Amin Coja-Oghlan 
  
Florent Krzakala 
  
AND Will Perkins 
  
Lenka Zdeborová 
  
INFORMATION-THEORETIC THRESHOLDS FROM THE CAVITY METHOD

Vindicating a sophisticated but non-rigorous physics approach called the cavity method, we establish a formula for the mutual information in statistical inference problems induced by random graphs and we show that the mutual information holds the key to understanding certain important phase transitions in random graph models. We work out several concrete applications of these general results. For instance, we pinpoint the exact condensation phase transition in the Potts antiferromagnet on the random graph, thereby improving prior approximate results [Contucci et al.: Communications in Mathematical Physics 2013]. Further, we prove the conjecture from [Krzakala et al.: PNAS 2007] about the condensation phase transition in the random graph coloring problem for any number q ≥ 3 of colors. Moreover, we prove the conjecture on the information-theoretic threshold in the disassortative stochastic block model [Decelle et al.: Phys. Rev. E 2011]. Additionally, our general result implies the conjectured formula for the mutual information in Low-Density Generator Matrix codes [Montanari: IEEE Transactions on Information Theory 2005].

INTRODUCTION

Since the late 1990's physicists have studied models of spin systems in which the geometry of interactions is determined by a sparse random graph in order to better understand "disordered" physical systems such as glasses or spin glasses [START_REF] Mézard | The Bethe lattice spin glass revisited[END_REF][START_REF] Mézard | The cavity method at zero temperature[END_REF][START_REF] Monasson | Optimization problems and replica symmetry breaking in finite connectivity spin glasses[END_REF]. To the extent that the sparse random graph induces an actual geometry on the sites, such "diluted mean-field models" provide better approximations to physical reality than models on the complete graph such as the Curie-Weiss or the Sherrington-Kirkpatrick model [START_REF] Mézard | Information, physics and computation[END_REF]. But in addition, and perhaps more importantly, as random graph models occur in many branches of science, the physics ideas have since led to intriguing predictions on an astounding variety of important problems in mathematics, computer science, information theory, and statistics. Prominent examples include the phase transitions in the random k-SAT and random graph coloring problems [START_REF] Mézard | Analytic and algorithmic solution of random satisfiability problems[END_REF][START_REF] Zdeborová | Phase transition in the coloring of random graphs[END_REF], both very prominent problems in combinatorics, error correcting codes [START_REF] Mézard | Information, physics and computation[END_REF], compressed sensing [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF], and the stochastic block model [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF], a classical statistical inference problem.

The thrust of this work goes as follows. In many problems random graphs are either endemic or can be introduced via probabilistic constructions. As an example of the former think of the stochastic block model, where the aim is to recover a latent partition from a random graph. For an example of the latter, think of low density generator matrix 'LDGM' codes, where by design the generator matrix is the adjacency matrix of a random bipartite graph. To models of either type physicists bring to bear the cavity method [START_REF] Mézard | Virasoro: Spin glass theory and beyond[END_REF], a comprehensive tool for studying random graph models, to put forward predictions on phase transitions and the values of key quantities. The cavity method comes in two installments: the replica symmetric version, whose mainstay is the Belief Propagation messages passing algorithm, and the more intricate replica symmetry breaking version, but it has emerged that the replica symmetric version suffices to deal with many important models.

Yet the cavity method suffers an unfortunate drawback: it is utterly non-rigorous. In effect, a substantial research effort in mathematics has been devoted to proving specific conjectures based on the physics calculations. Success stories include the ferromagnetic Ising model and Potts models on the random graph [START_REF] Dembo | Sun: Factor models on locally tree-like graphs[END_REF][START_REF] Dembo | The replica symmetric solution for Potts models on d-regular graphs[END_REF], the exact k-SAT threshold for large k [START_REF] Coja-Oghlan | The asymptotic k-SAT threshold[END_REF][START_REF] Ding | Sun: Proof of the satisfiability conjecture for large k[END_REF], the condensation phase transition in random graph coloring [START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF], work on the stochastic block model [START_REF] Massoulié | Community detection thresholds and the weak Ramanujan property[END_REF][START_REF] Mossel | A proof of the block model threshold conjecture[END_REF][START_REF] Mossel | Reconstruction and estimation in the planted partition model[END_REF] and terrific results on error correcting codes [START_REF] Giurgiu | Spatial coupling as a proof technique and three applications[END_REF]. But while the cavity method can be applied mechanically to a wide variety of problems, the current rigorous arguments are case-by-case. For instance, the methods of [START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF][START_REF] Coja-Oghlan | The asymptotic k-SAT threshold[END_REF][START_REF] Ding | Sun: Proof of the satisfiability conjecture for large k[END_REF] depend on painstaking second moment calculations that take the physics intuition on board but require extraneous assumptions (e.g., that the clause length k or the number of colors be very large). Moreover, many proofs require lengthy detours or case analyses that ought to be expendable. Hence, the obvious question is: can we vindicate the physics calculations wholesale?

The main result of this paper is that for a wide class of problems within the purview of the replica symmetric cavity method the answer is 'yes'. More specifically, the cavity method reduces a combinatorial problem on a random graph to an optimization problem on the space of probability distributions on a simplex of bounded dimension. We prove that this reduction is valid under a few easy-to-check conditions. Furthermore, we verify that the stochastic optimization problem admits a combinatorial interpretation as the problem of finding an optimal set of Belief Propagation messages on a Galton-Watson tree. Thus, we effectively reduce a problem on a random graph, a mesmerizing object characterized by expansion properties, to a calculation on a random tree. This result reveals an intriguing connection between statistical inference problems and phase transitions in random graph models, specifically a phase transition that we call the information-theoretic threshold, which in many important models is identical to the so-called "condensation phase transition" predicted by physicists [START_REF] Krzakala | Gibbs states and the set of solutions of random constraint satisfaction problems[END_REF]. Moreover, the proofs provide a direct rigorous basis for the physics calculations, and we therefore believe that our techniques will find future applications. To motivate the general results about the connection between statistical inference and phase transitions, which we state in Section 2, we begin with four concrete applications that have each received considerable attention in their own right.

1.1. The Potts antiferromagnet. As a first example we consider the antiferromagnetic Potts model on the Erdős-Rényi random graph G = G(n, d/n) with n vertices where any two vertices are connected by an edge with probability d/n independently. Let β > 0 be a parameter that we call 'inverse temperature' and let q ≥ 2 be a fixed number of colors. With σ ranging over all color assignments {1, . . . , n} → {1, . . . , q} the Potts model partition function is defined as

Z β (G) = σ exp -β {v,w }∈E (G) 1{σ(v) = σ(w)} . (1.1)
Standard arguments show that the random variable Z β (G) is concentrated about its expectation. Thus, the key quantity of interest is the function

(d, β) ∈ (0, ∞) × (0, ∞) → lim n→∞ - 1 n E[ln Z β (G(n, d/n))],
the free energy density in physics jargon; the limit is known to exist for all d, β [START_REF] Bayati | Combinatorial approach to the interpolation method and scaling limits in sparse random graphs[END_REF]. In particular, for a given d we say that a phase transition occurs at β 0 ∈ (0, ∞) if the function

β → lim n→∞ - 1 n E[ln Z β (G(n, d/n))]
is non-analytic at β 0 , i.e., there is no expansion as an absolutely convergent power series in a neighborhood of β 0 . 1According to the cavity method, for small values of β ("high temperature") the free energy is given by a simple explicit expression. But as β gets larger a phase transition occurs, called the condensation phase transition, provided that d is sufficiently large. Contucci, Dommers, Giardina and Starr [START_REF] Contucci | Antiferromagnetic Potts model on the Erdős-Rényi random graph[END_REF] derived upper and lower bounds on the critical value of β, later refined by Coja-Oghlan and Jaafari [START_REF] Coja-Oghlan | On the Potts model on random graphs[END_REF]. The following theorem pinpoints the phase transition precisely for all d, q. Indeed, the theorem shows that the exact phase transition is determined by the very stochastic optimization problem that the cavity method predicts [START_REF] Mézard | Information, physics and computation[END_REF].

To state the result we need a bit of notation. For a finite set Ω we identify the set P (Ω) of probability measures on Ω with the standard simplex in R Ω . Let P 2 (Ω) be the set of all probability measures on P (Ω) and write P 2 * (Ω) for the set of π ∈ P 2 (Ω) whose mean P (Ω) µdπ(µ) is the uniform distribution on Ω. Moreover, for π ∈ P 2 * (Ω) let µ (π) 1 , µ (π) 2 , . . . be a sequence of samples from π and let γ = Po(d), all mutually independent. Further, let Λ(x) = x ln x for x ∈ (0, ∞) and Λ(0) = 0. For an integer k ≥ 1 let [k] = {1, . . . , k}. Finally, we use the convention inf = ∞. Theorem 1.1. Let q ≥ 2 and d > 0 and for c ∈ [0, 1] let

B Potts (q, d, c) = sup π∈P 2 * ([q]) E Λ( q σ=1 γ i=1 1 -cµ (π) i (σ)) q(1 -c/q) γ - dΛ(1 - q τ=1 cµ (π) 1 (τ)µ (π) 2 (τ)) 2(1 -c/q) , (1.2) 
β q,cond (d) = inf β > 0 : B Potts (q, d, 1 -exp(-β)) > ln q + d ln(1 -(1 -exp(-β))/q)/2 . (1.3) Then for all β < β q,cond (d) we have d))] = -ln qd ln(1 -(1 -exp(-β))/q)/2 (1.4) and if β q,cond (d) < ∞, then a phase transition occurs at β q,cond (d).

lim n→∞ - 1 n E[ln Z β (G(n,
A simple first moment calculation shows that β q,cond (d) < ∞, and thus that a phase transition occurs, if d > (2q -1) ln q [START_REF] Coja-Oghlan | On the Potts model on random graphs[END_REF]. In fact, for any β > 0 the formulas (1.2)-(1.3) yield a finite maximum value d q,cond (β) = inf d > 0 : B Potts (q, d, 1 -exp(-β)) > ln q + d ln(1 -(1 -exp(-β))/q)/2 (1.5) such that (1.4) holds if and only if d ≤ d q,cond (β). Thus, (1.2)-(1.3) identify a line in the (d, β)-plane that marks the location of the condensation phase transition.

1.2. Random graph coloring. The random graph coloring problem is one of the best-known problems in probabilistic combinatorics: given a number q ≥ 3 of available "colors", for what values of d is it typically possible to assign colors to the vertices of G = G(n, d/n) such that no edge connects two vertices with the same color? Since the problem was posed by Erdős and Rényi in their seminal paper that started the theory of random graphs [START_REF] Erdős | On the evolution of random graphs[END_REF], the random graph coloring problem and its ramifications have received enormous attention (e.g., [START_REF] Achlioptas | Almost all graphs of degree 4 are 3-colorable[END_REF][START_REF] Achlioptas | The two possible values of the chromatic number of a random graph[END_REF][START_REF] Alon | The concentration of the chromatic number of random graphs[END_REF][START_REF] Bollobás | The chromatic number of random graphs[END_REF][START_REF] Dyer | On the chromatic number of a random hypergraph[END_REF][START_REF] Krivelevich | The chromatic numbers of random hypergraphs[END_REF][START_REF] Łuczak | The chromatic number of random graphs[END_REF][START_REF] Zdeborová | Phase transition in the coloring of random graphs[END_REF]). Of course, an intimately related question is: how many ways are there to color the vertices of the random graph G with q ≥ 3 colors such that no edge is monochromatic? In fact, for q > 3 the best known lower bounds on largest value of d up to which G remains q-colorable, the q-colorability threshold, are derived by tackling this second question [START_REF] Achlioptas | The two possible values of the chromatic number of a random graph[END_REF][START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF]. If d < 1, then the random graph G does not have a 'giant component'. We therefore expect that the number Z q (G) of q-colorings is about q n (1-1/q) d n/2 , because a forest with n vertices and average degree d has that many q-colorings. Indeed, for d < 1 it is easy to prove that 1

n ln Z q (G(n, d/n)) n → ∞ → ln q + d 2 ln(1 -1/q)
in probability (1.6) and the largest degree d q,cond up to which (1.6) holds is called the condensation threshold. Perhaps surprisingly, the cavity method predicts that the condensation threshold is far greater than the giant component threshold. Once more the predicted formula takes the form of a stochastic optimization problem [START_REF] Zdeborová | Phase transition in the coloring of random graphs[END_REF]. Prior work based on the second moment method verified this under the assumption that q exceeds some (undetermined but astronomical) constant q 0 [START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF]. Here we prove the conjecture for all q ≥ 3.

Theorem 1.2. For q ≥ 3 and d > 0 and with B Potts from (1.2) let d q,cond = inf d > 0 : B Potts (q, d, 1) > ln q + d ln(1 -1/q)/2 .

(1.7)

Then (1.6) holds for all d < d q,cond . By contrast, for every d > d q,cond there exists ε > 0 such that w.h.p.

Z q (G(n, d/n)) < q n (1 -1/q) d n/2 exp(-εn).

It is conjectured that d 3,cond = 4 [START_REF] Zdeborová | Phase transition in the coloring of random graphs[END_REF], but we have no reason to believe d q,cond admits a simple expression for q > 3. Asymptotically we know d q,cond = (2q -1) ln q -2ln 2 + ε q with lim q→∞ ε q = 0 [START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF]. By comparison, for d > (2q -1) ln q -1 + ε q the random graph fails to be q-colorable probability tending to 1 as n → ∞ [START_REF] Coja-Oghlan | Upper-bounding the k-colorability threshold by counting covers[END_REF].

Since (1.6) cannot hold for d beyond the q-colorability threshold, d q,cond provides a lower bound on that threshold. In fact, d q,cond is at least as large as the best prior lower bounds for q > 3 from [START_REF] Achlioptas | The two possible values of the chromatic number of a random graph[END_REF][START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF], because their proofs imply (1.6). But more importantly, Theorem 1.2 facilitates the study of the geometry of the set of q-colorings for small values of q. Specifically, if d, q are such that (1.6) is true, then the notoriously difficult experiment of sampling a random q-coloring of a random graph can be studied indirectly by way of a simpler experiment called the planted model [START_REF] Achlioptas | Algorithmic barriers from phase transitions[END_REF][START_REF] Bapst | Planting colourings silently[END_REF][START_REF] Krzakala | Hiding quiet solutions in random constraint satisfaction problems[END_REF]. This approach has been vital to the analysis of, e.g., the geometry of the set of q-colorings or the emergence of "frozen variables" [START_REF] Achlioptas | Algorithmic barriers from phase transitions[END_REF][START_REF] Molloy | The freezing threshold for k-colourings of a random graph[END_REF]. Additionally, in combination with results from [START_REF] Montanari | Tetali: Reconstruction and clustering in random constraint satisfaction problems[END_REF] Theorem 1.2 implies that for all q ≥ 3 the threshold for an important spatial mixing property called reconstruction on the random graph G(n, d/n) equals the reconstruction threshold on the Galton-Watson tree with offspring distribution Po(d).

Finally, the formula (1.1) suggests to think of the inverse temperature parameter β in the Potts antiferromagnet as a "penalty" imposed on monochromatic edges. Then we can view the random graph coloring problem as the β = ∞ version of the Potts antiferromagnet. Indeed, using the dominated convergence theorem, we easily verify that that the number d q,cond from Theorem 1.2 is equal to the limit lim β→∞ d q,cond (β) of the numbers from (1.5). 1.3. The stochastic block model. We prove results such as Theorem 1.1 and 1.2 in an indirect and perhaps surprising way via statistical inference problems. In fact, we will see that these provide the appropriate framework to investigate the replica symmetric cavity method. Let us look at one well known example of such an inference problem, the stochastic block model, which can be viewed as the statistical inference version of the Potts model.

Suppose we choose a random coloring σ * of n vertices with q ≥ 2 colors, then generate a random graph by connecting any two vertices of the same color with probability d in /n and any two with distinct colors with probability d out /n independently; write G * for the resulting random graph. Specifically, set d in = d q exp(-β)/(q -1+exp(-β)) and d out = d q/(q -1 + exp(-β)) so that the expected degree of any vertex equals d. Then bichromatic edges are preferred if β > 0 ("disassortative case"), while monochromatic ones are preferred if β < 0 ("assortative case"). The model was first introduced in machine learning by Holland, Laskey, and Leinhardt [START_REF] Holland | Stochastic blockmodels: First steps[END_REF] as early as 1983, and has since attracted rather considerable attention in probability, computer science, and combinatorics (e.g., [START_REF] Alon | A spectral technique for coloring random 3-colorable graphs[END_REF][START_REF] Alon | Finding a large hidden clique in a random graph[END_REF][START_REF] Bollobás | The phase transition in inhomogeneous random graphs[END_REF][START_REF] Boppana | Eigenvalues and graph bisection: An average-case analysis[END_REF][START_REF] Coja-Oghlan | Graph partitioning via adaptive spectral techniques[END_REF][START_REF] Mcsherry | Spectral partitioning of random graphs[END_REF]).

The inference task associated with the model is to recover σ * given just G * . When d remains fixed as n → ∞ then typically a constant fraction of vertices will have degree 0, and so exact recovery of σ * is a hopeless task. Instead we ask for a coloring that overlaps with σ * better than a mere random guess. Formally, define the agreement of two colorings σ, τ as

A(σ, τ) = -1 + max κ∈S q q n v∈V (G) 1{σ(v) = κ • τ(v)} q -1 .
Then for all σ, τ, A(σ, τ) ≥ 0, A(σ, σ) = 1, and two independent random colorings σ, τ have expected agreement o [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF] as n → ∞. Hence, for what d, β can we infer a coloring τ(G * ) such that A(σ * , τ(G * )) is bounded away from 0? According to the cavity method, this question admits two possibly distinct answers [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF]. First, for any given q, β there exists an information-theoretic threshold d inf (q, β) such that no algorithm produces a partition τ(G * ) such that A(σ * , τ(G * )) ≥ Ω(1) with a non-vanishing probability if d < d inf (q, β). By contrast, for d > d inf (q, β) there is a (possibly exponential-time) algorithm that does. The formula for d inf (q, β) comes as a stochastic optimization problem. The second algorithmic threshold d alg (q, β) marks the point from where the problem can be solved by an efficient (i.e., polynomial time) algorithm. The cavity method predicts the simple formula

d alg (q, β) = q -1 + exp(-β) 1 -exp(-β) 2 .
(1.8)

While the information-theoretic threshold is predicted to coincide with the algorithmic threshold for q = 2, 3, we do not expect that there is a simple expression for d inf (q, β) for q ≥ 4, β > 0.

The physics conjectures have inspired quite a bit of rigorous work (e.g. [START_REF] Deshpande | Asymptotic mutual information for the two-groups stochastic block model[END_REF][START_REF] Guédon | Community detection in sparse networks via Grothendieck's inequality[END_REF][START_REF] Montanari | Semidefinite programs on sparse random graphs and their application to community detection[END_REF]). Mossel, Neeman and Sly [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF][START_REF] Mossel | Reconstruction and estimation in the planted partition model[END_REF] and Massoulié [START_REF] Massoulié | Community detection thresholds and the weak Ramanujan property[END_REF] proved the conjectures for q = 2. Abbe and Sandon [START_REF] Abbe | Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap[END_REF] proved the positive part of the algorithmic conjecture for all q ≥ 3; see also Bordenave, Lelarge, Massoulié [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs[END_REF] for a different but less general algorithm. Moreover, independently of each other Abbe and Sandon [START_REF] Abbe | Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap[END_REF] and Banks, Moore, Neeman and Netrapalli [START_REF] Banks | Netrapalli: Information-theoretic thresholds for community detection in sparse networks[END_REF] derived upper bounds on the information-theoretic threshold that are strictly below d alg (q, β) for q ≥ 5 by providing exponential-time algorithms to detect the planted partition. Banks, Moore, Neeman and Netrapalli additionally derived lower bounds on the information-theoretic threshold via a delicate second moment calculation in combination with small subgraph conditioning. Their lower bounds match the upper bounds up to a constant factor. The following theorem settles the exact information-theoretic threshold for all q ≥ 3,

β > 0. Recall B Potts from (1.2). Theorem 1.3. Suppose β > 0, q ≥ 3 and d > 0. Let d inf (q, β) = inf d > 0 : B Potts (q, d, 1 -exp(-β)) > ln q + d ln(1 -(1 -exp(-β))/q)/2 .
• If d > d inf (q, β), then there exists an algorithm (albeit not necessarily an efficient one) that outputs a partition

τ alg (G * ) such that E[A(σ * , τ alg (G * ))] ≥ Ω(1). • If d < d inf (q, β), then for any algorithm (efficient or not) we have E[A(σ * , τ alg (G * ))] = o(1).
While the claim that d alg (q, β) = d inf (q, β) for q = 3 is not apparent from Theorem 1.3, the theorem reduces this problem to a self-contained analytic question that should be within the scope of known techniques (see Section 2.5). Furthermore, the proofs of Theorems 1.1 and 1.2 are actually based on Theorem 1.3, and we shall see that quite generally phase transitions in "plain" random graph models can be tackled by way of a natural corresponding statistical inference problem. 1.4. LDGM codes. But before we come to that, let us consider a fourth application, namely Low-Density Generator Matrix codes [START_REF] Cheng | Some high-rate near capacity codecs for the Gaussian channel[END_REF][START_REF] Kabashima | Statistical mechanics of error correcting codes[END_REF]. For a fixed k ≥ 2 form a bipartite graph G consisting of n "variable nodes" and m ∼ Po(dn/k) "check nodes". Each check node a gets attached to a random set ∂a of k variable nodes independently. Then select a signal σ * ∈ { ± 1} n uniformly at random. An output message y ∈ { ± 1} m is obtained by setting y a = i∈∂a σ * i with probability 1 -η resp. y a = -i∈∂a σ * i with probability η for each check node a independently. In other words, if we identify ({±1}, • ) with (F 2 , +), the signal σ * is encoded by multiplication by the random biadjacency matrix of G, then suffers from errors in transmission, each bit being flipped with probability η, to form the output message y . Now let G * be the bipartite graph G decorated on each check node a with the value y a ∈ {±1}. The decoding task is to recover σ * given G * .

The appropriate measure to understand the information-theoretic limits of the decoding task is the mutual information between σ * and G * , which we recall is defined as

I (σ * ,G * ) = G,σ P G * = G, σ * = σ ln P [G * = G, σ * = σ] P [G * = G] P [σ * = σ] , (1.9) 
with the sum ranging over all possible graphs G and σ ∈ {±1} n . Abbe and Montanari [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF] proved that for any d, η and for even k the limit lim n→∞ 1 n I (σ * ,G * ) of the mutual information per bit exists. The following theorem determines the limit for all k ≥ 2, even or odd. Let P 0 ([-1, 1]) be the set of all probability distributions on [-1, 1] with mean 0. Let J , (J b ) b≥1 be uniform ±1 random variables, let γ = Po(d), and let (θ (π) j ) j ≥1 be samples from π ∈ P 0 ([-1, 1]), all mutually independent. Theorem 1.4. For k ≥ 2, η > 0, and d > 0, let

I (k, d, η) = sup π∈P 0 ([-1,1]) E 1 2 Λ σ∈{±1} γ b=1 1 + σJ b (1 -2η) k-1 j =1 θ (π) kb+ j - d(k -1) k Λ 1 + J (1 -2η) k j =1 θ (π) j . Then lim n→∞ 1 n I (σ * ,G * ) = (1 + d/k) ln 2 + η ln η + (1 -η) ln(1 -η) -I (k, d, η).
Kumar, Pakzad, Salavati, and Shokrollahi [START_REF] Kumar | Phase transitions for mutual information[END_REF] conjectured the existence of a threshold density below which the normalized mutual information between σ * and y conditioned on G, 1 n I (σ * , y |G), is w.h.p. strictly less than the capacity of the binary symmetric channel with error probability η. Since a simple calculation shows that I (σ * ,G * ) coincides with the conditional mutual information I (σ * , y |G), the result of Abbe and Montanari [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF] that lim n→∞ 1 n I (σ * ,G * ) exists implies this conjecture for even k. Theorem 1.4 extends this result to all k. Moreover, Montanari [START_REF] Montanari | Tight bounds for LDPC and LDGM codes under MAP decoding[END_REF] showed that for even k the above formula gives an upper bound on the mutual information and extends to LDGM codes with given variable degrees. He conjectured that this bound is tight. Theorem 1.4 proves the conjecture for all k for the technically convenient case of Poisson variable degrees. The LDGM coding model also appears in cryptography and hardness-of-approximation as the problem k -LIN(η) or planted noisy k-XOR-SAT (e.g., [START_REF] Alekhnovich | More on average case vs approximation complexity[END_REF][START_REF] Applebaum | Public-key cryptography from different assumptions[END_REF][START_REF] Feldman | On the complexity of random satisfiability problems with planted solutions[END_REF]) and the gap between the algorithmic and the information-theoretic threshold is closely related to deep questions in computational complexity [START_REF] Alekhnovich | More on average case vs approximation complexity[END_REF][START_REF] Feige | Relations between average case complexity and approximation complexity[END_REF].

THE CAVITY METHOD, STATISTICAL INFERENCE AND THE INFORMATION-THEORETIC THRESHOLD

In this section we state the main results of this paper about statistical inference problems and their connections to phase transitions. Theorems 2.2 and 2.4 below provide general exact formulas for the mutual information in inference problem such as the stochastic block model or the LDGM model. Then in Theorems 2.6 and 2.7 we establish the existence of an information-theoretic threshold that connects the statistical inference problem with the condensation phase transition. Let us begin with the general setup and the results for the mutual information.

