probability k̂ is the right k

P (k̂(
√
ρmv~ek0

+W ) = k0) =

P (Wk0
+
√
ρmv > max

k∈[1;r],k 6=k0

{Wk}) .

This can be computed using the distribution of the maxima of
random variables of zero mean and variance r− 1 Gaussian
variables.

P (k̂(
√
ρmv~ek0 +W ) = k0) =

+∞∫
−∞

du
[
1/2− 1/2erf

(
u−

√
ρmvb

)]
P r−1max (u) , (63)

where P r−1max is the density probability of the maximum of
r − 1 independent Gaussian variables of mean 0 and unit
variance. Where erf(x) ∈ [−1; 1] is defined as erf(x) =√

2
π

∫ x
0

exp
(
−x2

2

)
.

P r−1max (u) =
r − 1√

2π
exp(−u2/2)

[
1 + erf (u)

2

]r−2
. (64)

Therefore one can compute the average number of errors
made using PCA to cluster the data points.

ErrorRatePCA =

+∞∫
−∞

du

[
1− erf

(
u−√ρmv

)]
2

P r−1max (u) .

The mean-squared error achieved by PCA is then r(ρ−mv)
and is known in the theory of low-rank perturbations of
random matrices [2].
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