2.1. The mutual information. The protagonist of this paper, the teacher-student scheme [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF], can be viewed as a generalization of the LDGM problem from Section 1.4. We generalize the set {±1} to an arbitrary finite set Ω of possible values that we call spins and the parity checks to an arbitrary finite collection Ψ of weight functions Ω k → (0, 2) of some fixed arity k ≥ 2. The choice of the upper bound 2 is convenient but somewhat arbitrary as (0, ∞)-functions could just be rescaled to (0, 2). But the assumption that all weight functions are strictly positive is important to ensure that all the quantities that we introduce in the following are well-defined. There is a fixed prior distribution p on Ψ and we write ψ for a random weight function chosen from p. We have a factor graph G = (V, F, (∂a) a∈F , (ψ a ) a∈F ) composed of a set V = {x 1 , . . . , x n } of variable nodes, a set F = {a 1 , . . . , a m } of constraint

SYM: For all σ, σ ′ ∈ Ω, i , i ′ ∈ [k] we have τ∈Ω k E[ψ(τ 1 , . . . , τ k )] • [1{τ i = σ} -1{τ i ′ = σ ′ }] = 0. BAL: The function µ ∈ P (Ω) → σ∈Ω k E[ψ(σ 1 , . . . , σ k )] k i=1 µ(σ i
) is concave and attains its maximum at the uniform distribution. POS: For all π, π ′ ∈ P 2 * (Ω) and for every l ≥ 2 the following is true. With µ (π) 1 , µ (π) 2 , . . . chosen from π and µ (π ′ ) 1 , µ (π ′ ) 2 , . . . from π ′ and ψ ∈ Ψ chosen from p, all mutually independent, we have We may visualize G as a bipartite graph with edges going between variable and constraint nodes, although we keep in mind that the neighborhoods of the constraint nodes are ordered.

E 1 - σ∈Ω k ψ(σ) k j =1 µ (π) j (σ j ) l + (k -1) 1 - σ∈Ω k ψ(σ) k j =1 µ (π ′ ) j (σ j ) l - k i=1 1 - σ∈Ω k ψ(σ)µ (π) i (σ i ) j ∈[k]\{i} µ (π ′ ) j (σ j ) l ≥ 0.
Definition 2.1. Let n, m be integers and set V = {x 1 , . . . , x n } and F = {a 1 , . . . , a m }. The teacher-student scheme is the distribution on assignment/factor graph pairs induced by the following experiment.

TCH1: An assignment σ * n ∈ Ω V , the ground truth, is chosen uniformly at random. TCH2: Then obtain the random factor graph G * (n, m, p, σ * n ) with variable nodes V and constraint nodes F by drawing independently for j = 1, . . . , m the neighborhood and the weight function from the joint distribution

P ∂a j = (y 1 , . . . , y k ), ψ a j = ψ = ξ -1 p(ψ)ψ(σ * n (y 1 , . . . , σ * n (y k )) for y 1 , . . . , y k ∈ V, ψ ∈ Ψ, where (2.1) 
ξ = ξ(p) = |Ω| -k τ∈Ω k E[ψ(τ)]. (2.2) 
The idea is that a "teacher" chooses σ * n and sets up a random factor G * (n, m, p, σ * n ) such that for each constraint node the weight function and the adjacent variable nodes are chosen from the joint distribution (2.1) induced by the ground truth. Specifically, the probability of a weight function/variable node combination is proportional to the prior p(ψ) times the weight ψ(σ * n (y 1 ), . . . , σ * n (y k )) of the corresponding spin combination under the ground truth. The teacher hands the random factor graph G * (n, m, p, σ * n ), but not the ground truth itself, to an imaginary "student", whose task it is to infer as much information about σ * n as possible. Hence, the key quantity associated with the model is the mutual information of the ground truth and the random factor graph defined as in (1.9). Let us briefly write σ * = σ * n . Moreover, letting m = Po(dn/k) we use the shorthand G * = G * (n, m, p, σ * ). The cavity method predicts that the mutual information 1 n I (σ * ,G * ) converges to the solution of a certain stochastic optimization problem. We are going to prove this conjecture under the three general conditions shown in Figure 1. The first condition SYM requires that on the average the weight functions prefer all values σ ∈ Ω the same. Condition BAL requires that on average the weight functions do not prefer an imbalanced distribution of values (e.g., that σ 1 , . . . , σ k all take the same value). The third condition POS can be viewed as a convexity assumption. Crucially, all three assumptions can be checked solely in terms of the prior distribution p on weight functions. In Section 4 we will see that the three assumptions hold in many important examples. These include LDGM codes or variations thereof where the parity checks are replaced by k-SAT clauses or by graph or hypergraph q-coloring constraints for any q ≥ 2, and thus in particular the Potts antiferromagnet. Theorem 2.2. Assume that SYM, BAL and POS hold. With γ = Po(d), ψ 1 , ψ 2 , . . . ∈ Ψ chosen from p, µ (π) 1 , µ (π) 2 , . . . chosen from π ∈ P 2 * (Ω) and h 1 , h 2 , . . . ∈ [k] chosen uniformly, all mutually independent, let

B(d, π) = E ξ -γ |Ω| Λ σ∈Ω γ i=1 τ∈Ω k 1{τ h i = σ}ψ b (τ) j =h i µ (π) ki+ j (τ j ) - d(k -1) kξ Λ τ∈Ω k ψ(τ) k j =1 µ (π) j (τ j ) . ( 2 

.3)

Then for all d > 0 we have

lim n→∞ 1 n I (σ * ,G * ) = ln |Ω| + d kξ|Ω| k τ∈Ω k E[Λ(ψ(τ))] -sup π∈P 2 * (Ω) B(d, π).
Theorem 1.4 follows immediately from Theorem 2.2 by verifying SYM, BAL and POS for the LDGM setup (see Section 4.4).

Remark 2.3. The expression B(d, π

) is closely related to the "Bethe free energy" from physics [START_REF] Mézard | Information, physics and computation[END_REF], which is usually written in terms of |Ω| different distributions (π ω ) ω∈Ω on P (Ω) rather than just a single π. But thanks to the 'Nishimori property' (Proposition 3.2 below) we can rewrite the formula in the compact form displayed in Theorem 2.2.

Belief Propagation.

We proceed to establish that the stochastic optimization problem (2.2) can be cast as the problem of finding an optimal distribution of Belief Propagation messages on a random tree. To be precise, let π ∈ P 2 * (Ω) and consider the following experiment that sets up a random tree of height two and uses π to calculate a "message" emanating from the root. The construction ensures that the tree has asymptotically the same distribution as the depth-two neighborhood of a random variable node in G * .

BP1:

The root is a variable node r that receives a uniformly random spin σ ⋆ (r ). BP2: The root has a random number γ = Po(d) of constraint nodes a 1 , . . . , a γ as children, and independently for each child a i the root picks a random index

h i ∈ [k]. BP3: Each a i has k -1 variable nodes (x i j ) j ∈[k]\{h i }
as children and independently for each a i we choose a weight function ψ a i ∈ Ψ and spins σ ⋆ (x i j ) ∈ Ω from the distribution

P ψ a i = ψ, σ ⋆ (x i j ) = σ i j = p(ψ)ψ(σ i1 , . . . , σ ih i -1 , σ ⋆ (r ), σ ih i +1 , . . . , σ ik ) ψ ′ ∈Ψ,τ i j ∈Ω p(ψ ′ )ψ(τ i1 , . . . , τ ih i -1 , σ ⋆ (r ), τ ih i +1 , . . . , τ ik )
.

BP4:

For each x i j independently choose µ x i j ∈ P (Ω) from the distribution |Ω|µ(σ ⋆ (x i j ))dπ(µ). BP5: Finally, obtain µ r via the Belief Propagation equations:

µ a i (σ h i ) = τ∈Ω k 1{τ h i = σ h i }ψ a i (τ) j =h i µ x i j (τ j ), µ r (σ) = γ i=1 µ a i (σ) τ∈Ω γ i=1 µ a i (τ)
.

Let T d (π) be the distribution (over all the random choices in BP1-BP4) of µ r and let

P 2 fix (d) = {π ∈ P 2 * (Ω) : T d (π) = π}.
The stochastic fixed point problem T d (π) = π is known as the density evolution equation in physics [START_REF] Mézard | Information, physics and computation[END_REF]. d,π). Theorem 2.2 reduces a question about an infinite sequence of random factor graphs, one for each n, to a single stochastic optimization problem, thereby verifying the key assertion of the replica symmetric cavity method. Further, Theorem 2.4 shows that this optimization problem can be viewed as the task of finding the dominant Belief Propagation fixed point on a Galton-Watson tree. Extracting further explicit information (say, an approximation of the mutual information to seven decimal places or an asymptotic formula) will require application-specific considerations. But there are standard techniques available for studying stochastic fixed point equations analytically (such as the contraction method [START_REF] Neininger | Rüschendorf: A general limit theorem for recursive algorithms and combinatorial structures[END_REF]) as well as the numerical 'population dynamics' heuristic [START_REF] Mézard | Information, physics and computation[END_REF]. Since B(d, π) will occur in Theorems 2.6 and 2.7 as well, Theorem 2.4 implies that those results can be phrased in terms of P 2 fix (d). 2.3. The information-theoretic threshold. The teacher-student scheme immediately gives rise to the following question: does the factor graph G * reveal any discernible trace of the ground truth at all? To answer this question, we should compare G * with a "purely random" null model. This model is easily defined. But what corresponds to the ground truth in this null model? Any factor graph G induces a distribution on the set of assignments called the Gibbs measure, defined by

µ G (σ) = ψ G (σ) Z (G) where ψ G (σ) = a∈F ψ a (σ(∂ 1 a), . . . , σ(∂ k a)) for σ ∈ Ω V and Z (G) = τ∈Ω V ψ G (τ). (2.4)
Thus, the probability of σ is proportional to the product of the weights that the constraint nodes assign to σ. Thinking of µ G as the "posterior distribution" of the (actual or fictitious) ground truth given G and writing σ = σ G for a sample from µ G , we quantify the distance of the distributions (G * , σ * ) and (G, σ G ) by the Kullback-Leibler divergence

D KL G * , σ * G, σ G = G,σ P G * = G, σ * = σ ln P [G * = G, σ * = σ] P [G = G, σ G = σ] .
While it might be possible that 

D KL (G * , σ * G, σ G ) = o(n) for small d, G * should
d inf = inf d > 0 : sup π∈P 2 * (Ω) B(d, π) > (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] . Then lim n→∞ 1 n D KL G * , σ * G, σ G = 0 if d < d inf , (2.5) liminf n→∞ 1 n D KL G * , σ * G, σ G > 0 if d > d inf .
The first scenario (2.5) provides an extension of the "quiet planting" method from [START_REF] Achlioptas | Algorithmic barriers from phase transitions[END_REF][START_REF] Krzakala | Hiding quiet solutions in random constraint satisfaction problems[END_REF] ) is tight in specific models (e.g., [START_REF] Achlioptas | Random k-SAT: two moments suffice to cross a sharp threshold[END_REF][START_REF] Achlioptas | On the 2-colorability of random hypergraphs[END_REF][START_REF] Achlioptas | The two possible values of the chromatic number of a random graph[END_REF][START_REF] Achlioptas | Rigorous location of phase transitions in hard optimization problems[END_REF][START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF][START_REF] Dyer | On the chromatic number of a random hypergraph[END_REF]). The second moment method provides a sufficient condition: if

d is such that E[Z (G) 2 ] = O(E[Z (G)] 2
), then (2.6) holds with equality. However, this condition is neither necessary nor easy to check. But the precise answer follows from Theorem 2.6.

Theorem 2.7. Suppose that p, Ψ satisfy SYM, BAL and POS. Then

lim n→∞ - 1 n E[ln Z (G)] = (d -1) ln |Ω| - d k ln σ∈Ω k E[ψ(σ)] for all d < d inf , limsup n→∞ - 1 n E[ln Z (G)] < (d -1) ln |Ω| - d k ln σ∈Ω k E[ψ(σ)] for all d > d inf .
Clearly, the function

d ∈ (0, ∞) → (d -1) ln |Ω| - d k ln σ∈Ω k E[ψ(σ)] is analytic. Thus, if d inf > 0, then either lim n→∞ -1 n E[ln Z (G)] does not exist in a neighborhood of d inf or the func- tion d → lim n→∞ -1 n E[ln Z (G)] is non-analytic at d inf .
Hence, verifying an important prediction from [START_REF] Krzakala | Gibbs states and the set of solutions of random constraint satisfaction problems[END_REF], Theorem 2.7 shows that if d inf > 0, then a phase transition occurs at d inf , called the condensation phase transition in physics.

In Sections 4.1 and 4.3 we will derive Theorems 1.1 and 1.2 from Theorem 2.7. While the proving Theorem 1.1 from Theorem 2.7 is fairly straightforward, Theorem 1.2 requires a bit of work. This is because Theorem 2.7 assumes that all weight functions ψ ∈ Ψ are strictly positive, which precludes hard constraints like in the graph coloring problem. Nonetheless, in Section 4.3 we show that these hard constraints, corresponding to β = ∞ in (1.1), can be dealt with by considering the Potts antiferromagnet for finite values of β and taking the limit β → ∞. We expect that this argument will find other applications.

2.5. Discussion and related work. Theorems 2.2, 2.6 and 2.7 establish the physics predictions under modest assumptions that only refer to the prior distribution of the weight functions, i.e., the 'syntactic' definition of the model. The proofs provide a conceptual vindication of the replica symmetric version of the cavity method.

Previously the validity of the physics formulas was known in any generality only under the assumption that the factor graph models satisfies the Gibbs uniqueness condition, a very strong spatial mixing assumption [START_REF] Bapst | Coja-Oghlan: Harnessing the Bethe free energy[END_REF][START_REF] Coja-Oghlan | Limits of discrete distributions and Gibbs measures on random graphs[END_REF][START_REF] Dembo | Gibbs measures and phase transitions on sparse random graphs[END_REF][START_REF] Dembo | Sun: Factor models on locally tree-like graphs[END_REF]. Gibbs uniqueness typically only holds for very small values of d. Additionally, under weaker spatial mixing conditions it was known that the free energy in random graph models is given by some Belief Propagation fixed point [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF][START_REF] Dembo | Sun: Factor models on locally tree-like graphs[END_REF]. However, there may be infinitely many fixed points, and it was not generally known that the correct one is the maximizer of the functional B(d, • ). In effect, it was not possible to derive the formula the free energy or, equivalently, the mutual information, from such results. Specifically, in the case of the teacher-student scheme Montanari [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF] proved (under certain assumptions) that the Gibbs marginals of G * correspond to a Belief Propagation fixed point as in Section 2.2, whereas Theorem 2.4 identifies the particular fixed point that maximizes the functional B(d, • ) as the relevant one.

Yet the predictions of the replica symmetric cavity method have been verified in several specific examples. The first ones were the ferromagnetic Ising/Potts model [START_REF] Dembo | The replica symmetric solution for Potts models on d-regular graphs[END_REF][START_REF] Dembo | Sun: Factor models on locally tree-like graphs[END_REF], where the proofs exploit model-specific monotonicity/contraction properties. More recently, the ingenious spatial coupling technique has been used to prove replica symmetric predictions in several important cases, including low-density parity check codes [START_REF] Giurgiu | Spatial coupling as a proof technique and three applications[END_REF]. Indeed, spatial coupling provides an alternative probabilistic construction of, e.g., codes with excellent algorithmic properties [START_REF] Kudekar | Spatially coupled ensembles universally achieve capacity under belief propagation[END_REF]. Yet the method falls short of providing a wholesale justification of the cavity method as a potentially substantial amount of individual ingredients is required for each application (such as problem-specific algorithms [START_REF] Achlioptas | Bounds for random constraint satisfaction problems via spatial coupling[END_REF]).

Subsequently to the posting of a first version of this paper on arXiv, and independently, Lelarge and Miolane [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] posted a paper on recovering a low rank matrix under a perturbation with Gaussian noise. They use some similar ingredients as we do to prove an upper bound on the mutual information matching the lower bound of [START_REF] Krzakala | Mutual Information in Rank-One Matrix Estimation[END_REF]. This setting is conceptually simpler as the infinite-dimensional stochastic optimization problem reduces to a onedimensional optimization problem due to central limit theorem-type behavior in the dense graph setting.

The random factor graph models that we consider in the present paper are of Erdős-Rényi type, i.e., the constraint nodes choose their adjacent variable nodes independently. In effect, the variable degrees are asymptotically Poisson with mean d. While such models are very natural, models with given variable degree distributions are of interest in some applications, such as error-correcting codes (e.g. [START_REF] Montanari | Tight bounds for LDPC and LDGM codes under MAP decoding[END_REF]). Although we expect that the present methods extend to models with (reasonable) given degree distributions, here we confine ourselves to the Poisson case for the sake of clarity. Similarly, the assumptions BAL, SYM and POS, and the strict positivity of the constraint functions strike a balance between generality and convenience. While these conditions hold in many cases of interest, BAL fails for the ferromagnetic Potts model, which is why Theorem 1.3 does not cover the assortative block model. Anyhow BAL, SYM and POS are (probably) not strictly necessary for our results to hold and our methods to go through, a point that we leave to future work.

A further open problem is to provide a rigorous justification of the more intricate 'replica symmetry breaking' (1RSB) version of the cavity method. The 1RSB version appears to be necessary to pinpoint, e.g., the k-SAT or qcolorability thresholds for k ≥ 3, q ≥ 3 respectively. Currently there are but a very few examples where predictions from the 1RSB cavity method have been established rigorously [START_REF] Ding | Satisfiability threshold for random regular NAE-SAT[END_REF][START_REF] Ding | Maximum independent sets on random regular graphs[END_REF][START_REF] Sly | The number of solutions for random regular NAE-SAT[END_REF], the most prominent one being the proof of the k-SAT conjecture for large k [START_REF] Ding | Sun: Proof of the satisfiability conjecture for large k[END_REF]. That said, the upshot of the present paper is that for teacher-student-type problems as well as for the purpose of finding the condensation threshold, the replica symmetric cavity method is provably sufficient.

Additionally, the "full replica symmetry breaking" prediction has been established rigorously in the Sherrington-Kirkpatrick model on the complete graph [START_REF] Talagrand | The Parisi formula[END_REF]. Subsequently Panchenko [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF] proposed a different proof that combines the interpolation method with the so-called 'Aizenman-Sims-Starr' scheme, an approach that he attempted to extend to sparse random graph models [START_REF] Panchenko | Spin glass models from the point of view of spin distributions[END_REF]. We will apply the interpolation method and the Aizenman-Sims-Starr scheme as well, but crucially exploit that the connection with the statistical inference formulation of random factor graph models adds substantial power to these arguments. 2.6. Preliminaries and notation. Throughout the paper we let Ω be a finite set of 'spins' and fix an integer k ≥ 2. Moreover, let V = V n = {x 1 , . . . , x n } and F m = {a 1 , . . . , a m } be sets of variable and constraint nodes and we write σ * n for a uniformly random map V n → Ω. Further, m = m d = m d (n) denotes a random variable with distribution Po(dn/k).

The O( • )-notation refers to the limit n → ∞ by default. In addition to the usual symbols O( • ), o( • ), Ω( • ), Θ( • ) we use Õ( • ) to hide logarithmic factors. Thus, we write f (n) = Õ(g (n)) if there is c > 0 such that for large enough

n we have | f (n)| ≤ g (n) ln c n. Furthermore, if (E n ) n is a sequence of events, then (E n ) n holds with high probability ('w.h.p.') if lim n→∞ P[E n ] = 1.
Let (µ n ) n , (ν n ) n be sequences of probability distributions on measurable spaces (X n ) n . We call (µ n ) n contiguous with respect to (ν n ) n if for any ε > 0 there exist δ > 0 and n 0 > 0 such that for all n > n 0 for every event

E n on Ω n with ν n (E n ) < δ we have µ n (E n ) < ε. The sequences (µ n ) n , (ν n ) n are mutually contiguous if (µ n ) n is contiguous w.r.t. (ν n ) n and (ν n ) n is contiguous w.r.t. (µ n ) n .
If X , Y are finite sets and σ : X → Y is a map, then we write λ σ ∈ P (Y ) for the empirical distribution of σ. That is, for any y ∈ Y we let λ σ (y) = |σ -1 (y)|/|Y |. Moreover, for assignments σ, τ :

X → Y we let σ△τ = {x ∈ X : σ(x) = τ(x)}.
When defining probability distributions we use the ∝-symbol to signify the required normalization. Thus, we use P [X = x] ∝ q x for all x ∈ X as shorthand for P [X = x] = q x / y ∈X q y for all x ∈ X , provided that y ∈X q y > 0. If y ∈X q y = 0 the ∝-symbol defines the uniform distribution on X .

Suppose that X is a finite set. Given a probability distribution µ on X n we write σ µ , σ 1,µ , σ 2,µ , . . . for independent samples from µ. Where µ is apparent from the context we drop it from the notation. Further, we write 〈X (σ)〉 µ for the average of a random variable X :

X n → R with respect to µ. Thus, 〈X (σ)〉 µ = σ∈X n X (σ)µ(σ). Similarly, if X : (X n ) l → R, then 〈X (σ 1 , . . . , σ l )〉 µ = σ 1 ,...,σ l ∈X n X (σ 1 , . . . , σ l ) l j =1 µ(σ j ).
If µ = µ G is the Gibbs measure induced by a factor graph G, then we use the abbreviation

〈• 〉 G = 〈 • 〉 µ G .
If X , I are finite sets, µ ∈ P (X I ) is a probability measure and i ∈ I , then we write µ i for the marginal distribution of the i -coordinate. That is, µ i (ω) = σ:I →X 1{σ(i ) = ω}µ(σ) for any ω ∈ X . Similarly, if J ⊂ I , then µ J (ω) = σ:I →X 1{σ| J = ω}µ(σ) for any ω : J → X denotes the joint marginal distribution of the coordinates J . If J = {i 1 , . . . , i l } we briefly write µ i 1 ,...,i l rather than µ {i 1 ,...,i l } . Further, a measure

ν ∈ P (X I ) is ε-symmetric if i,j ∈I ν i,j -ν i ⊗ ν j TV < ε|I | 2 . More generally, ν is (ε, l)-symmetric if i 1 ,...,i l ∈I µ i 1 ,...,i l -µ i 1 ⊗ • • • ⊗ µ i l TV < ε|I | l .
Crucially, in the following lemma ε depends on δ, l, X only, but not on µ or I .

Lemma 2.8 ([17]). For any

X = , l ≥ 3, δ > 0 there is ε > 0 such that for all I of size |I | > 1/ε the following is true. If µ ∈ P (X I ) is ε-symmetric, then µ is (δ, l)-symmetric.
The total variation norm is denoted by • TV . Furthermore, for a finite set X we identify the space P (X ) of probability distributions on X with the standard simplex in R X and endow P (X ) with the induced topology and Borel algebra. The space P 2 (X ) of probability measures on P (X ) carries the topology of weak convergence. Thus, P 2 (X ) is a compact Polish space. So is the closed subset P 2 * (X ) of measures π ∈ P 2 (X ) whose mean µdπ(µ) is the uniform distribution on X . We use the W 1 Wasserstein distance, denoted by W 1 ( • , • ), to metrize the weak topology on P 2 * (X ) [START_REF] Billingsley | Convergence of probability measures[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF]. In particular, recalling B(d, • ) from (2.3) and T d ( • ) from Section 2.2, we observe Lemma 2.9. The map π ∈ P 2 (Ω) → T d (π) and the functional π ∈ P 2 (Ω) → B(d, π) are continuous.

Proof. We prove this for T d (π), the proof for B(d, π) is similar. We need to show that for every ε > 0, there is

δ > 0 so that if W 1 (π 1 , π 2 ) < δ, then W 1 (T d (π 1 ), T d (π 2 )) < ε. Let T d ,γ≤M (π) be the output distribution of T d ( • ) conditioned on the event that γ ≤ M.
For any fixed M, T d ,γ≤M (π) is a continuous function of π in the weak topology as it is the composition of a continuous function and and a product distribution on at most M independent samples from π. Now given ε, choose M large enough that P[γ > M] < ε/2, and δ small enough that

W 1 (π 1 , π 2 ) < δ implies W 1 (T d ,γ≤M (π 1 ), T d ,γ≤M (π 2 )) < ε/2. Then W 1 (T d (π 1 ), T d (π 2 )) ≤ W 1 (T d ,γ≤M (π 1 ), T d ,γ≤M (π 2 )) + P[γ > M] < ε.
Furthermore, for a measure µ ∈ P (X ) we denote by δ µ ∈ P 2 (X ) the Dirac measure on µ.

Proposition 2.10 (Glivenko-Cantelli Theorem, e.g. [START_REF] Rachev | Probability metrics and the stability of stochastic models[END_REF]Chapter 11]). For any finite set Ω, there is a sequence ε K → 0 as K → ∞ so that the following is true. Let µ 1 , µ 2 , • • • ∈ P (Ω) be independent samples from π ∈ P 2 (Ω) and form the empirical marginal distribution

µ K = 1 K K i=1 δ µ i . Then E[W 1 (π, µ K )] ≤ ε K .
Suppose that (E , µ) is a probability space and that X , Y are random variables on (E , µ) with values in a finite set X . We recall that the mutual information of X , Y is

I (X , Y ) = x,y ∈X µ(X = x, Y = y) ln µ(X = x, Y = y) µ(X = x)µ(Y = y) ,
with the usual convention that 0ln 0 0 = 0, 0ln 0 = 0. Moreover, the mutual information of X , Y given a third Xvalued random variable W is defined as

I (X , Y |W ) = x,y,w ∈X µ(X = x, Y = y,W = w) ln µ(X = x, Y = y|W = w) µ(X = x|W = w)µ(Y = y|W = w)
.

Furthermore, we recall the entropy and the conditional entropy:

H (X ) = - x∈X µ(X = x) ln µ(X = x), H (X |Y ) = - x,y ∈X µ(X = x, Y = y) ln µ(X = x|Y = y).
Viewing (X , Y ) as a X × X -valued random variable, we have the chain rule

H (X , Y ) = H (X ) + H (Y |X ).
Analogously, for µ ∈ P (X ) we write

H (µ) = -x∈X µ(x) ln µ(x).
The Kullback-Leibler divergence between two probability measures µ, ν on a finite set X is

D KL µ ν = σ∈X µ(σ) ln µ(σ) ν(σ) .
Finally, we recall Pinsker's inequality: for any two probability measures µ, ν ∈ P (X ) we have

µ -ν TV ≤ D KL µ ν /2 (2.7)

THE REPLICA SYMMETRIC SOLUTION

In this section we prove Theorems 2.2, 2.4, 2.6 and 2.7. The proofs of Theorems 1.1-1.4 follow in Section 4, along with a few other applications.

3.1. Overview. To prove Theorem 2.2 we will provide a rigorous foundation for the "replica symmetric calculations" that physicists wanted to do (and have been doing) all along. To this end we adapt, extend and generalize various ideas from prior work, some of them relatively simple, some of them quite recent and not simple at all, and develop several new arguments. But in a sense the main achievement lies in the interplay of these components, i.e., how the individual cogs assemble into a functioning clockwork. Putting most details off to the following subsections, here we outline the proof strategy. We focus on Theorem 2.2, from which we subsequently derive Theorem 2.6 and Theorem 2.7 in Section 3.5. Theorem 2.4 also follows from Theorem 2.2 but the proof requires additional arguments, which can be found in Section 3.6.

The first main ingredient to the proof of Theorem 2.2 is a reweighted version of the teacher-student scheme that enables us to identify the ground truth with a sample from the Gibbs measure of the factor graph; this identity is an exact version of the "Nishimori property" from physics. The Nishimori property facilitates the use of a general lemma (Lemma 3.5 below) that shows that a slight perturbation of the factor graph induces a correlation decay property called "static replica symmetry" in physics without significantly altering the mutual information; due to its great generality Lemma 3.5 should be of independent interest. Having thus paved the way, we derive a lower bound on the mutual information via the so-called 'Aizenman-Sims-Starr' scheme. This comes down to estimating the change in mutual information if we go from a model with n variable nodes to one with n + 1 variable nodes. The proof of the matching upper bound is based on a delicate application of the interpolation method.

3.1.1. The Nishimori property. The Gibbs measure µ G of the factor graph G from (2.4) provides a proxy for the "posterior distribution" of the ground truth given the graph G. While we will see that this is accurate in the asymptotic sense of mutual contiguity, the assumptions BAL, SYM and POS do not guarantee that the Gibbs measure µ G * is the exact posterior distribution of the ground truth. This is an important point for us because the calculation of the mutual information relies on subtle coupling arguments. Hence, in order to hit the nail on the head exactly, we introduce a reweighted version of the teacher-student scheme in which the Gibbs measure coincides with the posterior distribution for all n. Specifically, instead of the uniformly random ground truth σ * n we consider a random assignment σn,m,p chosen from the distribution

P σn,m,p = σ = E[ψ G (n,m,p) (σ)] E[Z (G(n, m, p))] (σ ∈ Ω V ). (3.1)
Thus, the probability of an assignment is proportional to its average weight. Further, any specific "ground truth" σ induces a random factor graph G * (n, m, p, σ) with distribution

P G * (n, m, p, σ) ∈ A = E ψ G(n,m,p) (σ)1{G(n, m, p) ∈ A } E[ψ G (n,m,p) (σ)] for any event A . (3.2)
In words, the probability that a specific graph G comes up is proportional to ψ G (σ). 

ψ G (σ) E[ψ G (n,m,p) (σ)] = m j =1 ψ a j (σ(∂ 1 a j ), . . . , σ(∂ k a j )) ψ∈Ψ n h 1 ,...,h k =1 p(ψ)ψ(σ(x h 1 ), . . . , σ(x h k )) . (3.3)
Since the experiment from Definition 2.1 generates the constraint nodes a 1 , . . . , a m independently, the probability of obtaining the specific graph G equals the r.h.s. of (3.3).

Additionally, consider the random factor graph Ĝ(n, m, p) defined by

P Ĝ(n, m, p) ∈ A = E[Z (G(n, m, p))1{G(n, m, p) ∈ A }] E[Z (G(n, m, p))] for any event A , (3.4) 
which means that we reweigh G(n, m, p) according to the partition function. Finally, recalling that m = Po(dn/k), we introduce the shorthand σ = σn,m,p , G * ( σ) = G * (n, m, p, σn,m,p ) and Ĝ = Ĝ(n, m, p).

Proposition 3.2. For all factor graph/assignment pairs (G, σ) we have

P σ = σ,G * ( σ) = G = P Ĝ = G µ G (σ). (3.5)
Moreover, BAL and SYM imply that σ and the uniformly random assignment σ * are mutually contiguous.

In words, (3.5) provides that the distributions on assignment/factor graph pairs induced by the following two experiments are identical.

(i) Choose σ, then choose G * ( σ). (ii) Choose Ĝ, then choose σ Ĝ from µ Ĝ .
In particular, the conditional distribution of σ given just the factor graph G * ( σ) coincides with the Gibbs measure of G * ( σ). This can be interpreted as an exact, non-asymptotic version of what physicists call the Nishimori property (cf. [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF]). Although ( σ,G * ( σ)) and (σ * ,G * ) are not generally identical, the contiguity statement from Proposition 3.2 ensures that both are equivalent as far as "with high probability"-statements are concerned. The proof of Proposition 3.2 can be found in Section 3.2.

To proceed, we observe that the free energy of the random factor graph is tightly concentrated.

Lemma 3.3. There is C

= C (d, Ψ) > 0 such that P | ln Z ( Ĝ) -E ln Z ( Ĝ)| > t n ≤ 2exp(-t 2 n/C ) for all t > 0. (3.6)
The same holds with Ĝ replaced by G * ( σ), G * (σ * ) or G. Moreover, The following statement, which is an easy consequence of Proposition 3.2, reduces the task of computing I (σ * ,G * ) to that of calculating the free energy -E[ln Z ( Ĝ)] of the reweighted model Ĝ.

E[ln Z ( Ĝ)] = E[ln Z (G * (σ * ))] + o(n). ( 3 
Lemma 3.4. We have

I ( σ,G * ( σ)) = -E[ln Z ( Ĝ)] + dn kξ|Ω| k τ∈Ω k E[Λ(ψ(τ))] + n ln |Ω| + o(n), (3.8 
)

I (σ * ,G * (σ * )) = -E[ln Z ( Ĝ)] + dn kξ|Ω| k τ∈Ω k E[Λ(ψ(τ))] + n ln |Ω| + o(n). (3.9)
Proof. Proposition 3.2 implies that

I ( σ,G * ( σ)) = Ĝ P Ĝ = Ĝ σ µ Ĝ (σ) ln µ Ĝ (σ) P [ σ = σ] = H ( σ) -E[H (µ Ĝ )]. (3.10)
Further, since σ and the uniformly random σ * are mutually contiguous, we have

H ( σ) = n ln |Ω| + o(n). ( 3.11) 
Moreover, for any factor graph G we have given G is generally a daunting task. The plain reason is the existence of correlations between the spins assigned to different variable nodes. To see this, write σ G for a sample drawn from µ G . If we fix two variable nodes x h , x i that are adjacent to the same constraint node a j , then in all but the very simplest examples the spins σ G (x h ), σ G (x i ) will be correlated because ψ a j 'prefers' certain spin combinations over others. By extension, correlations persists if x h , x i are at any bounded distance. But what if we choose a pair of variable nodes (x, y ) ∈ V × V uniformly at random? If G is of bounded average degree, then the distance of x, y will typically be as large as Ω(ln |V |). Hence, we may hope that σ G (x), σ G (y ) are 'asymptotically independent'. Formally, let µ G,x be the marginal distribution of σ G (x) and µ G,x,y the distribution of (σ G (x), σ G (y)). Then we may hope that for a small ε > 0, 1

H (µ G ) = - σ µ G (σ) ln µ G (σ) = - σ ψ G (σ) Z (G) ln ψ G (σ) Z (G) = ln Z (G) -ln ψ G (σ G ) G (3.
E ln ψ Ĝ (σ Ĝ ) Ĝ = dn k E ψ a 1 ( σ) + o(n) = dn kξ|Ω| k τ∈Ω k ,ψ∈Ψ p(ψ)ψ(τ) ln ψ(τ) = dn kξ|Ω| k τ∈Ω k E[Λ(ψ(τ))]. ( 3 
|V | 2 x,y ∈V µ G,x,y -µ G,x ⊗ µ G,y TV < ε. (3.14)
In the terminology from Section 2.6, (3.14) expresses that µ G is ε-symmetric.

The replica symmetric cavity method provides a heuristic for calculating the free energy of random factor graph where (3.14) is satisfied w.h.p. for some ε = ε(n) that tends to 0 as n → ∞. But from a rigorous viewpoint two challenges arise. First, for a given random factor graph model, how can we possibly verify that ε-symmetry holds w.h.p.? Second, even granted ε-symmetry, how are we going to beat a rigorous path from the innocent-looking condition (3.14) to the mildly awe-inspiring stochastic optimization problems predicted by the physics calculations?

The following very general lemma is going to resolve the first challenge for us. Instead of providing a way of checking, the lemma shows that a slight random perturbation likely precipitates ε-symmetry. Lemma 3.5. For any ε > 0 there is T = T (ε, Ω) > 0 such that for every n > T and every probability measure µ ∈ P (Ω n ) the following is true. Obtain a random probability measure μ ∈ P (Ω n ) as follows.

Draw a sample σ ∈ Ω n from µ, independently choose a number θ ∈ (0, T ) uniformly at random, then obtain a random set U ⊂ [n] by including each i ∈ [n] with probability θ/n independently and let

μ(σ) = µ(σ)1{∀i ∈ U : σ i = σi } µ({τ ∈ Ω n : ∀i ∈ U : τ i = σi }) (σ ∈ Ω n ).
Then μ is ε-symmetric with probability at least 1 -ε.

In words, take any distribution µ on Ω n that may or may not be ε-symmetric. Then, draw one single sample σ from µ and obtain μ by "pinning" a typically bounded number of coordinates U to the particular spin values observed under σ. Then the perturbed measure μ is likely ε-symmetric. (Observe that μ is well-defined because µ({τ ∈ Ω n : ∀i ∈ U :

τ i = σi }) ≥ µ( σ) > 0.) Lemma 3.5 is a generalization of a result of Montanari [73, Lemma 3.1]
and the proof is by extension of the ingenious information-theoretic argument from [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF], parts of which go back to [START_REF] Macris | Griffith-Kelly-Sherman correlation inequalities: a useful tool in the theory of error correcting codes[END_REF][START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF][START_REF] Méasson | Maxwell construction: the hidden bridge between iterative and maximum a posteriori decoding[END_REF]. The proof of Lemma 3.5 can be found in Section 3.7. Proposition 3.2 and Lemma 3.5 fit together marvelously. Indeed, the apparent issue with Lemma 3.5 is that we need access to a pristine sample σ. But Proposition 3.2 implies that we can replace σ by the "ground truth" σ.

3.1.3. The free energy. The computation of the free energy proceeds in two steps. In Section 3.3 we prove that the stochastic optimization problem yields a lower bound. d,π). To prove Proposition 3.6 we use the Aizenman-Sims-Starr scheme [START_REF] Aizenman | An extended variational principle for the SK spin-glass model[END_REF]. This is nothing but the elementary observation that we can compute -E[ln Z ( Ĝ)] by calculating the difference between the free energy of a random factor graph with n + 1 variable nodes and one with n variable nodes. To this end we use a coupling argument. Roughly speaking, the coupling is such that the bigger factor graph is obtained from the smaller one by adding one variable node x n+1 along with a few adjacent random constraint nodes b 1 , . . . , b γ . (Actually we also need to delete a few constraint nodes from the smaller graph, see Section 3.3.) To track the impact of these changes, we apply pinning to the smaller factor graph to ensure ε-symmetry. The variable nodes adjacent to b 1 , . . . , b γ are "sufficiently random" and γ is typically bounded. Therefore, we can use ε-symmetry in conjunction with Lemma 2.8 to express the expected change in the free energy in terms of the empirical distribution ρ n of the Gibbs marginals of the smaller graph. By comparison to prior work such as [START_REF] Coja-Oghlan | Limits of discrete distributions and Gibbs measures on random graphs[END_REF][START_REF] Panchenko | Spin glass models from the point of view of spin distributions[END_REF] that also used the Aizenman-Sims-Starr scheme, a delicate point here is that we need to verify that ρ n satisfies an invariance property that mirrors the Nishimori property (Lemma 3.17 below). With Lemmas 2.8 and 3.5 and the invariance property in place, we obtain the change in the free energy by following the steps of the previously non-rigorous Belief Propagation computations, unabridged. The result works out to be -B(d, ρ n ), whence Proposition 3.6 follows. The details can be found in Section 3.3.

Proposition 3.6. If SYM and BAL hold, then liminf n→∞ -1 n E ln Z ( Ĝ) ≥ -sup π∈P 2 * (Ω) B(
The third assumption POS is needed in the proof of the upper bound only.

Proposition 3.7. If SYM, BAL and POS hold, then limsup n→∞ - d,π). We prove Proposition 3.7 via the interpolation method, originally developed by Guerra in order to investigate the Sherrington-Kirkpatrick model [START_REF] Guerra | Broken replica symmetry bounds in the mean field spin glass model[END_REF]. Given π ∈ P 2 * (Ω), the basic idea is to set up a family of factor graphs ( Ĝt ) t ∈[0,1] such that Ĝ = Ĝ1 is the original model and such that Ĝ0 decomposes into connected components that each contain exactly one variable node. In effect, the free energy of Ĝ0 is computed easily. The result is -B(d, π). Therefore, the key task is to show that the derivative of the free energy is non-positive for all t ∈ (0, 1). The interpolation scheme that we use is an adaptation of the one of Panchenko and Talagrand [START_REF] Panchenko | Bounds for diluted mean-fields spin glass models[END_REF] to the teacher-student scheme. A crucial feature of the construction is that the distributional identity from Proposition 3.2 remains valid for all t ∈ [0, 1]. Together with a coupling argument this enables us to apply pinning to the intermediate models for t ∈ (0, 1) and thus to deduce the negativity of the derivative from as modest an assumption as POS. The details are carried out in Section 3.4.

1 n E ln Z ( Ĝ) ≤ -sup π∈P 2 * (Ω) B(
Theorem 2.2 is immediate from Propositions 3.2, 3.6 and 3.7 and (3.9). We prove Propositions 3.2, 3.6 and 3.7 in Section 3.2-3.4. Theorem 2.6 follows from Theorem 2.2 and a subtle (but brief) second moment argument that can be found in Section 3.5. The proof of Theorem 2.7 is also contained in Section 3.5. Finally, the proof of Theorem 2.4 comes in Section 3.6.

The Nishimori property.

In this section we prove Proposition 3.2. Actually we will formulate and prove a generalized version to facilitate the interpolation argument in Section 3.4. To define the corresponding more general factor graph model, let k ≥ 2 be an integer and let Ψ be a (possibly infinite) set of weight functions ψ :

Ω k ψ → (0, 2)
where k ψ ∈ [k] is an integer. Thus, the weight functions may have different arities, but all arities are bounded by k. Since each function ψ can be viewed as a point in the |Ω| k ψ -dimensional Euclidean space, the Borel algebra induces a σ-algebra on Ψ. Let p be a probability measure defined on this σ-algebra and let ψ ∈ Ψ be a sample from p. The conditions BAL and SYM extend without further ado.

Define the random factor graph model G(n, m, p) with variable nodes V = {x 1 , . . . , x n } and constraint nodes F = {a 1 , . . . , a m } by choosing for each i ∈ [m] independently a weight function ψ a i from p and a neighborhood ∂a i consisting of k ψ a i variable nodes chosen uniformly, mutually independently and independently of ψ a i . Formally, we view G(n, m, p) as consisting of a discrete neighborhood structure and an m-tuple of weight functions. Let G (n, m, p) be the measurable space consisting of all possible outcomes endowed with the corresponding product σ-algebra.

Any G ∈ G (n, m, p) induces a Gibbs measure µ G defined via (2.4). Moreover, the model G(n, m, p) induces a distribution σn,m,p on assignments, a reweighted distribution Ĝ(n, m, p) on factor graphs and for each assignment σ a distribution G * (n, m, p, σ) on factor graphs via the formulas (3.1)- (3.4). In particular, we have the following extension of Fact 3.1.

Fact 3.8. The graph G * (n, m, p, σ) is distributed as follows. For all j ∈ [m], l ∈ [k], i 1 , . . . , i k ∈ [n] and any event A ⊂ Ψ we have P k ψ a j = l, ψ a j ∈ A , ∂a j = (x i 1 , . . . , x i l ) = E 1{k ψ = l, ψ ∈ A }ψ(σ(x i 1 ), . . . , σ(x i l )) k l =1 n h 1 ,...,h l =1 E 1{k ψ = l}ψ(σ(x h 1 ), . . . , σ(x h l )
) and the m pairs (ψ a j , ∂a j ) j ∈[m] are mutually independent.

Additionally, we consider an enhanced version of these distributions where a few variables are pinned to specific spins. More precisely, for a set U ⊂ V = {x 1 , . . . , x n }, an assignment σ ∈ Ω U and a factor graph G let G U , σ be the factor graph obtained from G by adding unary constraint nodes α x with ∂α x = x and ψ α x (σ) = 1{σ = σ(x)} for all x ∈ U . In contrast to all the weight functions from Ψ, the unary weight functions ψ α x are {0, 1}-valued. The total weight function, partition function and Gibbs measure of G U , σ relate to those of the underlying G as follows:

ψ G U , σ (σ) = ψ G (σ) x∈U 1{σ(x) = σ(x)}, Z (G U , σ) = Z (G) x∈U 1{σ(x) = σ(x)} G , (3.15) µ G U , σ (σ) = µ G (σ) x∈U 1{σ(x) = σ(x)} x∈U 1{σ(x) = σ(x)} G .
Thus, µ G U ,σ is just the Gibbs measure of G given that σ(x) = σ(x) for all x ∈ U . (Because all ψ ∈ Ψ are strictly positive, we have Z (G U ,σ ) > 0 and thus µ G U , σ is well-defined.) Let Ǧ (n, m, p) be the measurable space consisting of all G U , σ with G ∈ G (n, m, p), U ⊂ V and σ : U → Ω. Further, let G U (n, m, p) be the outcome of the following experiment.

PIN1: choose a spin σ(x) ∈ Ω uniformly and independently for each x ∈ U , PIN2: n,m,p) by pinning the variable nodes x ∈ U to random spins σ(x). By extension of the formulas (3.1)-(3.4) we obtain the following associated distributions on assignments/factor graphs:

independently choose Ǧ = G(n, m, p), PIN3: let G U (n, m, p) = ǦU, σ. Thus, G U (n, m, p) is obtained from G(
P σU,n,m,p = σ = E[ψ G U (n,m,p) (σ)] E[Z (G U (n, m, p))] for σ ∈ Ω n , P ĜU (n, m, p) ∈ A = E[Z (G U (n, m, p))1{G U (n, m, p) ∈ A }] E[Z (G U (n, m, p))] for an event A ⊂ Ǧ (n, m, p), P G * U (n, m, p, σ) ∈ A = E[ψ G U (n,m,p) (σ)1{G U (n, m, p) ∈ A }] E[ψ G U (n,m,p) (σ)] for an event A ⊂ Ǧ (n, m, p) and σ ∈ Ω n .
Finally, mimicking the construction from Lemma 3.5 we introduce models where the set of pinned variables itself is random. Definition 3.9. For T ≥ 0 let U = U (T ) ⊂ V be a random set generated via the following experiment.

U1: choose θ ∈ [0, T ] uniformly at random, U2: obtain U ⊂ V by including each variable node with probability θ/n independently.

Then we let

G T (n, m, p) = G U (n, m, p), ĜT (n, m, p) = ĜU (n, m, p) and G * T (n, m, p, σ) = G * U (n, m, p, σ). Further, with m = Po(dn/k) chosen independently of U , we define G T = G U (n, m, p), ĜT = ĜU (n, m, p), G * T (σ) = G * U (n, m, p, σ) and G * T = G * U (n, m, p, σ * )
The following statement provides a Nishimori property for the models from Definition 3.9. 

P σ = σ,G * T ( σ) ∈ A = E P [ σ = σ|m] • P G * T ( σ) ∈ A |m , P σ ĜT = σ, ĜT ∈ A = E µ ĜT (σ)1{ ĜT ∈ A }
respectively, for σ ∈ Ω n and events A ⊂ Ǧ (n, m, p). We prove Proposition 3.10 by way of the following lemma regarding the model with a fixed pinned set U . Observe that in the first two experiments we first choose an assignment/factor graph pair without paying heed to the set U at all and subsequently pin the variables in U . By contrast, in the other two experiments we choose a pair that incorporates pinning from the outset.

Lemma 3.11. For any fixed set U ⊂ V the distributions on assignment/factor graph pairs induced by the following four experiments are identical.

(1) Choose σ (1) = σn,m,p , then choose G (1) = G * (n, m, p, σn,m,p ) and output (σ (1) ,G (1) U , σ (1) ).

(2) Choose G (2) = Ĝ(n, m, p), then choose σ (2) = σ G [START_REF] Abbe | Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap[END_REF] and output (σ (2) ,G (2) U ,σ (2) ).

(3) Choose G (3) = ĜU (n, m, p), then choose σ (3) = σ ĜU (n,m,p) and output (σ (3) ,G (3) ).

(4) Choose σ (4) = σU,n,m,p , then choose G (4) = G * U (n, m, p, σ(4) ) and output (σ (4) ,G (4) ). Moreover, the distributions of σU,n,m,p and σn,m,p coincide.

Proof. In order to show that (i) and (ii) are identical it suffices to prove that the pairs (σ Ĝ (n,m,p) , Ĝ(n, m, p)) and ( σn,m,p ,G * (n, m, p, σn,m,p )) are identically distributed. Indeed, for any event A and any σ ∈ Ω n ,

P Ĝ(n, m, p) ∈ A , σ Ĝ = σ = E Z (G(n, m, p))1{G(n, m, p) ∈ A }µ G(n,m,p) (σ) E[Z (G(n, m, p))] = E[ψ G (n,m,p) (σ)1{G(n, m, p) ∈ A }] E[Z (G(n, m, p))] = E[ψ G (n,m,p) (σ)] E[Z (G(n, m, p))] • E[ψ G (n,m,p) (σ)1{G(n, m, p) ∈ A }] E[ψ G (n,m,p) (σ)] = P σn,m,p = σ P G * (n, m, p, σn,m,p ) ∈ A | σn,m,p = σ = P G * (n, m, p, σn,m,p ) ∈ A , σn,m,p = σ .
A very similar argument shows that (iii) and (iv) are identical: for any event A and any σ ∈ Ω n ,

P ĜU (n, m, p) ∈ A , σ ĜU (n,m,p) = σ = E Z (G U (n, m, p))1{G U (n, m, p) ∈ A }µ G U (n,m,p) (σ) E[Z (G U (n, m, p))] = E 1{G U (n, m, p) ∈ A }ψ G U (n,m,p) (σ) E[Z (G U (n, m, p))] = E[ψ G U (n,m,p) (σ)] E[Z (G U (n, m, p))] • E[ψ G U (n,m,p) (σ)1{G U (n, m, p) ∈ A }] E[ψ G U (n,m,p) (σ)] = P σU,n,m,p = σ,G * U (n, m, p, σU,n,m,p ) ∈ A .
As a next step we show that σn,m,p , σU,n,m,p are identically distributed. Indeed, because the random choices performed in PIN1, PIN2 are independent, (3.15) implies

P σU,n,m,p = σ = E[ψ G U (n,m,p) (σ)] E[Z (G U (n, m, p))] = E[ψ G (n,m,p) (σ)] • |Ω| -|U | E[Z (G(n, m, p))] • |Ω| -|U | = P σn,m,p = σ . (3.16)
Finally, to prove that (i) and (iv) are identical, consider the map Ǧ (n, m, p) → G (n, m, p), G → G • , where G • is obtained from G by deleting the unary factor nodes α x , x ∈ U , that implement the pinning. Then for any event A ⊂ G (n, m, p) and any σ ∈ Ω n , due to the independence of PIN1 and PIN2,

P G (4)• ∈ A |σ (4) = σ = E[ψ G U (n,m,p) (σ)1{(G U (n, m, p)) • ∈ A }] E[ψ G U (n,m,p) (σ)] = E[ψ G (n,m,p) (σ)1{G(n, m, p) ∈ A }]|Ω| -|U | E[ψ G (n,m,p) (σ)]|Ω| -|U | = P G (1) ∈ A |σ (1) = σ . (3.17)
Since U is fixed and the unary weight functions ψ α x , x ∈ U , are determined by σ (4) resp. σ (1) , (3.16) and (3.17) imply that (ii) and (iii) are identical.

Next, we make the following simple observation.

Lemma 3.12. Suppose that m = O(n). Under the assumption BAL the distribution σn,m,p and the uniform distribution are mutually contiguous.

Proof. Recall that λ σ ∈ P (Ω) denotes the empirical distribution of the spins under the assignment σ ∈ Ω V . Since the constraint nodes of G(n, m, p) are chosen independently,

E[ψ G (n,m,p) (σ)] = τ∈Ω k E[ψ(τ 1 , . . . , τ k ψ )] k j =1 λ σ (τ j ) m , (3.18) 
E[Z (G(n, m, p))] = σ∈Ω n τ∈Ω k E[ψ(τ 1 , . . . , τ k ψ )] k j =1 λ σ (τ j ) m . (3.19) 
Further, since the entropy function is concave, (3.19), Stirling's formula and BAL ensure that there exists a number

C = C (Ψ, p) such that k n ξ m /C ≤ E[Z (G(n, m, p))] ≤ k n ξ m . (3.20)
Further, let u be the uniform distribution on Ω and let S (L) be the set of all σ ∈ Ω n such that λ σu TV ≤ L/ n. Then BAL guarantees that there exists

C ′ = C ′ (Ψ, p) > 0 such that for large enough n ξ -C ′ L 2 /n ≤ τ∈Ω k E[ψ(τ 1 , . . . , τ k ψ )] k j =1 λ σ (τ j ) ≤ ξ for all σ ∈ S (L).
Therefore, (3.18) shows that there exists 

C ′′ = C ′′ (Ψ, p, L, m/n) such that C ′′ ξ m ≤ E[ψ G (n,m,p) (σ)] ≤ ξ m for all σ ∈ S (L). ( 3 
E[ln Z ( Ĝ)] = E[ln Z (G * )] + o(n). (3.24)
Further, a standard application of the Chernoff bound shows that with probability 1 -O(n -2 ) the degrees of all variable nodes of G * are upper-bounded by ln 2 n. If so, then pinning a single variable node to a specific spin can shift the free energy of G * by no more than O(ln 2 n), because all weight functions ψ ∈ Ψ are strictly positive. Since the expected number of pinned variables is upper-bounded by T , we conclude that

E[ln Z (G * T )] = E[ln Z (G * )] + O(ln 2 n). ( 3.25) 
The assertion follows from (3.24) and (3.25).

Thus, we are left to calculate E[ln Z (G * T (σ * ))]. The key step is to establish the following estimate.

Lemma 3.15. Letting

∆ T (n) = E[ln Z (G * T (n + 1, m(n + 1), p, σ * n+1 )] -E[ln Z (G * T (n, m(n), p, σ * n )]
we have limsup

T →∞ limsup n→∞ ∆ T (n) ≤ sup π∈P 2 * (Ω) B(d, π).
Hence, we take a double limit, first taking n to infinity and then T . Let us write f (n,

T ) = o T (1) if lim T →∞ limsup n→∞ | f (n, T )| = 0.
Then Lemma 3.15 yields

1 n E[ln Z (G * )] = 1 n E[ln Z (G * T (1, m(1), p, σ * 1 )] + 1 n n-1 N=1 ∆ T (N ) ≤ sup π∈P 2 * (Ω) B(d, π) + o T (1).
Thus, applying Lemmas 3.14 and 3.15 and taking the lim sup, we obtain Proposition 3.6. Hence, we are left to prove Lemma 3.15. To this end we highlight the following immediate consequence of Lemma 3.5. Fact 3.16. For any ε > 0 there is T 0 > 0 such that for all T > T 0 and all large enough n the random factor graph G * T is ε-symmetric with probability at least 1 -ε.

Proof. Lemma 3.5 implies that ĜT is ε-symmetric with probability at least 1 -ε, provided T = T (ε) is sufficiently large. Therefore, the assertion follows from the contiguity statement from Proposition 3.10.

Additionally, we need to investigate the empirical distribution of the Gibbs marginals of the random factor graph G * T . Formally, for a factor graph G we define the empirical marginal distribution ρ G as

ρ G = |V | -1 x∈V δ µ G,x ∈ P 2 (Ω).
Thus, ρ G is the distribution of the Gibbs marginal µ G,x of a uniformly random variable node x of G. If we are also given an assignment σ ∈ Ω V , then we let

ρ G,σ,ω = 1 |σ -1 (ω)| x∈V 1{σ(x) = ω}δ µ G,x ,
unless σ -1 (ω) = (in which case, say, ρ G,σ,ω is the uniform distribution on P (Ω)). Thus, ρ G,σ,ω is the empirical distribution of the Gibbs marginals of the variables with spin ω under σ. Further, write ρG,ω for the reweighted probability distribution

ρG,ω (µ) = µ(ω) ν(ω)dρ G (ν) dρ G (µ), (3.26) 
unless µ(ω)dρ G (µ) = 0, in which case ρG,ω is the uniform distribution.

Lemma 3.17. We have

ω∈Ω E| µ(ω)dρ G * T (µ) -|Ω| -1 | = o(1). Proof. Corollary 3.13 yields ω∈Ω E ||σ -1 (ω)| -n/|Ω|| G * T = o(1)
. Hence, by the triangle inequality, for all ω ∈ Ω

E µ(ω)dρ G * T (µ) -|Ω| -1 = E 1 n x∈V 1{σ(x) = ω} -|Ω| -1 G * T ≤ E n -1 |σ -1 (ω)| -|Ω| -1 G * T = o(1),
as desired.

Recall that W 1 denotes the L 1 -Wasserstein metric on P 2 (Ω). (3.27)

Let σ = σ ĜT for brevity. Since W 1 metrises weak convergence, in order to prove (3.27) it suffices to show that for any continuous function f : P (Ω) → [0, 1] and for any ε > 0 for large enough n, T we have

E P (Ω) f (µ)d ρ ĜT ,ω (µ) - P (Ω) f (µ)dρ ĜT ,σ,ω (µ) ĜT < 3ε for all ω ∈ Ω. (3.28) 
To prove (3.28) pick δ = δ( f , ε) > 0 small enough. The compact set P (Ω) admits a partition into pairwise disjoint measurable subsets S 1 , . . . , S K such that any two distributions that belong to the same set S i have total variation distance less than δ for some K = K (δ, Ω) > 0 that depends on δ, Ω only. Pick a small enough η = η(δ, K , Ω). Then by Fact 3.16 there is T 0 (η, Ω) such that for all T > T 0 for large enough n we have

P µ Ĝ T is η 4 -symmetric > 1 -η.
(3.29)

Let V i = V i ( ĜT )
be the set of variable nodes of ĜT whose Gibbs marginal µ Ĝ T ,x lies in S i and let

n i = |V i |. Let X i,ω (σ) be the set of x ∈ V i such that σ(x) = ω and let X i,ω (σ) = |X i,ω (σ)|.
By the linearity of expectation we have

X i,ω (σ) ĜT = x∈V i µ ĜT ,x (ω)
for all ω ∈ Ω.

(3.30) Furthermore, if µ ĜT is η 4 -symmetric, then the variance of X i,ω (σ) works out to be 

X 2 i,ω (σ) Ĝ T -X i,ω (σ) 2 Ĝ T = x,y ∈V i µ Ĝ T ,x,y (ω, ω) -µ ĜT ,x (ω)µ ĜT ,y (ω) ≤ 2η 4 n 2 for all ω ∈ Ω. ( 3 
1{|X i,ω (σ) - x∈V i µ ĜT ,x (ω)| > ηn} Ĝ T ≤ 2η 2 for all i ∈ [K ].
Hence, by the union bound and Corollary 3.13,

1{ i∈[K ],ω∈[Ω] |X i,ω (σ) -x∈V i µ ĜT ,x (ω)| ≤ ηn, ω∈Ω ||σ -1 (ω)| -n/|Ω|| ≤ ηn} ĜT ≥ 1 -η, ( 3.32) 
provided η was chosen small enough. Now, suppose that ĜT , σ = σ ĜT are such that

i∈[K ],ω∈[Ω] |X i,ω (σ) - x∈V i µ ĜT ,x (ω)| ≤ ηn, ω∈Ω ||σ -1 ĜT (ω)| -n/|Ω|| ≤ ηn, ω∈Ω µ(ω)dρ G * T (µ) -|Ω| -1 ≤ η. (3.33)
Because f : P (Ω) → [0, 1] is uniformly continuous, we can pick δ, η small enough so that (3.33) implies that

P (Ω) f (µ)d ρ ĜT ,ω (µ) = K i=1 x∈V i µ ĜT ,x (ω) f (µ ĜT ,x (ω)) n K i=1 x∈V i µ ĜT ,x (ω) ≤ ε + η + i∈[K ] x∈X i ,ω (σ) f (µ ĜT ,x ) |Ω| -1 -η ≤ 2ε + P (Ω) f (µ)dρ ĜT ,σ,ω (µ).
A similar chain of inequalities yields a corresponding lower bound. Thus, 

(3.33) ⇒ P (Ω) f (µ)d ρ ĜT ,ω (µ) - P (Ω) f (µ)dρ ĜT ,σ,ω (µ) ≤ 2ε. ( 3 
D = D(σ * n+1 ) = i 1 ,...,i k ∈[n+1],ψ∈Ψ 1{n + 1 ∈ {i 1 , . . . , i k }}p(ψ)ψ(σ * n+1 (x i 1 ), . . . , σ * n+1 (x i k )) i 1 ,...,i k ∈[n+1],ψ∈Ψ p(ψ)ψ(σ * n+1 (x i 1 ), . . . , σ * n+1 (x i k )) • d(n + 1) k (3.35)
Unravelling the construction (2.1), we see that D is the expected degree of x n+1 in G * (n + 1, m(n + 1), p, σ * n+1 ). Additionally, let

D = E[D|σ * n ], D(ω) = E[D|σ * n , σ * n+1 (x n+1 ) = ω], D max = max{D ω : ω ∈ Ω}.
Further, define

λ = max{0, min{d(n + 1)/k -D max , dn/k}}, λ ′ = dn/k -λ, λ ′′ = max{0, d(n + 1)/k -λ -D}.
Additionally, choose θ ∈ [0, T ] uniformly and suppose that n > n 0 (T ) is sufficiently large. Now, let G be the random factor graph with variable nodes V n = {x 1 , . . . , x n } obtained by CPL1: generating m = Po( λ) independent random constraint nodes a 1 , . . . , a m according to the distribution (2.1) with respect to the ground truth ground truth σ * n , and CPL2: inserting a unary constraint node that pins x i to σ * n (x i ) with probability θ/(n + 1) for each i ∈ [n] independently.

Further, obtain G ′ from G by CPL1 ′ : adding m ′ = Po(λ ′ ) independent random constraint nodes drawn according to (2.1) w.r.t. σ * n , and CPL2 ′ : pinning each as yet unpinned variable node to σ * n independently with probability θ/(n(n + 1 -θ)). Finally, obtain G ′′ from G by adding the single variable node x n+1 and CPL3 ′′ : pinning x n+1 to σ * (x n+1 ) with probability θ/(n + 1) independently of everything else.

CPL1 ′′ : adding γ * = Po(D) independent constraint nodes b 1 , . . . , b γ * such that for each j ∈ [γ * ], P ψ b j = ψ, ∂b j = (x i 1 , . . . , x i k ) ∝ 1{n + 1 ∈ {i 1 , . . . , i k }}p(ψ)ψ(σ * n+1 (x i 1 ), . . . , σ * n+1 (x i k )).
We observe that this construction produces the correct distribution. 

∆ T (n) = E ln Z (G ′′ ) Z (G ′ ) = E ln Z (G ′′ ) Z ( G) -E ln Z (G ′ ) Z ( G) . (3.36)
Actually the following slightly modified version of (3.36) is more convenient to work with.

Claim 3.20. The event Proof. Let Ũ be the set of variables of G that got pinned. Then CPL1-CPL2 ensures that given m = m and given

E = {∀ω ∈ Ω : |σ * -1 n (ω) -n/|Ω|| ≤ n ln n} has probability 1 -O(n -2 ) and ∆ T (n) = E 1{E } ln Z (G ′′ ) Z ( G) -E 1{E } ln Z (G ′ ) Z ( G) + o(1). ( 3 
Ũ = U , G has distribution G * U (n, m, p, σ * n ). By comparison, G * T is defined as G * U (n, m, p, σ * n )
, where m = Po(dn/k) and, as in Definition 3.9, U is obtained by including every variable node with probability θ/n independently. Since T /n-T /(n+1) = o(1) for every fixed T , the total variation distance of U and Ũ is o [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF].

Similarly, since E[ m]-E[m] = λ -dn/k = O(1) while Var(m) = Θ(n), the total variation distance of m, m is o(1).
Let π = ρ G be the empirical distribution of the Gibbs marginals of G and recall the notation of Theorem 2.2. We are going to show that the two expressions on the r.h.s. of (3.36) are equal to the the formulas from Theorem 2.2, up to an o T (1) error term.

Claim 3.22. With probability 1o T (1) over the choice of σ *

n and G we have

1{E }E[ln(Z (G ′ )/Z ( G))| G, σ * n ] = o T (1) + d(k -1) kξ E Λ τ∈Ω k ψ(τ) k j =1 µ (π) j (τ j ) .
Proof. We may assume that σ * n ∈ E and also, since m = Po( λ) and the Poisson distribution has sub-exponential tails, that m ≤ 2dn. Let U be the event that CPL2 ′ did not pin any variable node at all. Then for all G, σ * n for large enough n we have P[U | G, σ * n ] ≥ 1 -2T /n. Consequently, since all weight functions are strictly positive and the average number of constraint nodes adjacent to any one variable node is bounded by k m/n = O(1), we conclude that 

1{E }E[ln(Z (G ′ )/Z ( G))| G, σ * n ] = o T (1) + E[1{U } ln(Z (G ′ )/Z ( G))| G, σ * n ]. ( 3 
(Z (G ′ )/Z ( G)) = ln m ′ i=1 ψ b i (σ(∂ 1 b i ), . . . , σ(∂ k b i )) G = ln τ∈Ω Y µ G,Y (τ) m ′ i=1 ψ b i (τ). ( 3 
P |Y | = (k -1)m ′ | G, σ * n = 1 -o(1) and c m ′ ≤ n (k-1)m ′ P Y = Y 0 | G, σ * n , m ′ ≤ c -m ′ (3.41)
Hence, for any given value of m ′ , Y is contiguous with respect to a uniformly random set of size (k -1)m 

Y = µ G,Y - y ∈Y µ G,y TV ≤ ε T and |Y | = km ′ satisfies P Y | G, σ * n ≥ 1 -ε T . ( 3 
E[ln(Z (G ′ )/Z ( G))| G, σ * n ] = o T (1) + E m ′ i=1 ln τ∈Ω k ψ b i (τ) k h=1 µ G,∂ h b i (τ h ) G, σ * n . ( 3 
E[ln(Z (G ′ )/Z ( G))| G, σ * n ] = o T (1) + λ ′ E ln τ∈Ω k ψ b 1 (τ) k h=1 µ G,∂ h b 1 (τ h ) G, σ * n . ( 3 

.45)

Let i 1 , . . . , i k ∈ [n] be chosen uniformly and independently and choose ψ from p independently of everything else.

Since |σ * -1 n (ω)| ∼ n/|Ω| for all ω ∈ Ω we have E[ψ(σ * n (x i 1 ), . . . , σ * n (x i k ))] ∼ ξ.
Hence, recalling the distribution (2.1) from which b 1 is chosen, we can write (3.45) as 

E[ln(Z (G ′ )/Z ( G))| G, σ * n ] = o T (1) + λ ′ ξ E Λ τ∈Ω k ψ(τ) k h=1 µ G,x i h (τ h ) G, σ * n . ( 3 
1{E }E[ln(Z (G ′′ )/Z ( G))| G, σ * n ] = o T (1) + E ξ -γ |Ω| Λ σ∈Ω γ i=1 τ∈Ω k 1{τ h i = σ}ψ i (τ) j =h i µ (π) ki+ j (τ j ) .
Proof. Once more we may assume that σ * n ∈ E and m ≤ 2dn. Additionally, by Claim 3.21, Lemma 3.17 and Lemma 3.18 we may assume that G, σ * n satisfy

ω∈Ω µ(ω)dρ G (µ) -|Ω| -1 = o(1) and ω∈Ω W 1 (ρ G,σ * n ,ω , ρ G ,ω ) = o T (1). (3.47)
Moreover, let U be the event that CPL3 ′′ does not pin x n+1 and that m ′′ = 0. Since P U | G, σ * n = 1o(1), since by CPL1 ′′ the expected number of constraint nodes adjacent to x n+1 is bounded and because λ ′′ = o(1) by (3.38), we have 

E[ln(Z (G ′′ )/Z ( G))| G, σ * n ] = o(1) + E[1{U } ln(Z (G ′′ )/Z ( G))| G, σ * n ]. ( 3 
Z ( G) = ln τ∈Ω Y ∪{x n+1 } µ G ,Y (τ| Y ) γ * i=1 ψ b i (τ(∂ 1 b i ), . . . , τ(∂ k b i )). ( 3 
P ∂b j = (x i 1 , . . . , x i k ), ψ b j = ψ| G, σ * n+1 = o(1) + ξ -1 p(ψ)ψ(σ * n+1 (x i 1 ), . . . , σ * n+1 (x i k )). (3.50)
In particular, given their spins the variables ∂b j \ {x n+1 } are chosen asymptotically uniformly and independently. Hence, we can characterize the distribution of b 1 , . . . , b γ * as follows. Independently for each b j , (i) choose ω j = (ω j ,1 , . . . , ω j ,k ) ∈ Ω k and ψj from the distribution

P ω j = (ω 1 , . . . , ω k ), ψj = ψ ∝ 1{ω j ,h j = σ * n+1 (x n+1 )}ξ -1 p(ψ)ψ(ω 1 , . . . , ω k ), (ii 
) and subsequently choose variable nodes y j = (y j ,1 , . . . , y j ,k ) such that y j ,h j = x n+1 and y j ,h ∈ {x 1 , . . . , x n } for all h = h j such that σ * n+1 (y j ,h ) = ω j ,h for all h ∈ [k] uniformly at random. Then (3.50) becomes P ∂b j = (x i 1 , . . . ,

x i k ), ψ b j = ψ| G, σ * n+1 = o(1) + P y j ,1 = x i 1 , . . . , y j ,k = x i k , ψj = ψ . ( 3.51) 
Let Y = {y j ,h : j ≤ γ * , h ∈ [k]} \ {x n+1 }. Since all weight functions ψ ∈ Ψ are strictly positive and since σ * n ∈ E , the construction (i)-(ii) has the following property, we have

P |Y | = (k -1)γ * | G, σ * n+1 = 1 -o(1) (3.52)
and there exists c > 0 such that 

c γ * ≤ n (k-1)γ * P Y = Y 0 | G, σ * n+1 , γ * ≤ c -γ * for any Y 0 ⊂ {x 1 , . . . , x n }, |Y 0 | = (k -1)γ * . ( 3 
= o T (1) such that the event Y = { µ G,Y -y ∈Y µ G,y TV ≤ ε T and |Y | = (k -1)γ * } satisfies P Y | G, σ * n ≥ 1 -ε T . (3.54)
Thus, let

E = E ln σ∈Ω γ * j =1 τ∈Ω k 1{τ h j = σ} ψj (τ) h∈[k]\{h j } µ G,y j ,h (τ h ) G, σ * n .
Then (3.48), (3.49), (3.51) and (3.54) yield

E[ln(Z (G ′′ )/Z ( G))| G, σ * n ] = o T (1) + E[1{U ∩ Y } ln(Z (G ′′ )/Z ( G))| G, σ * n ] = E + o T (1)
. Further, let ( νh,ω ) h≥1,ω∈Ω be a family of independent random distributions on Ω such that νj,h,ω has distribution ρ G ,ω . Since by (i)-(ii) above µ G,y j ,h (τ(y j ,h )) are independent samples from ρ G ,σ * n ,ω , (3.47) yields 

E = o T (1) + E ln σ∈Ω γ * j =1 τ∈Ω k 1{τ h j = σ} ψj (τ) h∈[k]\{h j } νh+j k,ω j ,h (τ h ) G, σ * n . ( 3 
E = o T (1) + E |Ω| γ * (k-1) γ * j =1 h =h j µ (π) h+ j k (ω j ,h ) ln σ∈Ω γ * j =1 τ∈Ω k 1{τ h j = σ} ψj (τ) h =h j µ (π) h+ j k (τ h ) G, σ * n . (3.56)
Finally, writing out the distribution of (ω j , ψj ) from (i) above, we obtain from (3.56) that

E = o T (1) + E ξ -γ * Λ σ∈Ω γ * j =1 τ∈Ω k 1{τ h j = σ} ψj (τ) h =h j µ (π) h+ j k (τ h ) G, σ * n .
This last equation yields the assertion because σ * n+1 (x n+1 ) is chosen uniformly and D = d +o( 1) on E by (3.38). Proof of Lemma 3.15. The coupling CPL1-CPL2, CPL1 ′ -CPL2 ′ , CPL1 ′′ -CPL3 ′′ is such that G ′ , G ′′ are obtained from G by adding a Poisson number of constraint nodes such that the mean of the Poisson distribution is bounded independently of T . Therefore, we obtain from Claims 3.22 and 3.23 that

∆ T (n) ≤ o T (1) + E[B(d, ρ G )].
(3.57)

The assertion would be immediate from (3.57) if M( G) = µdρ G (µ) were equal to the uniform distribution u = |Ω| -1 1 on Ω. While this is generally not the case, Lemma 3.17 shows that E M( G)u TV = o(1). Therefore, w.h.p. there exists α( G) ≥ 0 and ν( G) ∈ P (Ω) such that

E[α( G)] = o(1) and (1 -α( G))ρ G + α( G)δ ν( G ) ∈ P 2 * (Ω). (3.58)
Finally, since Lemma 2.9 shows that B(d, • ) is weakly continuous, the assertion follows from (3.57) and (3.58).

The upper bound.

To prove Proposition 3.7 we will show that for any distribution π ∈ P 2 * (Ω),

- 1 n E[ln Z ( Ĝ)] ≤ o(1) -B(d, π). ( 3.59) 
The proof of (3.59) is based on the interpolation method. That is, for a given π ∈ P 2 * (Ω) we are going to set up a family of random factor graph models parametrized by t ∈ [0, 1] such that the free energy of the t = 0 model is easily seen to be -nB(d, π)+o(n) and such that the t = 1 model is identical to Ĝ. Finally, we will show that the derivative of the free energy with respect to t is non-positive, whence (3.59) follows. Throughout this section we assume that BAL, SYM and POS hold.

The interpolation scheme.

To construct the intermediate models let γ = (γ v ) v∈[n] be a sequence of integers. Fix π ∈ P 2 * (Ω). We define a random factor graph model G = G(n, m, γ, π) as follows. G1: the variable nodes are V = {x 1 , . . . , x n }. G2: there are k-ary constraint nodes a 1 , . . . , a m ; for each i ∈ [m] independently choose ∂a i ∈ V k uniformly and pick an independent ψ a i ∈ Ψ from the prior p (cf. Definition 2.5). G3: for each x ∈ V there are unary constraint nodes b x,1 , . . . , b x,γ x adjacent to x whose weight functions are generated as follows: for each j ∈ [γ x ] independently,

• choose ψ x,j ∈ Ψ from the prior distribution p,

• pick i x,j ∈ [k] uniformly, • with (µ x,j ,h ) h∈[k] chosen independently from π, let ψ b x, j : σ ∈ Ω → τ 1 ,...,τ k ∈Ω ψ x,j (τ 1 , . . . , τ k )1{τ i x, j = σ} h =i x, j µ x,j ,h (τ h ).
Let G (n, m, γ, π) be the set of all possible outcomes of this experiment. Depending on π the set Ψ ′ of possible weight functions resulting from G3 may be infinite and thus we turn G (n, m, γ, π) into a measurable space as in Section 3.2. The fact that the given prior distribution p on Ψ satisfies SYM immediately implies that the distribution p ′ that G3 induces on Ψ ′ satisfies BAL and SYM. Therefore, so does any convex combination of p, p ′ .

We recall that the random factor graph model induces a few further distributions. First, the Gibbs measure of

G ∈ G (n, m, γ, π) is µ G (σ) = ψ G (σ) Z (G) with ψ G :σ ∈ Ω V → m i=1 ψ a i (σ(∂ 1 a i , . . . , ∂ k a i )) x∈V γ v j =1 ψ b x, j (σ(v)), Z (G) = σ∈Ω V ψ G (σ).
We also obtain a reweighted version Ĝ(n, m, γ, π) of the model by letting

P Ĝ(n, m, γ, π) ∈ A = E[Z (G(n, m, γ, π))1{G(n, m, γ, π) ∈ A }] E[Z (G(n, m, γ, π))]
for any event A .

Further, there is an induced distribution σn,m,γ,π on assignments defined by

P σn,m,γ,π = σ = E[ψ G (n,m,γ,π) (σ)]/E[Z (G(n, m, γ, π))]. (3.60)
Finally, each assignment σ induces a distribution G * (n, m, γ, π, σ) on factor graphs by letting

P G * (n, m, γ, π, σ) ∈ A = E ψ G (n,m,γ,π) (σ)1{G(n, m, γ, π) ∈ A } E[ψ G (n,m,γ,π) (σ)]
for any event A .

We are ready to set up the interpolation scheme. Given d > 0, t ∈ [0, 1] we let m t = Po(t dn/k). Moreover, for each x ∈ V independently we let

γ t ,x = Po((1 -t )d). Let γ t = (γ t ,x ) x∈V . Finally, let Ĝt = Ĝ(n, m t , γ t , π).
Then Ĝ1 is identical to our original factor graph model. Moreover, all constraint nodes of Ĝ0 are unary; in other words, each connected component of Ĝ0 contains just a single variable node. Since γ t ,x and m t are independent Poisson variables, the Ĝt model fits the general random factor graph model from Section 3.2 with Po(dn(1 -(1 -1/k)t )) random constraint nodes chosen with weight functions from Ψ ∪ Ψ ′ chosen from the prior distribution

p t = t k -t (k -1) p + k(1 -t ) k -t (k -1) p ′ .
The construction of Ĝt is an adaptation of the interpolation schemes from [START_REF] Franz | Replica bounds for optimization problems and diluted spin systems[END_REF][START_REF] Panchenko | Bounds for diluted mean-fields spin glass models[END_REF]. But we need to apply one more twist. Namely, we are going to use Lemma 3.5 to perturb the intermediate factor graphs Ĝt to make them 'replica symmetric'. Thus, for a number T > 0 consider the following experiment. Write ĜT,t = ĜT,t (n, m t , γ t , π) for the resulting factor graph. Then Proposition 3.10 shows that ĜT,t is identical to the model from Definition 3.9. Critically, the number T > 0 in the following lemma is independent of t .

Lemma 3.24. For any ε > 0 there is T > 0 such that for all t ∈ [0, 1] the Gibbs measure of ĜT,t is ε-symmetric with probability at least 1 -ε.

Proof. This is immediate from Fact 3.16, where T depends on ε and Ω only.

Finally, we need a correction term. Let

Γ t = t d(k -1) kξ E Λ τ∈Ω k ψ(τ) k j =1 µ (π) j (τ j ) .
The following is the centerpiece of the interpolation argument.

Proposition 3.25. For every ε > 0 there is T > 0 such that for all large enough n the following is true. Let

φ T : t ∈ [0, 1] → (E[ln Z ( ĜT,t )] + Γ t )/n.
Then φ ′ T (t ) > -ε for all t ∈ [0, 1]. We prove Proposition 3.25 in Section 3.4.3. But in preparation we first need to construct couplings of the assignments σn,m t ,γ,π for different values of m t , γ in Section 3.4.2. In Section 3.4.4 we show how the lemma implies Proposition 3.7.

Coupling assignments. As (3.60) shows, to study the distribution of the assignment σ we need to get a handle on the expectations E[ψ

G (n,m,γ,π) (σ)]. Recall that ξ = |Ω| -k τ∈Ω k E[ψ(τ)]. Lemma 3.26. For any σ ∈ Ω V we have E[ψ G (n,m,γ,π) (σ)] = ξ v∈V γ v n -k τ 1 ,...,τ k E[ψ(τ 1 , . . . , τ k )] k j =1 |σ -1 (τ j )| m .
Proof. In step G2 the weight functions of the k-ary constraint nodes a 1 , . . . , a m are chosen from ψ and the neighborhoods ∂a i are chosen uniformly. Due to independence their overall contribution to the expectation is just the term in the square brackets. Further, G3 ensures that the constraint nodes b x,j are set up independently by choosing a weight function ψ from the prior distribution and independent µ x,j ,h from π. Since π ∈ P 2 * (Ω), assumption SYM implies that each b x,j contributes a factor ξ to the expectation. Corollary 3.27. For any γ and m = O(n) the distribution of σn,m,γ,π and the uniform distribution on Ω V are mutually contiguous. Moreover,

P λ σn,m,γ,π -|Ω| -1 1 2 > n ln 2/3 n ≤ O(n -ln ln n ).
Proof. By Lemma 3.26 we have

P σn,m,γ,π = σ ∝ τ 1 ,...,τ k E[ψ(τ 1 , . . . , τ k )] k j =1 λ σ τ j m .
Moreover, by BAL the expression on the r.h.s attains its maximum if λ σ is uniform. At the same time, the uniform distribution maximizes the entropy H (λ σ ). Therefore, the assertion follows immediately from Stirling's formula and the fact that the entropy is strictly concave.

Corollary 3.28. For any γ, γ ′ the colorings σn,m,γ,π , σn,m,γ ′ ,π are identically distributed.

Proof. This is immediate from Lemma 3.26 and the definition of σn,m,γ,π , σn,m,γ ′ ,π .

Corollary 3.29. Suppose m = O(n).

There is a coupling of σn,m,γ,π , σn,m+1,γ,π such that

P [ σm = σm+1 ] = Õ(n -1 ) and P | σm △ σm+1 | > n ln n = O(n -2 ).
Proof. The second assertion is immediate from Corollary 3.27. To prove the first assertion, we need to show that σm , σm+1 have total variation distance Õ(1/n). To this end, assume that λ σ -|Ω| -1 1 2 = Õ(n -1/2 ); the probability mass of σ that do not satisfy this condition is negligible under either measure by Corollary 3.27. We expand

F : λ ∈ P (Ω) → τ∈Ω k E[ψ(τ 1 , . . . , τ k )] k j =1 λ τ j
to the second order. Due to BAL the uniform distribution λ maximizes 

τ∈Ω k E[ψ(τ 1 , . . . , τ k )] k j =1 λ τ j . Hence, F (λ) = F ( λ) + 1 2 D 2 F | λ(λ -λ), (λ -λ) + O( λ -λ 3 2 ) = ξ + O( λ -λ 2 2 ). ( 3 
λ σ -|Ω| -1 1 2 = Õ(n -1/2 ), E[ψ G (n,m+1,γ,π) (σ)] E[ψ G (n,m,γ,π) (σ)] = τ 1 ,...,τ k E[ψ(τ 1 , . . . , τ k )] k j =1 λ σ (τ j ) = exp( Õ(1/n))ξ,
whence σm , σm+1 have total variation distance Õ(1/n).

Proof of Proposition 3.25.

The proof requires several steps. The first, summarized in the following proposition, is to derive an expression for the derivative of φ T (t ). We write 〈• 〉 T,t for the expectation with respect to the Gibbs measure of ĜT,t . Unless specified otherwise σ 1 , σ 2 , . . . denote independent samples from µ ĜT,t .

Proposition 3.30. With ψ chosen from p, y 1 , . . . , y k chosen uniformly from the set of variable nodes, and µ 1 , . . . , µ k chosen from π, all mutually independent and independent of ĜT,t , let

Ξ t ,l = E 1 -ψ(σ(y 1 ), . . . , σ(y k )) l T,t - k i=1 E   1 - τ∈Ω k ψ(τ)1{τ i = σ(y i )} j =i µ j (τ j ) l T,t   + (k -1)E 1 - τ∈Ω k ψ(τ) k j =1 µ j (τ j ) l .
Then uniformly for all t ∈ (0, 1) and all T ≥ 0,

∂ ∂t φ T (t ) = o(1) + d kξ l ≥2 Ξ t ,l
l(l -1) .

We proceed to prove Proposition 3.30. Let

∆ t = E ln Z ( ĜT,t (m t + 1, γ t )) -E ln Z ( ĜT,t (m t , γ t )) , ∆ ′ t = 1 n x∈V E ln Z ( ĜT,t (m t , γ t + 1 x )) -E ln Z ( ĜT,t (m t , γ t )) .
Lemma 3.31. We have

1 n ∂ ∂t E[ln Z ( ĜT,t )] = d k ∆ t -d∆ ′ t .
Proof. The computation is similar to the one performed in [START_REF] Panchenko | Bounds for diluted mean-fields spin glass models[END_REF]. Let P λ ( j ) = λ j exp(-λ)/ j !. By the construction of the random graph model, the parameter t only enters into the distribution of m t , γ t . Explicitly, with the sum ranging over all possible outcomes m, γ,

E[ln Z ( ĜT,t )] = m,γ E[ln Z ( ĜT,t )|m t = m, γ t = γ]P t d n/k (m) x∈V P (1-t )d (γ x ).
We recall that

∂ ∂t P t d n/k (m) = 1 m! ∂ ∂t t dn k m exp(-t dn/k) = dn k [1{m ≥ 1}P t d n/k (m -1) -P t d n/k (m)] , ∂ ∂t P (1-t )d (γ v ) = 1 γ v ! ∂ ∂t ((1 -t )d ) γ v exp(-(1 -t )d) = -d 1{γ v ≥ 1}P (1-t )d (γ v -1) -P (1-t )d (γ v ) .
Hence, by the product rule

1 n ∂ ∂t E[ln Z ( ĜT,t )] = 1 n m,γ E[ln Z ( ĜT,t )|m t = m, γ t = γ] ∂ ∂t P t d n/k (m) v∈[n] P (1-t )d (γ v ) = d k m E ln Z ( ĜT,t )|m t = m + 1 -E ln Z ( ĜT,t )|m t = m P t d n/k (m) - d n x∈V γ x E ln Z ( ĜT,t )|γ t ,x = γ x + 1 -E ln Z ( ĜT,t )|γ t ,x = γ t ,x P (1-t )d (γ t ,x ) = d k E ln Z ( ĜT,t (m t + 1, γ t ) -E ln Z ( ĜT,t (n, m t , γ t ) - d n x E ln Z ( ĜT,t (m t , γ t + 1 x ) -E ln Z ( ĜT,t (m t , γ t ) ,
as claimed.

To calculate ∆ t , ∆ ′ t we continue to denote by ψ a weight function chosen from the prior distribution, independently of everything else. Lemma 3.32. We have

∆ t = o(1) - 1 -ξ ξ + 1 n k ξ y 1 ,...,y k ∈V l ≥2 1 l(l -1) E l h=1
1 -ψ(σ h (y 1 ), . . . , σ h (y k )) 

P σ′ = σ′′ = 1 -Õ(n -1 ), P | σ′ △ σ′′ | > n ln n = O(n -2 ). (3.63)
We are going to extend this to a coupling of ĜT,t (n, m t , γ t , π), ĜT,t (n, vecm t + 1, γ t , π). Specifically, given σ′ , σ′′ we construct a pair (G ′ ,G ′′ ) of factor graphs as follows.

Case 1: σ′ = σ′′ : then we define G ′ as the outcome of INT1-INT4 with σ = σ′ = σ′′ . Further, G ′′ is obtained from G ′ by adding one single k-ary constraint node a such that ∂a, ψ a have distribution

P ∂a = (x i 1 , . . . , x i k ), ψ a = ψ ∝ p(ψ)ψ( σ′ (x i 1 ), . . . , σ′ (x i k )) (i 1 , . . . , i k ∈ [n], ψ ∈ Ψ). (3.64)
Case 2: | σ′ △ σ′′ | ≤ n ln n: consider the probability distributions q ′ , q ′′ on V k × Ψ defined by q ′ (y 1 , . . . , y k , ψ) ∝ p(ψ)ψ( σ′ (y 1 ), . . . , σ′ (y k )), q ′′ (y 1 , . . . , y k , ψ) ∝ p(ψ)ψ( σ′′ (y 1 ), . . . , σ′′ (y k )).

Since | σ′ △ σ′′ | ≤ n ln n these two distributions have total variation distance Õ(n -1/2 

E ln Z (G ′′ ) Z (G ′ ) = E ln Z (G ′′ ) Z (G ′ ) σ′ = σ′′ + E ln Z (G ′′ ) Z (G ′ ) | σ′ △ σ′′ | ≤ n ln n + E ln Z (G ′′ ) Z (G ′ ) | σ′ △ σ′′ | > n ln n = E ln Z (G ′′ ) Z (G ′ ) σ′ = σ′′ + Õ(n -1/2 ). (3.66)
Thus, if we denote by a an additional random factor node drawn from the distribution (3.64), regardless whether or not σ′ = σ′′ , then (3.63), (3.65) and (3.66) yield 

E ln Z ( ĜT,t (m t + 1, γ t )) -E Z ( ĜT,t (m t , γ t )) = E ln ψ a (σ G ′ ) G ′ σ′ = σ′′ + Õ(n -1/2 ) = E ln ψ a (σ G ′ ) G ′ + Õ(n -1/2
ln k ξ l h=1
1 -ψ(σ h (y 1 ), . . . , σ h (y k ))

G ′ = o(1) + l ≥1 1 ln k ξ y 1 ,...,y k E (1 -ψ( σ′ (y 1 ), . . . , σ′ (y k ))) l h=1 1 -ψ(σ h (y 1 ), . . . , σ h (y k )) G ′ - l ≥1 1 ln k ξ y 1 ,...,y k E l h=1 1 -ψ(σ h (y 1 ), . . . , σ h (y k )) G ′ . (3.69)
Since Proposition 3.10 implies that given G ′ the assignment σ′ is distributed as a sample from the Gibbs measure µ G ′ , we obtain E 1 -ψ( σ′ (y 1 ), . . . , σ′ (y k ))

ln k ξ l h=1 1 -ψ(σ h (y 1 ), . . . , σ h (y k )) G ′ = E l +1 h=1 1 -ψ(σ h (y 1 ), . . . , σ h (y k )) G ′
for l ≥ 1. Moreover, by Corollary 3.27

1

n k y 1 ,...,y k E 1 -ψ(σ(y 1 ), . . . , σ(y k )) G ′ = 1 - y 1 ,...,y k E ψ(σ ′ (y 1 ), . . . , σ ′ (y k )) n k = 1 -ξ + o(1).
Plugging these two into (3.69) and simplifying, we finally obtain

E ln ψ a (σ G ′ ) G ′ = o(1) - 1 -ξ ξ + l ≥2 y 1 ,...,y k 1 l(l -1)n k ξ E l h=1 1 -ψ(σ h (y 1 ), . . . , σ h (y k )) G ′
and the assertion follows from (3.67).

The steps that we just followed from (3.68) onward to calculate E ln ψ a (σ G ′ ) G ′ are similar to the manipulations from the interpolation argument of Abbe and Montanari [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF]. Similar manipulations will be used in the proof of the next two lemmas.

Lemma 3.33. With µ 1 , µ 2 , . . . chosen from π mutually independently and independently of everything else, 

∆ ′ t = - ξ 1 -ξ + l ≥2 1 l(l -1)knξ E x∈V,i∈[k] l h=1 1 - τ∈Ω k ψ(τ)1{τ i = σ h (x)} j =i µ j (τ j )
G ′ = G * T (n, m t , γ t , π, σ)
. Then obtain G ′′ by choosing x ∈ V (independently of G ′ ) and add a unary constraint node b adjacent to x whose weight function is distributed as follows. Pick an index i ∈ [k], a weight function ψ b, * ∈ Ψ and μ1 , . . . , μk from the distribution

P i = i , ( μ1 , . . . , μk ) ∈ A , ψ b, * = ψ = τ∈Ω k 1{τ i = σ(x)}ψ(τ) A j =i μ(τ j )dπ ⊗k ( μ1 , . . . , μk ) τ∈Ω k k i=1 1{τ i = σ(x)}E[ψ(τ) j =i µ j (τ j )] . (3.70)
Then the weight function associated with b is

ψ b (σ) = τ∈Ω k 1{τ i = σ}ψ b, * (τ) j =i μj (τ j ).
Proposition 3.10 implies that G ′ is distributed as ĜT,t (n, m t , γ t , π) and that G ′′ is distributed as ĜT,t (n, m t , γ t + 1 x , π). Therefore, with σ, σ 1 , . . . denoting independent samples from

µ G ′ , E[ln Z ( ĜT,t (m t , γ t + 1 x ))] -E[ln Z ( ĜT,t (m t , γ t ))] = E ln(Z (G ′′ )/Z (G ′ )) = E ln ψ b (σ(x)) G ′ . (3.71)
Because µdπ(µ) is the uniform distribution, assumption SYM ensures that the denominator on the r.h.s. of (3.70) equals kξ. Therefore,

E ln ψ b (σ(x)) G ′ = 1 knξ x∈V k i=1 E τ∈Ω k 1{τ i = σ(x)}ψ(τ) j =i µ j (τ j ) ln σ∈Ω k 1{σ i = σ(x)}ψ(σ) j =i µ j (τ j ) G ′ .
Further, since the weight functions take values in (0, 2), expanding the logarithm yields

E ln ψ b (σ(x)) G ′ = - x∈V k i=1 l ≥1 1 klnξ E τ∈Ω k 1{τ i = σ(x)}ψ(τ) j =i µ j (τ j ) l h=1 1 - σ∈Ω k 1{σ i = σ h (x)}ψ(σ) j =i µ j (τ j ) G ′ = x∈V k i=1 l ≥1 1 klnξ E 1 - τ∈Ω k 1{τ i = σ(x)}ψ(τ) j =i µ j (τ j ) l h=1 1 - σ∈Ω k 1{σ i = σ h (x)}ψ(σ) j =i µ j (τ j ) G ′ - l h=1 1 - σ∈Ω k 1{σ i = σ h (x)}ψ(σ) j =i µ j (τ j ) G ′ . (3.72)
Since by Proposition 3.10 the conditional distribution of σ given G ′ coincides with the Gibbs measure µ G ′ , we find E 1 -

τ∈Ω k 1{τ i = σ(x)}ψ(τ) j =i µ j (τ j ) l h=1 1 - σ∈Ω k 1{σ i = σ h (x)}ψ(σ) j =i µ j (τ j ) G ′ = E l +1 h=1 1 - σ∈Ω k 1{σ i = σ h (x)}ψ(σ) j =i µ j (τ j ) G ′ . ( 3.73) 
Moreover, since µdπ(µ) ∈ P (Ω) is the uniform distribution, SYM implies E 1 - 

σ∈Ω k 1{σ i = σ(x)}ψ(σ) j =i µ j (τ j ) G ′ = 1 -ξ. ( 3 
G ′ = - ξ 1 -ξ + l ≥2 1 l(l -1)knξ E x∈V,i∈[k] l h=1 1 - τ∈Ω k ψ(τ)1{τ i = σ h (x)} j =i µ j (τ j ) G ′
and the assertion follows from (3.71).

Lemma 3.34. With µ 1 , µ 2 chosen independently from π we have

∆ ′′ t = 1 d(k -1)n ∂ ∂t Γ t = - ξ 1 -ξ + 1 ξ l ≥2 1 l(l -1) E 1 - τ∈Ω k ψ(τ) k j =1 µ j (τ j ) l
Proof. This follows by expanding the logarithm in the expression that defines Γ t .

Proposition 3.30 is now immediate from Lemmas 3.31-3.34.

Proof of Proposition 3.25. Let ρ Ĝ T,t be the empirical distribution of the marginals of µ Ĝ T,t ,x ; in symbols,

ρ ĜT,t = 1 n x∈V δ µ Ĝ T,t ,x ∈ P 2 (Ω).
Write ν 1 , ν 2 , . . . for independent samples drawn from ρ Ĝ T,t and define

Ξ ′ t ,l = E 1 - σ∈Ω k ψ(σ) k j =1 ν j (σ j ) l - k i=1 1 - τ∈Ω k ψ(τ)ν 1 (τ i ) j =i µ j (τ j ) l + (k -1) 1 - τ∈Ω k ψ(τ) k j =1 µ j (τ j ) l .
Lemma 2.8 implies that for any ε > 0, l ≥ 1 there is δ > 0 such that in the case that ĜT,t is δ-symmetric for any

ψ ∈ Ψ, i ∈ [k] we have 1 n k y 1 ,...,y k ∈V 1 -ψ(σ(y 1 ), . . . , σ(y k )) l ĜT,t -E 1 - σ∈Ω k ψ(σ) k j =1 ν j (σ j ) l ĜT,t < ε, 1 n y ∈V 1 - τ∈Ω k ψ(τ)1{τ i = σ h (y)} j =i µ j (τ j ) l ĜT,t -E 1 - τ∈Ω k ψ(τ)ν 1 (τ i ) j =i µ j (τ j ) l ĜT,t < ε.
Since ĜT,t is o T (1)-symmetric with probability 1o T (1) by Lemma 3.5, we therefore conclude that 

Ξ t ,l -Ξ ′ t ,l = o T (1). ( 3 
liminf n→∞ 1 n E[ln Z ( Ĝ)] ≥ liminf n→∞ 1 n E[ln Z ( Ĝ0,0 )] -Γ 1 .
Proof. Together with the fundamental theorem of calculus Proposition 3.25 implies that for any ε > 0 there is Thus, we are left to calculate E[ln Z ( Ĝ0,0 )]. That is straightforward because every connected component of Ĝ0,0 contains just a single variable node. Lemma 3.36. With independent γ = Po(d), ψ i from p, µ i j chosen from π and uniform h i ∈ [k] we have

T = T (ε) > 0 (independent of n) such that for large enough n, 1 n E[ln Z ( ĜT,1 )] ≥ 1 n E[ln Z ( ĜT,0 )] -Γ 1 -ε. ( 3.76) 
1 n E[ln Z ( Ĝ0,0 )] = 1 |Ω| E ξ -γ Λ σ∈Ω γ b=1 τ∈Ω k 1{τ h b = σ}ψ b (τ) j =h b µ b j (τ j ) .
Proof. Because the random graph model is symmetric under permutations of the variable nodes, we can view

1 n E[ln Z ( Ĝ0,0 )] as the contribution to E[ln Z ( Ĝ0,0 )] of the connected component of x 1 . The partition function of the component of x 1 is nothing but z = σ∈Ω γ x 1 j =1 ψ b x 1 , j (σ).
Furthermore, by construction at t = 0 the degree γ x 1 is chosen from the Poisson distribution Po(d). Hence, recalling the distribution of the weight functions ψ b x 1 , j , j ≤ γ x 1 from G3 in Section 3.4.1, we find

1 n E[ln Z ( Ĝ0,0 )] = E [z] = 1 |Ω| E ξ -γ x 1 Λ σ∈Ω γ x 1 j =1 τ∈Ω k 1{τ h j = σ}ψ b (τ) i =h j µ i j (τ i ) ,
as desired.

Finally, Proposition 3.7 is immediate from Lemmas 3.35 and 3.36.

3.5. Proof of Theorems 2.6 and 2.7. We derive Theorems 2.6 and 2.7 from Theorem 2.2. Recall that the Kullback-Leibler divergence is defined as

D KL Ĝ(n, m, p) G(n, m, p) = G P Ĝ(n, m, p) = G ln P Ĝ(n, m, p) = G P G(n, m, p) = G ,
with the sum ranging over all possible factor graphs. Let us begin with the following humble observation.

Fact 3.37. For any n, m, p we have

E[ln Z ( Ĝ(n, m, p))] = ln E[Z (G(n, m, p))] + D KL Ĝ(n, m, p) G(n, m, p) (3.77) ≥ ln E[Z (G(n, m, p))] -D KL G(n, m, p) Ĝ(n, m, p) = E[ln Z (G(n, m, p))].
Proof. Plugging in the definition (3.4) of Ĝ and using (2.6), we obtain

D KL Ĝ(n, m, p) G(n, m, p) = G Z (G)P G(n, m, p) = G E[Z (G(n, m, p))] ln Z (G)P G(n, m, p) = G /E[Z (G(n, m, p))] P G(n, m, p) = G = E[ln Z ( Ĝ(n, m, p))] -ln E[Z (G(n, m, p))], D KL G(n, m, p) Ĝ(n, m, p) = G P G(n, m, p) = G ln P G(n, m, p) = G Z (G)P G(n, m, p) = G /E[Z (G(n, m, p))] = ln E[Z (G(n, m, p))] -E[ln Z (G(n, m, p))].
The middle inequality follow from the fact that the Kullback-Leibler divergence is non-negative.

Lemma 3.38. Assume that m = m(n) is such that E[ln Z (G(n, m, p))] = ln E[Z (G(n, m, p))]+o(n).
Then for any event E on graph/assignment pairs,

E 1{( Ĝ(n, m, p), σ) ∈ E } Ĝ(n,m,p) ≤ exp(-Ω(n)) ⇒ E 1{(G(n, m, p), σ) ∈ E } G(n,m,p) ≤ exp(-Ω(n)).
Proof. The argument is similar to the one behind the "planting trick" from [START_REF] Achlioptas | Algorithmic barriers from phase transitions[END_REF]. Suppose that

E 1{( Ĝ(n, m, p), σ) ∈ E } Ĝ(n,m,p) ≤ exp(-2εn) (3.78) 
for some ε > 0. By Lemma 3.3 and the assumption E[ln Z (G(n, m, p))] = ln E[Z (G(n, m, p))] + o(n) there is δ = δ(ε, Ψ) > 0 such that for large enough n,

P ln Z (G(n, m, p)) ≤ ln E[Z (G(n, m, p))] -εn ≤ exp(-δn). (3.79) 
Consider the event

Z = {ln Z (G(n, m, p)) ≥ ln E[Z (G(n, m, p))] -εn}. Then (3.79) implies E 1{(G(n, m, p), σ) ∈ E } G(n,m,p) ≤ exp(-δn) + E 1{(G(n, m, p), σ) ∈ E } G (n,m,p) Z . (3.80) 
Further, by (2.4) and (3.4) and (3.78), with the sum ranging over all possible factor graphs and assignments,

E 1{(G(n, m, p), σ) ∈ E } G(n,m,p) 1{Z } = G,σ 1{G ∈ Z }1{(G, σ) ∈ E }P G(n, m, p) = G µ G (σ) = G,σ 1{G ∈ Z }1{(G, σ) ∈ E }P G(n, m, p) = G ψ G (σ) Z (G) ≤ exp(εn) G,σ 1{(G, σ) ∈ E } ψ G (σ)P G(n, m, p) = G E[Z (G(n, m, p))] = exp(εn)E 1{( Ĝ(n, m, p), σ) ∈ E } Ĝ(n,m,p) ≤ exp(-εn). (3.81) 
Finally, the assertion follows from (3.79), (3.80) and (3.81).

Corollary 3.39. We have 1). As a consequence, recalling (3.4), we conclude that the random variable

E[ln Z ( Ĝ(n, m, p))] = ln E[Z (G(n, m, p))] + o(n) ⇔ E[ln Z (G(n, m, p))] = ln E[Z (G(n, m, p))] + o(n). Proof. Assume that E[ln Z ( Ĝ(n, m, p))] = ln E[Z (G(n, m, p))] + o(n). Then there is a sequence Ω(1/ ln n) ≤ ε(n) = o(1) such that E[ln Z ( Ĝ(n, m, p))] ≤ ln E[Z (G(n, m, p))] + nε(n). Because ε(n) = Ω(1/ ln n), Lemma 3.3 implies that the event E = ln Z (G(n, m, p)) ≤ E[ln Z ( Ĝ(n, m, p))] ≤ ln E[Z (G(n, m, p))] + 2nε(n) satisfies P Ĝ(n, m, p) ∈ E = 1 -o(
Z (G(n, m, p)) = Z (G(n, m, p))1{E } satisfies E Z (G(n, m, p)) = E Z (G(n, m, p))1{E } = E[Z (G(n, m, p))]P Ĝ(n, m, p) ∈ E = (1 + o(1))E[Z (G(n, m, p))]. (3.82)
On the other hand, the definition of Z (G(n, m, p)) guarantees that 

E[Z (G(n, m, p)) 2 ] = E[Z (G(n, m, p)) 2 1{E }] ≤ exp(4nε(n))E[Z (G(n, m, p))] 2 = exp(o(n))E[Z (G(n, m, p))]
P Z (G(n, m, p)) ≥ E[Z (G(n, m, p))]/4 ≥ P Z (G(n, m, p)) ≥ E[Z (G(n, m, p))]/2 ≥ E[Z (G(n, m, p))] 2 4E[Z (G(n, m, p)) 2 ] ≥ exp(o(n)). (3.84) 
Since ln Z (G(n, m, p)) is tightly concentrated by Lemma 3.3, (3.84) implies that

E[ln Z (G(n, m, p))] = ln E[Z (G(n, m, p))] + o(n). Conversely, assume that E[ln Z ( Ĝ(n, m, p))] = ln E[Z (G(n, m, p))] + Ω(n). Then there is δ > 0 such that for large enough n, E[ln Z ( Ĝ(n, m, p))] ≥ ln E[Z (G(n, m, p))] + δn. Therefore, by Lemma 3.3 the event E = {G : E[ln Z (G)] ≥ ln E[Z (G(n, m, p))] + δn/2} satisfies P Ĝ(n, m, p) ∈ E = 1 -exp(-Ω(n)). Applying Lemma 3.38 to E and recalling that E[ln Z (G(n, m, p))] ≤ ln E[Z (G(n, m, p))] by Jensen, we conclude that E[ln Z (G(n, m, p))] ≤ ln E[Z (G(n, m, p))] -Ω(n).
We recall from (2.6) that for any sequence m = m(n 

) = O(n), ln E[Z (G(n, m, p))] = (1 -d)n ln |Ω| + m ln σ∈Ω k E[ψ(σ)] + o(n). ( 3 
sup π∈P 2 * (Ω) B(d, π) > (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)]. (3.87) 
Then

limsup n→∞ 1 n E[ln Z (G)] < (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)].
Proof. If (3.87) holds, then (3.86) shows that there is δ > 0 such that for large enough n,

1 n E[ln Z ( Ĝ)] ≥ (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] + 2δ.
Hence, there exists a sequence m = m(n) = dn/k + O( n) such that for large n, 

1 n E[ln Z ( Ĝ(n, m, p))] ≥ (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] + δ.
n E[ln Z ( Ĝ)] = o(1) + sup π∈P 2 * (Ω) B(d, π) ≤ (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] + o(1).
Hence, (3.77) and (3.85) imply that there exists m = m(n

) = dn/k + O( n) such that E[ln Z ( Ĝ(n, m, p))] = ln E[Z (G(n, m, p))] + o(n).
Therefore, Corollary 3.39 shows that E[ln

Z (G(n, m, p))] = ln E[Z (G(n, m, p))] + o(n). Consequently, (3.85) and Lemma 3.3 yield E[ln Z (G)] = (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] + o(1). Conversely, suppose that d > d cond . Then there exist d ′ < d and δ > 0 such that sup π∈P 2 * (Ω) B(d ′ , π) > (1 -d ′ ) ln |Ω| + d ′ k ln σ∈Ω k E[ψ(σ)] + δ.
Therefore, letting m ′ = Po(d ′ n/k), we obtain from Theorem 2.2 and (3.85)

1 n E[ln Z ( Ĝ(n, m ′ , p))] > (1 -d ′ ) ln |Ω| + d ′ k ln σ∈Ω k E[ψ(σ)] + δ.
Thus, Lemma 3.3, (3.77) and (3.85) imply that the event

E ′ = G : ln Z (G) ≤ (1 -d ′ ) ln |Ω| + d ′ k ln σ∈Ω k E[ψ(σ)] + δ/2 satisfies P Ĝ(n, m ′ , p) ∈ E ′ = exp(-Ω(n)), P G(n, m ′ , p) ∈ E ′ = 1 -exp(-Ω(n)). (3.89) 
Now, for a factor graph G let G ′ be the random factor graph obtained from G by removing each constraint node with probability 1d ′ /d independently. Moreover, consider the event E = G : P G ′ ∈ E ′ ≥ 1/2 , where, of course, the probability is over the coin tosses of the removal process only. Then the distribution of G(n, m, p) ′ coincides with the distribution of G(n, m ′ , p). Furthermore, Proposition 3.2 implies that Ĝ(n, m, p) ′ and Ĝ(n, m ′ , p) are mutually contiguous. Therefore, (3.89) entails that

P Ĝ(n, m, p) ∈ E ≤ exp(-Ω(n)) while P G(n, m, p) ∈ E = 1 -exp(-Ω(n)). Consequently, Lemma 3.38 yields E[ln Z (G(n, m, p))] ≤ E[ln Z ( Ĝ(n, m, p))]
-Ω(n), whence the assertion follows from Corollary 3.39 and (3.77).

Finally, to derive Theorem 2.6 from Theorem 2.7 we need the following lemma.

Lemma 3.41. Under SYM and BAL we have

D KL G * , σ * G, σ G = o(n) ⇔ 1 n E[ln Z (G)] = (1 -d) ln |Ω| + d k ln σ∈Ω k E[ψ(σ)] + o(1).
Proof. We have

D KL G * , σ * G, σ = G,σ P G * = G, σ * = σ ln P [G * = G, σ * = σ] P [G = G, σ = σ] = D KL G * , σ * Ĝ, σ + G,σ P G * = G, σ * = σ ln P Ĝ = G P σ = σ| Ĝ = G P [G = G] µ G (σ) = D KL G * , σ * Ĝ, σ + G,σ P G * = G, σ * = σ ln Z (G)P [G = G] µ G (σ) E[Z (G)]P [G = G] µ G (σ) [by (3.4)] = D KL G * , σ * Ĝ, σ + E[ln Z (G * )] -E[ln E[Z (G)|m]]. (3.90) 
Further, because σ * , σ are asymptotically balanced with overwhelming probability by Lemma 3.12,

D KL G * , σ * Ĝ, σ = σ P σ * = σ H P G * = H |σ * = σ ln P [G * = H |σ * = σ] P [σ * = σ] P [G * = H |σ * = σ] P [ σ = σ] = σ P σ * = σ ln P [σ * = σ] P [ σ = σ] = D KL σ * σ = o(n).
Hence, (3.90) yields 

D KL G * , σ * G, σ ⇔ E[ln Z (G * )] = E[ln E[Z (G)|m]] + o(n). ( 3 
B(d, π) ≤ liminf n→∞ 1 n E ln Z ( Ĝ) ≤ limsup n→∞ 1 n E ln Z ( Ĝ).
To show (3.92), we show that the random factor graph G * T (n, m(n), p, σ * n ) (from Definition 3.9) and its empirical marginal distribution ρ G * T satisfy an approximate distributional Belief Propagation fixed point property. We prove Lemma 3.42 below, but first we derive (3.92) from it. We first define a set of approximate distributional BP fixed points. Let P 2 fix (d, ε) be the set of all π ∈ P 2 (Ω) so that FIX1: W 1 (T (d, π), π) < ε.

FIX2:

µ dπ(µ) -1/|Ω| T V < ε. Recall the random factor graph G defined by CPL1 and CPL2 in Section 3.3, and

∆ T (n) = E[ln Z (G * T (n +1, m(n + 1), p, σ * n+1 )]-E[ln Z (G * T (n, m(n), p, σ * n )
] from Lemma 3.15. Lemmas 3.42 and 3.17 and Claim 3.21 show that for any ε > 0, with probability 1o T (1), ρ G ∈ P 2 fix (d, ε), and so Claims 3.22 and 3.23 give that for any ε > 0,

limsup n→∞ 1 n E[ln Z ( Ĝ)] ≤ limsup T →∞ limsup n→∞ ∆ T (n) ≤ sup π∈P 2 fix (d ,ε) B(d, π).
Now we take ε → 0 and must show that

limsup ε→0 sup π∈P 2 fix (d ,ε) B(d, π) ≤ sup π∈P 2 fix (d ) B(d, π). (3.94) Let (ε k , π k ) be a sequence so that ε k → 0, π k ∈ P 2 fix (d, ε k ), and lim k→∞ B(d, π k ) = limsup ε→0 sup π∈P 2 fix (d ,ε) B(d, π).
Since the space P 2 (Ω) is compact under the weak topology, there is a convergent subsequence π k j with lim

j →∞ W 1 π k j , π ∞ = 0,
for some π ∞ ∈ P 2 (Ω). Now from Lemma 2.9, B(d, • ) and T d ( • ) are continuous in the W 1 metric, and so we have

π ∞ ∈ P 2 fix (d) and B(d, π ∞ ) = limsup ε→0 sup π∈P 2 fix (d ,ε) B(d, π),
which gives (3.94) and in turn (3.92). Before turning to the proof Lemma 3.42, we introduce an additional tool, based on [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF]Lemma 3.1], that shows that the empirical distribution of an ε-symmetric factor graph is stable under a bounded number of perturbations. Lemma 3.43. For every finite set Ω, finite set Ψ of k-ary constraint functions ψ : Ω k → (0, 2), ε > 0 and K > 0, there exists δ > 0, n 0 > 0 so that the following is true. Let G 0 be a factor graph on n > n 0 variable nodes V 0 taking values in Ω, with a set F 0 of m 1 constraint functions from the set Ψ and m 2 'hard' fields of the form 1{σ(x i ) = ω i } for arbitrary values ω * i ∈ Ω. Let G 1 be formed by adding a set V 1 of at most K new variable nodes, each attached to at most K new constraint nodes, with the other attached variables chosen arbitrarily from V 0 , and constraint functions chosen from the set

Ψ. Then if G 0 is (δ, 2)-symmetric, W 1 (ρ(G 0 ), ρ(G 1 )) < ε.
The proof of Lemma 3.43 requires the following 'Regularity Lemma' for probability measures from [START_REF] Bapst | Coja-Oghlan: Harnessing the Bethe free energy[END_REF]. For µ ∈ P (Ω n ), and U ⊆ V , let µ[ • |U ] ∈ P (Ω) be the measure defined by

µ[ω|U ] = 1 |U | u∈U 1{σ(u) = ω}.
We say a measure µ on Ω n is ε-regular with respect to

U ⊆ V if for every S ⊂ U , |S| ≥ ε|U |, 〈σ[ • |S] -σ[ • |U ]〉 µ < ε.
We say a measure µ on Ω n is ε-regular with respect to a partition V of V if there is a set J ∈ [#V ] such that j ∈J |V j | > (1 -ε)n and µ is ε-regular with respect to V j for all j ∈ J . For S ⊆ Ω n , let µ[ • |S] be the measure defined by

µ[σ|S] = 1{σ ∈ S} µ(S) .
Theorem 3.44 ([17], Theorem 2.1). Given any ε > 0 and Ω, there exists N (ε, Ω so that for any n > N and µ ∈ P (Ω n ) the following is true. There exists a partition V of [n] and a partition S of Ω n so that #S +#V ≤ N and there is a subset I ⊂ [#S] such that the following conditions hold.

REG1: µ(S j ) > 0 for all i ∈ I , and i∈I µ(S i ) ≥ 1 -ε. REG2: For all i ∈ I and j ∈ [#V ], and all σ, σ ′ ∈ S i we have σ[

• |V i ] -σ ′ [ • |V i ] TV < ε. REG3: For all i ∈ I , µ[ • |S i ] is ε-regular with respect to V . REG4: µ is ε-regular with respect to V .
Proof of Lemma 3.43. The proof follows along the lines of that of Lemma 3.1 of [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF], but here we must take into account the hard external fields of G 0 . Recall V 0 , F 0 are the set of variable nodes and constraint nodes of G 0 , and let U 0 be the indices of variable nodes with hard fields in V 0 . Let V 1 , F 1 be the set of variable and constraint nodes respectively added to

G 0 to form G 1 . Let V = V 0 ∪ V 1 and F = F 0 ∪ F 1 . Let Σ 0 = {σ ∈ Ω V 0 : σ(x j ) = ω * j ∀j ∈ U 0 }.
Then we claim that there exists M = M(K , Ψ) > 0 so that for all σ ∈ Σ 0 and all τ ∈ Ω

V 1 , 1 M ≤ µ G 0 (σ) τ∈Ω V 1 µ G 1 (σ, τ) ≤ M. (3.95)
For all σ ∉ Σ 0 , both µ G 0 (σ), µ G 1 (σ, τ) are 0 on account of the hard fields.

For σ ∈ Σ 0 and τ ∈ Ω V 1 , we write:

µ G 0 (σ) = a∈F 0 ψ a (σ(∂a))
σ ′ ∈Σ 0 a∈F 0 ψ a (σ ′ (∂a)) and

µ G 1 (σ, τ) = a∈F 1 ψ a ((σ, τ)(∂a)) • a∈F 0 ψ a (σ(∂a)) σ ′ ∈Σ 1 τ ′ ∈Ω V 1 a∈F 1 ψ a ((σ ′ , τ ′ )(∂a)) • a∈F 0 ψ a (σ ′ (∂a))
Now because for some η > 0, η < ψ(σ) < 2 for all σ ∈ Ω k and ψ ∈ Ψ, we have

η K 2 ≤ a∈F 1 ψ a ((σ, τ)(∂a)) ≤ 2 K 2 ,
and for all σ ′ ∈ Σ 0 ,

|Ω| k η K 2 ≤ τ ′ ∈Ω V 1 a∈F 1 ψ a ((σ ′ , τ ′ )(∂a)) ≤ |Ω| k 2 K 2 .
Taking M = (2/η) K 2 |Ω| K proves the claim. Now consider the measure μ that G 1 induces on V 0 . That is, for

σ ∈ Ω V 0 , μ(σ) = τ∈Ω V 1 µ G 1 ((σ, τ)).
Note that for x ∈ V 0 , µ G 1 ,x = μx . We will show that for every ε > 0, there is δ > 0 small enough and n 0 > 0 large enough so that if µ G 0 is δ-symmetric and |V 0 | = n ≥ n 0 , then

x∈V 0 µ G 0 ,x -μx T V ≤ εn. (3.96)
Let V , S be partitions of V 0 and Ω V 0 guaranteed by Theorem 3.44 so that μ is ε ′ -homogeneous with respect to V , S, and let N = N (ε ′ ) be such that #V + #S ≤ N .

Let J be the set of all j ∈ [#S] so that μ(S j ) ≥ ε ′ /N and μ[•|S j ] is ε-regular with respect to V . Then REG1 and REG3 ensure that j ∈J μ(S j ) < 2ε ′ .

(3.97)

Now we claim that (3.95) and (3.97) imply that

µ G 0 [•|S j ] is M 2 ε ′ -regular with respect to V for all j ∈ J . Let V i be such that μ is ε ′ -regular on V i and let U ⊂ V i be such that |U | ≥ ε ′ |V i |. Then 〈 σ[ • |V i ] -σ[ • |U ] TV 〉 µ G 0 [ • |S j ] = σ∈Ω V 0 µ G 0 (σ|S j ) σ[ • |V i ] -σ[ • |U ] TV ≤ M 2 〈 σ[ • |V i ] -σ[ • |U ] TV 〉 μ[ • |S j ] < M 2 ε ′ , and so µ G 0 [ • |S j ] is M 2 ε ′ -regular.
Next, using REG2 we have

i∈[#V ] |V i | n σ[ • |V i ] -〈τ[ • |V i ]〉 µ G 0 [ • |S j ] TV µ G 0 [ • |S j ] < 3ε ′ . (3.98)
for any j ∈ J . [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF]Lemma 2.4], the M 2 ε ′ -regularity of µ G 0 [ • |S j ], and (3.98) imply that S j is an (ε ′′ , 2)-state of µ G 0 for every j ∈ J , provided that ε ′ = ε ′ (ε ′′ ) was chosen small enough. The bound (3.95) implies that µ G 0 (S j ) ≥ ε ′ /(M 2 N ) for all j ∈ J . Therefore, if we choose δ small enough, Corollary 2.3 of [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF] and the δ-symmetry of µ G 0 give that for each j ∈ J ,

x∈V µ G 0 ,x -µ G 0 ,x [ • |S j ] TV < εn/4, (3.99) 
provided ε ′′ = ε ′′ (ε) is chosen small enough and n is large enough. Further, by [START_REF] Coja-Oghlan | Belief Propagation on replica symmetric random factor graph models[END_REF]Lemma 2.5] and

M 2 ε ′ -regularity, i∈[#V ] x∈V i µ G 0 ,x [ • |S j ] -σ[ • |V i ] TV < εn/4 for all j ∈ J , σ ∈ S j ,
and by (3.99), Therefore,

i∈[#V ] x∈V i µ G 0 ,x -σ[ • |V i ] TV < 2εn/4 for all j ∈ J , σ ∈ S j . (3.100) Similarly, i∈[#V ] x∈V i μx [ • |S j ] -σ[ • |V i ] TV < ε ′′′ n for all j ∈ J , σ ∈ S j . ( 3 
x∈V 0 µ G 0 ,x -μx TV ≤ 2εn + j ∈J i∈[#V ] x∈V i μ(S j ) µ G 0 ,x -μx [ • |S j ] TV < εn,
which proves (3.96). Now consider sampling a variable node x uniformly from V 0 and V and outputting µ G 0 ,x and µ G 1 ,x respectively. The distributions of µ G 0 ,x and µ G 1 ,x are exactly ρ(G 0 ) and ρ(G 1 ). Since the probability we choose x ∈ V 1 in the second experiment is O(1/n) we can couple the choice of x to coincide with probability 1 -O(1/n). On the event they coincide the expected total variation distance between µ G 0 ,x and µ G 1 ,x = μx is at most ε by (3.96), and so More precisely we will show that for any ε > 0, there is T large enough so that Up to total variation distance o(1), the distribution of G ′ with the L distinguished variable nodes x n+1 , . . . x n+L is identical to the distribution of G ′ with L uniformly chosen distinguished variable nodes from x 1 , . . . x n+L . Let ρ L denote the empirical marginal distribution of x n+1 , . . . x n+L , that is

W 1 (ρ(G 0 ), ρ(G 1 )) ≤ ε -o(1)
E[W 1 (T d (ρ G * n,T ), ρ G * n,T )] < ε. ( 3 
ρ L = 1 L L j =1 δ µ G ′ ,x n+ j .
By Proposition 2.10, for L = L(ε) chosen large enough we have where µ G * n+1,T ,x n+1 is the distribution of the marginal of x n+1 over the randomness in adding a single variable node x n+1 to G * T with a uniformly chosen σ n+1 (x n+1 ), and attaching Po(d) random constraint nodes from Ψ to it. We may assume that x n+1 is not pinned, as this occurs with probability O(1/n). [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF], again using the contiguity of Y with a uniformly chosen set, as in (3.41), (3.42). Under this condition we can compute

E[W 1 (ρ L , ρ G ′ )] < ε/3. ( 3 
µ G * n+1,T ,x n+1 (ω) = o T (1) + γ i=1 τ∈Ω ∂b i 1{τ(x n+1 ) = ω}ψ b i (τ) y ∈∂b i \{x n+1 } µ G * T ,y (τ(y)) σ∈Ω γ i=1 τ∈Ω ∂b i 1{τ(x n+1 ) = σ}ψ b i (τ) y ∈∂b i \{x n+1 } µ G * T ,y (τ(y)) (3.107) = o T (1) + γ i=1 µ b i (ω) σ∈Ω γ i=1 µ b i (σ) , (3.108) 
where

µ b i (ω) = τ∈Ω k 1{τ h i = ω}ψ b i (τ) j =h i µ G * T ,y i j (τ j ),
h i is the position at which x n+1 is attached to the constraint node b i , and y i j is the variable node attached to constraint node b i at position j . As before, the neighborhoods ∂b i and weight functions ψ b i are chosen according to the teacher-student scheme with respect to σ * n+1 , and so by assumption SYM and Lemma 3.17 Let Ω = be a finite set, let n > 0 be an integer and let µ ∈ P (Ω n ). Given θ 1 , . . . , θ n ∈ (0, 1), consider the following experiment.

(1) choose U ⊂ [n] by including each i ∈ U with probability θ i independently.

(2) independently choose σ ∈ Ω n from µ.

Then for any i , j ∈ [n], i = j , we have

E U [I (σ i , σ j |(σ u ) u∈U )] = (1 -θ i )(1 -θ j ) ∂ 2 ∂θ i ∂θ j E U [H (σ|(σ u ) u∈U )].
Lemma 3.45 and Corollary 3.48 below are generalized version of [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF]Lemma 3.1]. The proofs are based on very similar calculations, parts of which go back to [START_REF] Macris | Griffith-Kelly-Sherman correlation inequalities: a useful tool in the theory of error correcting codes[END_REF][START_REF] Méasson | The generalized area theorem and some of its consequences[END_REF][START_REF] Méasson | Maxwell construction: the hidden bridge between iterative and maximum a posteriori decoding[END_REF]. We proceed to prove Lemma 3.45. We begin with the following claim.

Claim 3.46. We have

∂ ∂θ i E U [H (σ|(σ u ) u∈U )] = -E U [H (σ i |(σ u ) u∈U )|i ∈ U ].
Proof. By the chain rule, for any i ∈ [n] we have

E U [H (σ|(σ u ) u∈U )] = E U [H (σ i |(σ u ) u∈U ) + H (σ|(σ u ) u∈U ∪{i} )].
Hence,

∂ ∂θ i E U [H (σ|(σ u ) u∈U )] = ∂ ∂θ i E U [H (σ i |(σ u ) u∈U )] + ∂ ∂θ i E U [H (σ|(σ u ) u∈U ∪{i} )]. We claim that ∂ ∂θ i E U [H (σ|(σ u ) u∈U ∪{i} ) = 0].
To show this define for U ⊂ [n] and j ∈ [n]

p(U ) = P [U = U ] = n i=1 θ 1{i∈U } i (1 -θ i ) 1{i ∈U } , p j (U ) = P U \ j = U \ j = i = j θ 1{i∈U } i (1 -θ i ) 1{i ∈U } .
Then

∂ ∂θ i E U [H (σ|(σ u ) u∈U ∪{i} )] = U ⊂[n] ∂ ∂θ i p(U ) σ∈Ω n µ(σ)H (σ|(σ u ) u∈U ∪{i} = (σ u ) u∈U ∪{i} ) = σ∈Ω n µ(σ) U ⊂[n]:i∈U p i (U )H (σ|(σ u ) u∈U ∪{i} = (σ u ) u∈U ∪{i} ) - U ⊂[n]:i ∈U p i (U )H (σ|(σ u ) u∈U ∪{i} = (σ u ) u∈U ∪{i} ) = 0.
Moreover,

∂ ∂θ i E U [H (σ i |(σ u ) u∈U )] = U ⊂[n] ∂ ∂θ i p(U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ) = U ⊂[n]:i ∈U ∂ ∂θ i p(U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ) because H (σ i |(σ u ) u∈U = (σ u ) u∈U ) = 0 if i ∈ U . Hence, ∂ ∂θ i E U [H (σ i |(σ u ) u∈U )] = - U ⊂[n]\{i} p i (U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ) = -E U [H (σ i |(σ u ) u∈U )|i ∈ U ],
as claimed.

Claim 3.47.

If i = j , then ∂ 2 ∂θ i ∂θ j E U [H (σ|(σ u ) u∈U )] = E U [I (σ i , σ j |(σ u ) u∈U )|i , j ∈ U ].
Proof. By Claim 3.46

∂ ∂θ i E U [H (σ|(σ u ) u∈U )] = -E U [H (σ i |(σ u ) u∈U )|i ∈ U ] = - U ⊂[n]\{i} p i (U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ).
Hence,

∂ 2 ∂θ i ∂θ j E U [H (σ i |(σ u ) u∈U )] = - U ⊂[n]\{i} ∂ ∂θ j p i (U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ).
Letting

p i j (U ) = P U \ {i , j } = U \ {i , j } = h =i,j θ 1{h∈U } h (1 -θ h ) 1{h ∈U } , we get ∂ 2 ∂θ i ∂θ j E U [H (σ i |(σ u ) u∈U )] = U ⊂[n]\{i,j } p i j (U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ) - U ⊂[n]\{i},j ∈U p i j (U ) σ µ(σ)H (σ i |(σ u ) u∈U = (σ u ) u∈U ) = U ′ ⊂[n]\{i,j } p i j (U ′ ) σ µ(σ) H (σ i |(σ u ) u∈U ′ = (σ u ) u∈U ′ ) -H (σ i |(σ u ) u∈U ′ ∪{ j } = (σ u ) u∈U ′ ∪{ j } ) = U ′ ⊂[n]\{i,j } p i j (U ′ ) σ µ(σ)I (σ i , σ j |(σ u ) u∈U ′ = (σ u ) u∈U ′ ).
The last line follows from the general formula I (X , Y ) = H (X ) -H (X |Y ).

Proof of Lemma 3.45. The mutual information I (σ i , σ j |(σ u ) u∈U ) vanishes if i ∈ U or j ∈ U . Therefore, Claim 3.47 yields

E U I (σ i , σ j |(σ u ) u∈U ) = (1 -θ i )(1 -θ j )E U I (σ i , σ j |(σ u ) u∈U )|i , j ∈ U = (1 -θ i )(1 -θ j ) ∂ 2 ∂θ i ∂θ j E U [H (σ|(σ u ) u∈U )],
as desired. Proof. By the chain rule and Lemma 3.45, for θ ∈ (0, 1),

n i,j =1 E U [I (σ i , σ j |(σ u ) u∈U )] ≤ n i,j =1 E U [I (σ i , σ j |(σ u ) u∈U )] (1 -θ i )(1 -θ j ) = n i,j =1 ∂ 2 ∂θ i ∂θ j E U [H (σ|(σ u ) u∈U )] = ∂ 2 ∂θ 2 E U [H (σ|(σ u ) u∈U )]. Hence, t 0 n i,j =1 E U [I (σ i , σ j |(σ u ) u∈U )]dθ = t 0 ∂ 2 ∂θ 2 E U [H (σ|(σ u ) u∈U )] = ∂ ∂θ E U [H (σ|(σ u ) u∈U )] θ=t θ=0
.

Once more by the chain rule and Claim 3.46,

∂ ∂θ E U [H (σ|(σ u ) u∈U )] θ=t θ=0 = n i=1 E U [H (σ i |(σ u ) u∈U )|i ∈ U ] θ=0 -E U [H (σ i |(σ u ) u∈U )|i ∈ U ] θ=t ≤ n ln |Ω|,
whence the assertion follows. Proof. We claim that

E U , σ D KL μi j μi ⊗ μj = E U I ( σi , σj |( σv ) v∈U ) .
Indeed, since σ is chosen from µ, given U such that i , j ∈ U we have

I ( σi , σj |( σv ) v∈U ) = σ∈Ω n µ( σ) σ i ,σ j ∈Ω µ(σ i = σ i , σ j = σ j |∀u ∈ U : σ u = σu ) ln µ(σ i = σ i , σ j = σ j |∀u ∈ U : σ u = σu ) µ(σ i = σ i |∀u ∈ U : σ u = σu )µ(σ j = σ j |∀u ∈ U : σ u = σu ) = E σ D KL μi j μi ⊗ μj U .
Moreover, both the mutual information and the Kullback-Leibler divergence vanish if i ∈ U or j ∈ U . Therefore, Corollary 3.48 implies

E D KL μi j μi ⊗ μj = n T T /n 0 E[I ( σi , σj |( σu ) u∈U )]dθ ≤ n 2 ln |Ω| T ,
as desired.

Proof of Lemma 3.5. By Lemma 3.49 and Markov's inequality for large enough T = T (ε, Ω) we get

P (i , j ) ∈ [n] × [n] : D KL μi j μi ⊗ μj > ε 2 < εn 2 > 1 -ε.
Therefore, the assertion follows from Pinsker's inequality (2.7).

APPLICATIONS

In this section we derive the results stated in Section 1 from those in Section 2. We begin with the proof of Theorem 1.1 in Section 4.1. Section 4.2 contains the proof of Theorem 1.3, parts of which we will reuse in Section 4.3 to prove Theorem 1.2. Then in Section 4.4 we prove Theorem 1.4. Finally, Section 4.5 deals with a few further examples.

4.1. Proof of Theorem 1.1. The Potts antiferromagnet can easily be cast as a random factor graph model. Indeed, for q ≥ 2, let Ω = [q] be the set of spins and set c β = 1 -exp(-β). There is just a single weight function of arity two, namely Let S be the event that every constraint node is adjacent to two distinct variable nodes and that for all We remember that G(n, d/n) denotes the Erdős-Rényi random graph.

ψ β : Ω 2 → (0, 1], (σ, τ) → 1 -c β 1{σ = τ}. ( 4 
1 ≤ i < i ′ ≤ m

Corollary 4.2. For all

d > 0, β > 0 we have E ln Z β (G(n, d/n)) = E [ln Z (G)] + o(n).
Proof. The number of edges of the random graph G(n, d/n) has distribution Bin( n 2 , d/n), which is at total variation distance o(1) from the Poisson distribution Po(dn/2). Therefore, BAL follows because the uniform distribution is the (unique) minimizer of σ∈Ω µ(σ) 2 . With respect to POS, fix π, π ′ ∈ P 2 * (Ω). Plugging in the single weight function ψ = ψ c β and simplifying, we see that the condition comes down to

E ln Z β (G(n, d/n)) = E [ln Z (G)|S] + o(n). ( 4 
0 ≤ E σ 1 ,σ 2 ∈Ω 1{σ 1 = σ 2 } 2 j =1 µ (π) j (σ j ) l + σ 1 ,σ 2 ∈Ω 1{σ 1 = σ 2 } 2 j =1 µ (π ′ ) j (σ j ) l -2 σ 1 ,σ 2 ∈Ω 1{σ 1 = σ 2 }µ (π) 1 (σ 1 )µ (π ′ ) 2 (σ 2 ) l . Since µ (π) 1 , µ (π) 2 , µ (π ′ ) 1 , µ (π ′ )
2 are mutually independent, the expression on the right hand side can be rewritten as

σ 1 ,...,σ l ∈Ω E l j =1 µ (π) 1 (σ j ) l j =1 µ (π) 2 (σ j ) -2 l j =1 µ (π) 1 (σ j ) l j =1 µ (π ′ ) 2 (σ j ) + l j =1 µ (π ′ ) 1 (σ j ) l j =1 µ (π ′ ) 2 (σ j ) = σ 1 ,...,σ l ∈Ω E l j =1 µ (π) 1 (σ j ) -E l j =1 µ (π ′ ) 1 (σ j ) 2 . • 1 - de -β n(q -1 + e -β ) M(σ * )-m(G,σ * )
.

For the planted Potts model, each edge is added independently with probability of the form P[Po(λ) ≥ 1] where λ = Θ(1/n) and depends whether the edge is monochromatic under σ * :

λ in = d qne -β 2((e -β -1)M(σ * ) + n 2 ) λ out = d qn 2((e -β -1)M(σ * ) + n
2 ) and we can write

P[G * Potts (σ * ) = G] = e -βm(G,σ * ) (λ out + O(n -2 )) |E | • 1 -λ out + O(n -2 ) n 2 -M(σ * )-|E |+m(G,σ * ) • 1 -λ in + O(n -2 ) M(σ * )-m(G,σ * ) Now suppose for some large C , M(σ * ) -n 2 2q ≤ C n, then d qn 2((e -β -1)M(σ * ) + n 2 ) = d qn 2((e -β -1)n 2 /2q + n 2 /2 + O(C n)) = d n(q -1 + e -β ) (1 + O(C /n)),
and so

P[G * Potts (σ * ) = G] = e -βm(G,σ * ) d n(q -1 + e -β ) (1 + O(C /n)) |E | • 1 - d n(q -1 + e -β ) (1 + O(C /n)) n 2 -M(σ * )-|E |+m(G,σ * ) • 1 - de -β n(q -1 + e -β ) (1 + O(C /n)) M(σ * )-m(G,σ * )
.

And so if we have

M(σ * ) -n 2 2q ≤ C n, |E | ≤ C n and m(G, σ * ) ≤ C n, then for some C ′ , 1 C ′ ≤ P[G * sbm (σ * ) = G|σ * ] P[G * Potts (σ * ) = G|σ * ] ≤ C ′ .
Moreover, these conditions all occur with probability tending to 1 as C → ∞, which proves mutual contiguity.

We also recall from Proposition 3.2 that G * Potts (σ * ) and ĜPotts are mutually contiguous. Write ρ(σ, τ) for the q × qoverlap matrix of two colorings σ, τ, defined by

ρ i j (σ, τ) = 1 n |σ -1 (i ) ∩ τ -1 ( j )|.
Accordingly we write ρ(σ 1 , . . . , σ l ) ∈ P (Ω l ) for the l-wise overlaps, i.e.,

ρ i 1 ,...,i l (σ 1 , . . . , σ l ) = 1 n l j =1 σ -1 j (i j ) .
Let ρ ∈ P (Ω l ) be the uniform distribution (for any l). The following proposition marks the main step toward deriving Theorem 1.3 from Theorem 2.6. In the following we write Ĝ = ĜPotts and G * = G * Potts for brevity. Proposition 4.5. With d inf (q, β) as in Theorem 1.3 the following is true.

(1) For all d < d inf (q, β) we have

E ρ(σ 1 , σ 2 ) -ρ 2 Ĝ = o(1). (4.3) (2) For every d inf (q, β) < d≤ ((q -c β )/c β ) 2 there is ε > 0 such that E ρ(σ 1 , σ 2 ) -ρ 2 Ĝ > ε. (4.4)
To prove Proposition 4.5 we need a few preparations.

Lemma 4.6. Fix β and suppose that for some d > 0, the average overlap is non-trivial. That is, for some ε > 0,

P ρ(σ, τ) -ρ 2 Ĝ (n,m d (n),p β ) > ε > ε. (4.5)
Then there exists δ > 0 so that for all d < d ′ < d + δ, the overlap is non-trivial as well, i.e., Proof. Given ε > 0 choose a small enough η = η(ε, Ω) > 0 and a smaller δ = δ(η, Ω) > 0 and assume n = n(δ) is sufficiently large. By [17, Corollary 2.2 and Proposition 2.5] there exists K = K (η, Ω) > 0 and pairwise disjoint S 0 , . . . , 

P ρ(σ, τ) -ρ 2 Ĝ(n,m d ′ (n),p β ) > δ > δ. Call a vector σ ∈ Ω n nearly balanced if for all ω ∈ Ω, |σ -1 (ω)| -n/|Ω| < n 3/5 .
S K ⊂ Ω n such that (i) µ[ • |S i ] ⊗ µ[ • |S i ] is η-symmetric for all i ∈ [K ], (ii) i∈[K ] µ(S i ) ≥ 1 -η and (iii) µ(S i ) ≥ η/K for all i ∈ [K ]. Let us write 〈 • 〉 i = 〈 • 〉 µ[ • |S i ] for
(v) = 1{σ(v) = s, τ(v) = t }. Then ρ(σ, τ) -ρ 2 2 i = s,t ∈[q] (ρ st (σ, τ) -q -2 ) 2 i = s,t ∈[q] 1 n v∈[n] R st (v) -q -2 2 i = s,t ∈[q] 1 n 2 v,w ∈[n] 〈R st (v)R st (w)〉 i - 2q -2 n v∈[n] 〈R st (v)〉 i + q -4 .
Thus, we are left to prove (4.17). Consider the q × q matrix M where M i j = ρ i j (σ, τ) -1/q 2 . Then all row and columns sums are O(n -1/3 ) since σ and τ are nearly balanced. The condition ρ(σ, τ) -ρ 2 > ε/2 implies that i,j M 2 i j > ε 2 /4. If so, then i,j |M i j | ≥ ε/2, and so i,j (M i,j ) + ≥ ε/4. This implies that there is some entry M i j with M i j ≥ ε/4q 2 . Let M ′ be the (q -1) × (q -1) matrix obtained by removing row i and column j from M. We claim there is some permutation κ ′ ∈ S q-1 so that i ′ M ′ i ′ ,κ ′ (i ′ ) ≥ 0. This is because the nearly 0 row and column sums mean that the sum of all entries of M ′ is M i j + o(1) ≥ ε/4q 2 . If we pick a random permutation κ ′ , then in expectation the sum i ′ M ′ i ′ ,κ ′ (i ′ ) ≥ ε/2q 2 and so there exists some κ ′ with a non-negative sum. Adjoining κ ′ with i → j gives a permutation κ ∈ S q so that i

ρ iκ(i) -1/q 2 > ε/4q 2 . Now A(σ, τ) = max κ∈S q q (q -1)n x∈V (1{σ(x) = κ(τ(x)) -1/q) = max κ∈S q - 1 q -1 + q q -1 i ρ iκ(i) (σ, τ) = 1 q -1 max κ∈S q i (ρ iκ(i) (σ, τ) -1/q 2 ) ≥ ε 4q 3 , as desired.
Proof of Lemma 4.6. Pick a small enough η = η(d, ε) > 0 and a smaller δ = δ(η) > 0. Let d < d ′ < d + δ. We claim that σ = σn,m d ,p β and σ′ = σn,m d ′ ,p β have total variation distance less than η. Indeed, for any coloring σ and any

m, m ′ we find ln E[ψ G (n,m ′ ,p β ) (σ)] E[ψ G (n,m,p β ) (σ)] = (m ′ -m) ln 1 -c β ω∈Ω λ σ (ω) 2 .
Hence, if σ is nearly balanced, then there is a constant

C = C (q) > 0 such that ln E[ψ G (n,m ′ ,p β ) (σ)] E[ψ G (n,m,p β ) (σ)] -(m ′ -m) ln 1 -c β /q ≤ C (m ′ -m) ω∈Ω (λ σ (ω) -1/q) 2 .
Therefore, the desired bound on the total variation distance follows from (3.1). In effect, we can couple σ, σ′ such that both coincide with probability at least 1 -η. If indeed σ = σ′ , then we obtain G ′′ from G ′ = G * ( σ) by adding a random number ∆ = Po((d ′d)n/k) of further constraint nodes according to (2.1) and otherwise G ′′ contains m d ′ random constraint nodes chosen independently of the constraint nodes of G ′ so that G ′′ is distributed as G * (n, m d ′ , p β , σ′ ). Thus, we have got a coupling of G ′ and G ′′ such that with probability at least 1 -η the former is obtained from the latter by omitting ∆ random constraint nodes. Using Proposition 3.2, Lemma 3.12 and Lemma 4.8, (4.5) implies that there is an algorithm that given G ′ , finds a nearly balanced partition τ(G ′ ) with A(τ(G ′ , σ)) > η with probability at least 3η. Hence, by applying this algorithm to the factor graph obtained from G ′′ by deleting ∆ random constraint nodes we conclude that with probability at least η we can identify a nearly balanced τ ′ (G ′′ ) such that A(τ ′ (G ′′ ), σ)) > η. Consequently, Proposition 3.2 yields

E A(τ ′ ( Ĝ(n, m d ′ , p β )), σ) Ĝ(n,m d ′ ,p β ) ≥ η 2 .
Thus, Lemma 4.7 shows that two samples from µ Ĝ must have non-trivial expected overlap. Lemma 4.9. For all β, d, q we have E 

[ln Z ( Ĝ)] ≥ n ln q + dn ln(1 -c β /q)/2 + o(n). Proof. Since E[Z (G(n, m, p β ))] = n ln q + dn ln(1 -c β /q)/2 + o(n),
n ∂ ∂d E ln Z ( Ĝ) ≥ ln(1 -c β /q) + o(1) and if (4.3) is violated, then 1 n ∂ ∂d E ln Z ( Ĝ) ≥ ln(1 -c β /q) + Ω(1).
Proof. The same calculation as in Lemma 3.31 shows that 1

n ∂ ∂d E ln Z ( Ĝ) = E[ln Z ( Ĝ(n, m + 1, p β ))] -E[ln Z ( Ĝ(n, m, p β ))].
Furthermore, with σ = σn,m,p β and σ′ = σn,m+1,p β , Propositions 3. 

)/Z (G ′ ))| σ = σ′ ] = Õ(n 1/2 ). Hence, letting 〈 • 〉 = 〈• 〉 G ′ , we find 1 n ∂ ∂d E ln Z ( Ĝ) = E[ln(Z (G ′′ )/Z (G ′ ))| σ = σ′ ] + Õ(n -1/2 ) = E ln ψ e (σ) G ′ + o(1). (4.18)
Further, writing v , w for the two variable nodes adjacent to e and expanding the logarithm, we obtain ln ψ e (σ) 

G ′ = ln(1 -c β 1{σ(v) = σ(w)} G ′ = - ∞ l =1 c l β l 〈1{σ(v) = σ(w )}〉 l G ′ = - ∞ l =1 c l β l l j =1 1{σ j (v) = σ j (w)} G ′ . ( 4 
n ∂ ∂d E ln Z ( Ĝ) = o(1) - v,w ∈V l ≥1 c l β l E 1 -c β 1{ σ(v) = σ(w)} s,t ∈V 1 -c β 1{ σ(s) = σ(t )} l j =1 1{σ j (v) = σ j (w)} G ′ .
Hence, Corollary 3.27 and Proposition 3.2 yield Since ρ(σ 1 , . . . , σ l ) 2 2 ≥ q -l for all σ 1 , . . . , σ l , (4.20) yields the first assertion. Moreover, if E ρ(σ 1 , σ 2 ) -ρ 2 Ĝ is bounded away from 0, then E ρ(σ 1 , σ 2 ) 2 2 G ′ is bounded away from q -2 and the second assertion follows. For the second part of Theorem 1.3, suppose that d > d inf (q, β). We can assume d ≤ ((qc β )/c β ) 2 since if d > ((qc β )/c β ) 2 , the algorithm of Abbe and Sandon [START_REF] Abbe | Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap[END_REF] succeeds w.h.p. With d inf (q, β) < d ≤ ((qc β )/c β ) 2 , Proposition 4.5 says that there is some ε > 0 so that E ρ(σ 1 , σ 2 ) -ρ 2 Ĝ > ε. Then for some δ > 0, the first part of Lemma 4.8 implies that there is an algorithm that returns τ = τ( Ĝ) so that E[A( σ, τ( Ĝ))] > δ, completing the proof.

1 n ∂ ∂d E ln Z ( Ĝ) = o(1) - 1 1 -c β /q v,w ∈V l ≥1 c l β ln 2 E 1 -c β 1{ σ(v) = σ(w)} l j =1 1{σ j (v) = σ j (w)} G ′ = o(1) - 1 1 -c β /q v,w ∈V l ≥1 c l β ln 2 E l j =1 1{σ j (v) = σ j (w)} G ′ -c β E l +1 j =1 1{σ j (v) = σ j (w)} G ′ = o(1) - c β q -c β + l ≥2
4.3. Proof of Theorem 1.2. To derive Theorem 1.2 about the graph coloring problem from Theorem 2.6 some care is required because we need to accommodate the 'hard' constraint that no single edge be monochromatic. Indeed, if we cast graph coloring as a factor graph model, then the weight functions are {0, 1}-valued. As in Section 4.1 we work with the Potts antiferromagnet to circumvent this problem. Thus, let Ω = [q] for some q ≥ 3 and let c β , ψ β be as in Section 4. Since a standard calculation shows that E[ Z (G(n, m, p ∞ ))] ≥ n -q 2 q n (1 -1/q) m (cf. [START_REF] Achlioptas | The two possible values of the chromatic number of a random graph[END_REF]Section 3]) and m ≤ dn/2, (4.32) shows that for all m ′ ≤ m, P Z (G(n, m, p ∞ )) ≥ n -q 2 q n (1 -1/q) d n/2 /8 ≥ ε 2 128 , (4.33)

as desired.

The following statement is a weak converse of Corollary 4.16.

Lemma 4.17. For any ε > 0 and any 0 < d ′ < d ′′ ≤ 100(q -1) 2 there is δ > 0 such that the following is true. Assume that (n l ) l is a subsequence such that Since by the Nishimori property we can identify σ with a sample from the Gibbs measure, we obtain

E ln Z (G ′′ ) Z (G ′ ) = o(1) - 1 n 2 (1 -1/q) v,w l ≥1 1 l E l j =1 1{σ j (v) = σ j (w)} - l +1 j =1 1{σ j (v) = σ j (w)} = - 1 q -1 + v,w l ≥2 q l(l -1)n 2 (q -1) E l j =1
1{σ j (v) = σ j (w)} + o(1). (4.36)

Write ρ(σ 1 , . . . , σ l ) ∈ P (Ω l ) for the l-wise overlap; that is, ρ i 1 ,...,i l (σ 1 , . . . , σ l ) = 1 n l j =1 σ -1 j (i j ) . Then (4.36) yields

E ln Z (G ′′ ) Z (G ′ ) = o(1) - 1 q -1 + l ≥2
q l(l -1)(q -1) E ρ(σ 1 , . . . , σ l ) 2 2 . (4.37)

Hence, if we let ξ l = E ρ(σ 1 , . . . , σ l ) 2 2q -l ≥ 0, then (4. Corollary 4.22. We have d q,cond ≤ (q -1) 2 for all q ≥ 3.

Proof. Combining Lemma 4.21 with Lemma 4.7 and Lemma 4.17, we conclude that for every d > (q -1) 2 there is δ > 0 such that limsup n→∞ 1 n E ln Z ( G(n, m d , p ∞ ) > ln q + d 2 ln(1 -1/q) + δ.

Therefore, Lemma 4.18 shows that for (4.41) holds for some subsequence (n l ) for all large enough β. Consequently, Theorem 2.2, Lemma 3.4 and Lemma 4.3 yield B Potts (q, d, c β ) > ln q + d 2 ln(1-1/q)+δ for all large enough β. Hence, Lemma 4.19 shows that d q,cond ≤ d. Remark 4.23. For q ≥ 5 the upper bound d q,cond ≤ (q -1) 2 actually follows from a simple first moment argument.

As a final preparation we need the following elementary observation. Lemma 4.24. Assume that d > 0, η > 0 are such that for some strictly increasing sequence (n l ) l ≥1 there is a sequence m(n l ) such that lim l →∞ P Z (G(n l , m(n l ), p ∞ )) ≥ q n l (1 -1/q) m(n l ) exp(-ηn l ) = 0.

Then lim l →∞ max m(n l )≤m≤n+m(n l ) P Z (G(n l , m, p ∞ )) ≥ q n l (1 -1/q) m exp(-ηn l /2) = 0.

Proof. We use two-round exposure. Thus, for m > m(n l ) we think of G(n l , m, 1) as being obtained from G(n l , m(n l ), ∞) by adding mm(n l ) random constraint nodes. Then for each q-coloring σ of G(n l , m(n l ), ∞) we have P σ is a q-coloring of G(n l , m, p ∞ )|σ is a q-coloring of G(n l , m(n l ), p ∞ ) ≤ (1 -1/q) m-m(n l )+o(n) .

Therefore,

E[Z (G(n l , m, p ∞ ))|G(n l , m(n l ), p ∞ )] ≤ Z (G(n l , m(n l ), p ∞ ))(1 -1/q) m-m(n l )+o(n)
and the assertion follows from Markov's inequality.

Proof of Theorem 1.2. From Lemma 4.22 we know that d q,cond ≤ (q -1) 2 . Hence, assume for contradiction that d 1 < d q,cond ≤ (q -1) 2 but liminf n→∞ E n Z (G(n, m d 1 , p ∞ )) < q(1 -1/q) d 1 /2 .

Then there exist a subsequence (n l ) l and η > 0 such that lim l →∞ E[Z (G(n l , m d 1 (n l ), p ∞ )) 1/n l ] = q(1 -1/q) d 1 /2 exp(-3η). (4.44)

Set ζ = q(1 -1/q) d 1 /2 exp(-2η) and let (u(n)) n be the sharp threshold sequence from Lemma 4.12. Then (4.44) implies that limsup l →∞ u(n l ) ≤ d 1 . Hence, there exists d 1 < d 2 < d q,cond ≤ (q -1) 2 such that lim l →∞ P[Z (G(n l , m d 2 (n l ), p ∞ )) 1/n l ≥ q(1 -1/q) d 2 /2 exp(-η)] = 0.

Consequently B Potts (q, d 6 , 1) > ln q + d 6 2 ln(1 -1/q), which contradicts the fact that d 6 < d q,cond . Conversely, assume that d is such that B Potts (π; q, d, 1) > ln q + d 2 ln(1 -1/q) for π ∈ P 2 * (Ω). Then Lemma 4.19 implies that there is δ > 0 such that B Potts (π; q, d, c β ) > ln q + d 2 ln(1c β /q) + δ for all large enough β. Therefore, Lemma 4.3 and Theorem 2.2 imply that for all large enough β and n > n 0 (β), for σ ∈ Ω k , J ∈ {±1}. The prior is uniform: p(ψ 1 ) = p(ψ -1 ) = 1/2. In particular, the distribution on Ψ conditioned on the planted assignment is exactly as in the description of the LDGM codes:

P[ψ a = ψ 1 |σ(∂a) = (σ 1 , . . . σ k )] = 1 + (1 -2η) • k i=1 σ i 1 + (1 -2η) • k i=1 σ i + 1 -(1 -2η) • k i=1 σ i = 1 -η if k i=1 σ i = 1 η if k i=1 σ i = -1.
Recall that ξ = |Ω| -k τ∈Ω k E[ψ(τ)], so in this setting we have ξ = E[ψ(1)] = 1. We also compute 

j =h i µ (π ′ ) ki+ j (τ j ) - d(k -1) kξ Λ τ∈Ω k ψ(τ) k j =1 µ (π ′ ) j (τ j ) = E 1 2 Λ σ∈{±1} γ i=1 1 + τ∈{±1} k-1 (1 -2η)J b σ k-1 j =1 τ j µ (π ′ ) ki+ j (τ j ) - d(k -1) k Λ 1 + τ∈{±1} k (1 -2η)J • k j =1
τ j µ (π ′ ) j (τ j ) (4.45) 

= E 1 2 Λ σ∈{±1} γ i=1 1 + (1 -2η)σJ b k-1 j =1 θ (π) ki+ j - d(k -1) k Λ 1 + (1 -2η)J •
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 1 FIGURE 1. The assumptions SYM, BAL and POS. nodes, and for each a ∈ F , an ordered k-tuple ∂a = (∂ 1 a, . . . , ∂ k a) ∈ V k of neighbors and a weight function ψ a ∈ Ψ.We may visualize G as a bipartite graph with edges going between variable and constraint nodes, although we keep in mind that the neighborhoods of the constraint nodes are ordered.

Theorem 2 . 4 .

 24 If SYM, BAL and POS hold, then sup π∈P 2 * (Ω) B(d, π) = sup π∈P 2 fix (d ) B(

Definition 2 . 5 .

 25 With Ω, p,V = {x 1 , . . . , x n } and F = {a 1 , . . . , a m } as before, obtain G(n, m, p) by performing the following for every constraint a j independently: choose ∂a j ∈ V k uniformly and independently sample ψ a j ∈ Ψ from p. With m = Po(dn/k) we abbreviate G = G(n, m, p).

Fact 3 . 1 .

 31 For any n, m, p, σ the distribution (3.2) coincides with the distribution from Definition 2.1 given σ * = σ. Proof. Consider a specific factor graph G with constraint nodes a 1 , . . . , a m . Since the constraint nodes of the random factor graph G(n, m, p) are chosen independently (cf. Definition 2.5), we have

. 7 )

 7 Proof. Because all weight functions ψ ∈ Ψ are strictly positive, (3.6) is immediate from Azuma's inequality. Moreover, since Ĝ and G * ( σ) are identically distributed and σ and σ * are mutually contiguous by Proposition 3.2, Ĝ and G * (σ * ) are mutually contiguous as well. Therefore, (3.7) follows from (3.6).

12 )and

 12 Proposition 3.2 shows that E ln ψ Ĝ (σ Ĝ ) Ĝ = E[ln ψ G * ( σ) ( σ)]. Since σ and σ * are mutually contiguous by Proposition 3.2, we see that | σ(ω)| ∼ n/|Ω| for all ω ∈ Ω w.h.p. In addition, the construction (2.1) of G * ( σ) is such that the individual constraint nodes a 1 , . . . , a m are chosen independently. Therefore, (2.1) yields

. 13 ) 3 . 1 . 2 .

 13312 Combining (3.10)-(3.13) completes the proof of(3.8). Applying the same steps to (σ * ,G * (σ * )) yields (3.9). Symmetry and pinning. Hence, we are left to calculate -E[ln Z ( Ĝ)]. Of course, computing ln Z (G) for a

Proposition 3 . 10 .

 310 The following two distributions on factor graph/assignment pairs are identical. (i) Choose σ = σn,m,p , then choose G * T ( σ). (ii) Choose ĜT , then choose σ ĜT . Moreover, (σ * ,G * T (σ * )) and ( σ,G * T ( σ)) are mutually contiguous and σU,n,m,p and σn,m,p are identically distributed. In formulas, (i), (ii) are the distributions defined by

. 21 ) 3 . 3 .Lemma 3 . 14 .

 2133314 Since for any ε > 0 we can choose L = L(ε) large enough such that for a uniformly random σ * ∈ Ω n we have P [σ * ∈ S (L)] ≥ 1 -ε, the assertion follows from (3.20) and(3.21).Proof of Proposition 3.10. We couple the experiments (i) and (ii) such that both experiments pin the same set U and use the same number m of constraint nodes. Then Lemma 3.11 directly implies that the two distributions are identical. Analogously, couple (σ * ,G * T ) and ( σ,G * T ( σ)) such that both have the same U , m. Then the contiguity statement follows from Lemma 3.12 and the final assertion follows from Lemma 3.11.Proof of Proposition 3.2. The proposition follows fromProposition 3.10 by setting T = 0. Finally, we highlight the following immediate consequence of Proposition 3.10. Corollary 3.13. For all T ≥ 0 and all ω ∈ Ω we have E ||σ -1 (ω)|n/|Ω|| Ĝ T = o(1) and E ||σ -1 (ω)|n/|Ω|| G * T = o(1). Proof. Since σ * assigns spins to vertices independently, Chebyshev's inequality shows that E ω∈Ω ||σ * -1 (ω)|n/|Ω|| = o(1). (3.22) Because by Proposition 3.2 the distribution of σ is contiguous with respect to the uniform distribution, (3.22) implies E ω∈Ω || σ-1 (ω)|n/|Ω|| = o(1). Proposition 3.10 therefore implies that E ω∈Ω ||σ -1 (ω)|n/|Ω|| ĜT = o(1). (3.23) Together with the contiguity statement from Proposition 3.10 equation (3.23) yields the assertion. The lower bound. In this section we prove Proposition 3.6 regarding the lower bound on the free energy of Ĝ. The following lemma shows that we can tackle this problem by way of lower-bounding the free energy of the random graph G * T from Definition 3.9. Throughout this section we assume BAL and SYM. For any T > 0 we have E[ln Z ( Ĝ)] = E[ln Z (G * T )] + o(n). Proof. By Proposition 3.2 we have E[ln Z ( Ĝ)] = E[ln Z (G * ( σ))]. Moreover, since σ * and σ are mutually contiguous, so are G * ( σ) and G * (σ * ). Since ln Z (G * ) and ln Z (G * ( σ)) are tightly concentrated around their expectations by Lemma 3.3, we thus obtain

Lemma 3 . 18 .

 318 We have ω∈Ω E[W 1 (ρ G * T ,σ * ,ω , ρG * T ,ω )] = o T[START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF]. Proof. By Proposition 3.10 it suffices to prove that ω∈Ω E[W 1 (ρ ĜT ,σ ĜT ,ω , ρ Ĝ T ,ω )] = o T[START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF].

  in words, b 1 , . . . , b γ * are chosen from (2.1) w.r.t. σ * n+1 subject to the condition that each is adjacent to x n+1 . CPL2 ′′ : adding m ′′ = Po(λ ′′ ) independent random constraint nodes c 1 , . . . , c m ′′ such that for each j ∈ [m ′′ ], P ψ b j = ψ, ∂b j = (x i 1 , . . . , x i k ) ∝ 1{n + 1 ∈ {i 1 , . . . , i k }}p(ψ)ψ(σ * n (x i 1 ), . . . , σ * n (x i k )); thus, b 1 , . . . , b γ * are chosen from (2.1) subject to the condition that none is adjacent to x n+1 .

. 37 )Claim 3 . 21 .

 37321 Moreover, on E we haveD = d + o(1), λ = d(n + 1)/kd + o(1), λ ′ = d(k -1)/k + o(1), λ ′′ = o(1). (3.38) Proof. Because σ * is chosen uniformly, the Chernoff bound shows that P [E ] ≥ 1 -O(n -2 ). Moreover, because all ψ ∈ Ψ are strictly positive, there exists constant C Ψ > 0 depending on Ψ only such that ln Z (G) ≤ C Ψ m for all factor graphs G with m constraint nodes. Since the Poisson distribution has sub-exponential tails and P [E ] ≥ 1 -O(n -2 ), (3.36) therefore yields (3.37). Further, SYM guarantees that given E we have D ω = d + o(1) for all ω ∈ Ω, whence (3.38) follows. The random factor graphs G and G * T have total variation distance o(1).

. 39 )

 39 Moreover, let b 1 , . . . , b m ′ be the constraint nodes added by CPL1 ′ and let Y be the set of adjacent variable nodes. Because on the event U the factor graph G ′ is obtained from G by just adding b 1 , . . . , b m ′ , (2.4) yields ln

. 40 )

 40 To make sense of the r.h.s. of(3.40) we need to take a closer look at the distribution of Y . Since b 1 , . . . , b m ′ are chosen from (2.1), Y is not generally uniformly distributed. Nonetheless, since all constraint functions ψ ∈ Ψ are strictly positive and σ * n ∈ E , there is a number c = c(Ψ) > 0 such that for any set Y 0 ⊂ {x 1 , . . . , x n } of size |Y 0 | = (k -1)m ′ we have

. 42 )

 42 Further, on the event U ∩ Y equation (3.40) becomes ln(Z (G ′ )/Z ( G)) = o T (1) ∂ h b i (τ h ). (3.43) Since the mean of the Poisson random variable m ′ is bounded independently of of T , the Poisson distribution has sub-exponential tails and all weight functions are strictly positive, (3.39), (3.42) and (3.43) yield

. 44 )

 44 Indeed, because the new constraint nodes b 1 , . . . , b m ′ are chosen independently given G, σ * n , (3.44) yields

. 46 )Claim 3 . 23 .

 46323 Since π is the empirical distribution of the Gibbs marginals of G, the assertion follows from (3.38) and(3.46). With probability 1o T (1) over the choice of σ * n and G we have

. 48 )

 48 Hence, with b 1 . . . , b γ * ∈ ∂x n+1 the new constraint nodes that CPL1 ′′ attaches to x n+1 , on U we have ln Z (G ′′ )

INT1:

  choose an assignment σ from the distribution σn,m t ,γ t ,π . INT2: generate a factor graph G * ( σ, n, m t , γ t , π). INT3: pick θ ∈ [0, T ] uniformly. INT4: obtain U by including each x ∈ V independently with probability θ/n. For each x ∈ U add a unary constraint node α x with probability θ/n whose sole adjacent variable node is x and whose weight function is ψ α x (σ) = 1{σ = σ(x)}.

. 61 )(

 61 In fact, since the entropy is strictly concave, condition BAL ensures that all eigenvalues of the Hessian D 2 F | λ on the space {x ∈ R Ω : x ⊥ 1} are strictly negative.) Consequently, we obtain from Lemma 3.26 that in the case

. 74 )

 74 Plugging (3.73) and (3.74) into (3.72), we obtain E ln ψ b (σ(x))

Furthermore, by Lemma 3 .

 3 11 ĜT,1 results from Ĝ simply by attaching a random number of constraint nodes with {0, 1}-valued weight functions. Therefore, E[ln Z ( ĜT,1 )] ≤ E[ln Z ( Ĝ)]. Similarly, by Lemma 3.11 we can think of ĜT,0 as being obtained from Ĝ0,0 by adding a few constraint nodes with {0, 1}-weights. The expected number of these constraint nodes does not exceed T , which remains fixed as n → ∞, and each connected component of Ĝ0,T contains only a single variable node and a Po(d) number of unary constraint nodes. Consequently, E[ln Z ( Ĝ0,T )] = E[ln Z ( Ĝ0,0 )] + o(n) and the assertion follows from (3.76).

  2 . (3.83) Combining (3.82) and (3.83) with the Paley-Zygmund inequality, we obtain

Corollary 3 . 40 .

 340 Assume that d > 0 is such that

Consequently, ( 3 .

 3 77), (3.85) and Corollary 3.39 imply that E[ln Z (G(n, m, p))] ≤ ln E[Z (G(n, m, p))] -Ω(n) and the assertion follows from Lemma 3.3. Proof of Theorem 2.7. Assume that d < d inf . Then sup π∈P 2 * (Ω) B(d, π) ≤ (1d) ln |Ω| +

Lemma 3 . 42 .

 342 For n large enough,E[W 1 (T d (ρ G * T ), ρ G * T )] = o T[START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF].(3.93)

  .101) Combining (3.100) and (3.101) and using the triangle inequality, we obtainx∈V 0 µ G 0 ,x -μx [ • |S j ] TV ≤ 3εn/4for all j ∈ J .

  , completing the proof of Lemma 3.43. With this tool we now prove Lemma 3.42. Proof of Lemma 3.42. Let G * T = G * T (n, m(n), p, σ * n ) and ρ G * T be its empirical marginal distribution. We must show that for n large enough, E[W 1 (T d (ρ G * T ), ρ G * T )] = o T (1).

  .103) Next we claim that the empirical marginal distributions of G * T and G ′ are close: for n, T large enough,E[W 1 (ρ G * T , ρ G ′ )] < ε/3. (3.104)To prove this we use Lemma 3.43. Take K > L large enough so that with probability at least 1 -ε/10, each variable node x n+1 , . . . x n+L in G ′ is joined to at most K constraint nodes. With probability 1o(1), none of these L variable nodes are pinned, and no two are joined to the same constraint node. Since µ G * is o T (1)-symmetric with probability 1o T (1), we apply Lemma 3.43 withG 0 = G * T and G 1 = G ′ to obtain (3.104). Now it remains to show that E[W 1 (T d (ρ G * T ), ρ L )] < ε/3. (3.105) The Gibbs measure µ G * T is o T (1)-symmetric with probability 1o T (1), and so by Proposition 2.10 and repeated applications of Lemma 3.43 and the triangle inequality, it suffices to show that E[W 1 (T d (ρ G * T ), µ G * n+1,T ,x n+1 )] < ε/4 (3.106)

  With γ ∼ Po(d), let b 1 . . . , b γ ∈ ∂x n+1 be the factor nodes adjoining x n+1 . With probability 1-o T (1), µ G * T is o T (1)symmetric, and so the random set Y = γ i=1 ∂b i of variable nodes satisfies µ G * T ,Yy ∈Y µ G * T ,y TV = o T (1) with probability 1o T

3 . 7 . 5 .

 375 , we have P ∂b i = (y 1 , . . . , y k ), ψ = ψ ∝ o(1) + 1{y h i = x n+1 }E[ψ(σ * n (y 1 ), . . . , σ * n (y k ))], (3.109) where h 1 , . . . are independent and uniform on [k]. Conditioned on their spins, the variables in ∂b i are uniformly chosen and independent, and so their marginals are independent samples from the corresponding empirical distributions ρ G * T ,σ * n ,σ . Combining the definition of T d (•), the weak continuity of T d (•), (3.107), (3.109), and Lemma 3.18, we obtain (3.106) and thus (3.105). The bound (3.102) follows from (3.103), (3.104), (3.105), and the triangle inequality. Proof of Lemma 3.As a first step we establish the following lemma. Lemma 3.45.

Corollary 3 . 48 .i,j =1 t 0 E

 3480 Suppose in the experiment from Lemma 3.45 we setθ i = θ for all i ∈ [n]. Then n U [I (σ i , σ j |(σ u ) u∈U )]dθ ≤ n ln |Ω|for all 0 < t < 1.

Corollary 3 . 49 .

 349 For the random measure μ from Lemma 3.5 we have n i,j =1 E D KL μi j μi ⊗ μj ≤ n 2 ln |Ω| T .

. 1 )

 1 Thus, Ψ = {ψ β } and p β (ψ β ) = 1. With m = m(d, n) = Po(dn/2) let G = G(n, m, p β ) be the resulting random factor graph model. Lemma 4.1.

. 2 )Lemma 4 . 3 .

 243 Further, since P [S] = Ω(1) by Lemma 4.1 and since ln Z (G) is tightly concentrated by Lemma 3.3, we see that E [ln Z (G)|S] = E [ln Z (G)] + o(n). Hence, the assertion follows from (4.2).Thus, we can prove Theorem 1.1 by applying Corollary 2.7 to G. We just need to verify the assumptions BAL, SYM and POS. The Potts antiferromagnet satisfies the assumptions BAL, SYM and POS for all q ≥ 2, β ≥ 0.Proof. Condition SYM is immediate from the symmetry amongst the colors. Then σ,τ∈Ω ψ(σ, τ)µ(σ)µ(τ) = 1c β σ∈Ω µ(σ)2 for any µ ∈ P (Ω).

  the assertion follows from (3.4).

Lemma 4 . 10 .

 410 For all d > 0 we have1 

q -c β + 1 1 -

 1 can be rewritten nicely in terms of l-wise overlaps: we obtain1 n ∂ ∂d E ln Z ( Ĝ) = o(1) -c β c β /q l ≥2 c l β l(l -1) E ρ(σ 1 , . . . , σ l ) 2 2 G ′ . (4.20) 

Lemma 4 . 11 .

 411 If β, d, k are such that E ln Z ( Ĝ) = n ln q + dn ln(1c β /q)/2 + o(n), then the same holds for all d ′ < d.Proof. This is immediate from Lemmas 4.9 and 4.10.Proof of Proposition 4.5. If (4.3) is violated, then Lemma 4.10 shows that 1n ∂ ∂d E ln Z ( Ĝ) > ln(1c β /q) + Ω(1). Moreover, by Lemma 4.6 the set of all d for which (4.3) is violated contains an interval (d 0 , d 0 + δ). Therefore, if (4.3) is violated for some d 0 < d inf (q, β), then Lemma 4.9 givesE[ln Z ( Ĝ(n, m(d 1 )))] = E[ln Z ( Ĝ(n, m(d 0 )))] + Z ( Ĝ)dd = n ln q + d 1 n 2 ln(1c β /q) + Ω(n),in contradiction to Corollary 2.7, Lemma 4.3 and the definition of d inf (q, β). Thus the first assertion follows.With respect to the second assertion, pick ε = ε(q, d) small enough and assume thatP ρ(σ 1 , σ 2 ) -ρ 2 Ĝ < ε > ε. (4.21)Then a second moment argument shows that E lnZ (G) ∼ ln E[Z (G)], because d ≤ ((qc β )/c β ) 2 . Indeed, define Z (G) = Z (G)1{ ρ(σ 1 , σ 2 ) -ρ 2 Ĝ < ε}. Then (3.4) and (4.21) imply that E[Z (G)] = Ω(E[Z (G)]). Further, for a given overlap matrix ρ letZ ⊗ ρ (G) = Z (G) 2 1{ρ(σ 1 , σ 2 ) = ρ} G .Summing over the discrete set of possible overlaps for a given n, we obtain from the definition of Z (G) thatE[Z (G) 2 ] ≤ O(1) ρ: ρ-ρ 2 <ε E[Z ⊗ ρ (G)] ≤ ρ: ρ-ρ 2 <ε exp o(n) + n(H (ρ) + d ln(1 -2/k + c β ρ 2 2 )/2) ; (4.22)the last formula follows from a simple inclusion/exclusion argument (cf.[START_REF] Coja-Oghlan | On the Potts model on random graphs[END_REF] Proposition 6]). Moreover, expanding the exponent to the second order, we see that for d ≤ ((qc β )/c β ) 2 the maximizer is just ρ. Consequently, (4.22)implies that E[Z (G) 2 ] = exp(o(n))E[Z (G)] 2 .Hence, by the Paley-Zygmund inequality, for any fixed ε > 0 we haveP Z (G) ≥ exp(-εn)E[Z (G)] ≥ P Z (G) ≥ exp(-εn/2)E[Z (G)] = exp(o(n)).Taking ε → 0 sufficiently slowly as n → ∞ and applying Lemma 3.3 twice, we thus get E[ln Z (G)] = ln E[Z (G)]+o(n). Therefore, another application of Lemma 3.3 and Corollary 3.39 yields E ln Z ( Ĝ) ∼ ln E[Z (G)]. But this contradicts the assumption d inf (q, β) < d. Proof of Theorem 1.3. The theorem follows from Lemma 4.4, Lemma 4.7, Proposition 4.5, and Lemma 4.8. By Lemma 4.4 it is enough to prove the theorem for the planted Potts model. First suppose d < d inf (q, β). Then by Proposition 4.5, we have E ρ(σ 1 , σ 2 ) -ρ 2 Ĝ = o(1). Lemma 4.7, (4.8), then says that for any τ = τ( Ĝ), 〈A(σ, τ)〉 Ĝ = o(1), which by Proposition 3.2 implies 〈A( σ, τ)〉 Ĝ = o(1).

1 .Lemma 4 . 13 .

 1413 Let m d (d) = m d (n) = ⌈dn/2⌉ and m d = m d (n) = Po(dn/2). Lemma 4.1 shows that the event S occurs with a non-vanishing probability and throughout this section we always tacitly condition on S. Moreover, G(n, m, p ∞ ) denotes the factor graph model where c β = 1, i.e., the weight function (4.1) is {0, 1}-valued.If Z (G(n, m, p ∞ )) > 0, then we define the Gibbs measure via (2.4); otherwise we let µ G (n,m,p ∞ ) be the uniform distribution on Ω n . Of course none of the results from Section 3 apply to β = ∞ directly. But the plan is to apply Theorem 2.2 to the Potts antiferromagnet and take β → ∞. To carry this out we need to apply a few known facts about the random graph coloring problem.Lemma 4.12 ([3]). For any q ≥ 3 and any ζ > 0 the propertyA q,ζ = {Z (G(n, m d , p ∞ )) ≥ ζ n }has a non-uniform sharp threshold. That is, there exists a sequence (u q,ζ (n)) n such that for any ε > 0,lim n→∞ P G(n, m u q,ζ (n)-ε (n), p ∞ )) ∈ A q,ζ = 1 and lim n→∞ P G(n, m u q,ζ (n)+ε (n), p ∞ )) ∈ A q,ζ = 0. If d > 0, δ > 0 are such that for a strictly increasing sequence (n l ) l we have liminf l →∞ 1 n l E ln Z ( Ĝ(n l , m d (n l ), p β )) > ln q + d 2 ln(1c β /q) + δ, (4.23) for all large enough β > 0, then limsup l →∞ E[Z (G(n l , m d (n l ), p ∞ ))

1 n 2 ( 1 - 1 n 2 ( 1 - 1 l E ( 1 -

 12112111 liminf l →∞ max d ′ n l /2≤m≤d ′′ n l /2 P ρ(σ, τ) -ρ 2 G(n l ,m,p ∞ ) < ε < 1ln Z ( G(n l , m d ′′ (n l ), p ∞ ) > ln q + d ′′ 2 ln(1 -1/q) + δ. (4.35) Proof. Fact 4.14 shows that the Nishimori property extends to the balanced graph coloring problem. Thus, we obtain G(n, m, p ∞ ) by first choosing σ ∈ B(n,[q]) uniformly and then generating G * (n, m, p ∞ , σ). In effect, we can couple G(n, m, p ∞ ) and G(n, m + 1, p ∞ ) such that the first is obtained by generating G ′ = G * (n, m, p ∞ , σ) and the second, denoted G ′′ , results by adding one single random constraint node e incident to a random pair of variable nodes with distinct colors under σ. Hence, with 〈 • 〉 = 〈 • 〉 μ G′ , we obtainE ln Z (G ′′ ) Z (G ′ ) = E ln ψ e (σ) = o(1) + 1/q) v,w E [(1 -1{ σ(v) = σ(w)}) ln(1 -〈1{σ(v) = σ(w)}〉)]= -1/q) v,w l ≥1 1{ σ(v) = σ(w)})l j =11{σ j (v) = σ j (w)} .

  [START_REF] Dembo | Sun: Factor models on locally tree-like graphs[END_REF] becomesE[ln G(n, m + 1, p ∞ )] -E[ln G(n, m, p ∞ )] = E ln Z (G ′′ ) Z (G ′ ) = o(1) + ln(1 -1/q) + 4.28) implies that E[ln G(n, m, p ∞ )] ≥ ln q + m n ln(1 -1/q) + o(n). (4.39) Finally, since (4.34) guarantees that ξ 2 is bounded away from 0, (4.38) and (4.39) imply (4.35).

1 n 4 . 4 .

 144 E ln Z ( Ĝ(n, m(d), p β )) > ln q + d 2 ln(1c β /q) + δ/2.Consequently, Lemma 4.13 yields limsup n→∞E n Z (G(n, m(d), p ∞ )) < q(1 -1/q) d /2. Proof of Theorem 1.4. Here we prove Theorem 1.4 on LDGM codes. We will apply Theorem 2.2 as follows.LetΩ = {±1}, Ψ = {ψ 1 , ψ -1 } with ψ J (σ) = 1 + (1 -2η)J • k i=1 σ i

  η) ln(2 -2η) + 2η ln(2η) = d k [ln 2 + η ln η + (1 -η) ln(1 -η)].Now a distribution π ′ ∈ P 2 * ({±1}) corresponds exactly to a distribution π ∈ P 0 ([-1, 1]) via the map θ (π) j = 2µ (π ′ ) j (1)-1. So the Bethe formula becomes:B(d, π ′ ) = E ξ 1{τ h i = σ}ψ b (τ)

46 )

 46 Now we check the three conditions SYM, BAL, and POS. Both SYM and BAL are immediate since the function τ → E[ψ(τ)] is constant over all τ ∈ {±1} k .

SYM, BAL and POS and let

  

	evince an imprint of σ * for large
	enough d, and thus we should have D KL (G * , σ * G, σ G ) = Ω(n). The following theorem pinpoints the precise information-theoretic threshold at which this occurs. Recall B(d, π) from Theorem 2.2.
	Theorem 2.6. Suppose that p, Ψ satisfy

  to the maximum possible range of d. This argument has been used in order to investigate aspects such as the spatial mixing properties of the "plain" random factor graph model G by way of the model G * . Moreover, Theorem 2.6 casts light on statistical inference problems, and in Section 4.2 we will see how Theorem 1.3 follows from Theorem 2.6.

	2.4. The condensation phase transition. The "null model" G from Theorem 2.6 is actually a fairly general version
	of random graph models that have been studied extensively in their own right in physics (as "diluted mean-field
	models") as well as in combinatorics. The key quantity associated with such a model is -E[ln Z (G)], the free energy. Unfortunately, computing the free energy can be fiendishly difficult due to the log inside the expectation. By
	contrast, calculating E[Z (G(n, m, p))] is straightforward: the assumption BAL and a simple application of Stirling's
	formula yield	
	ln E[Z (G(n, m, p))] = n ln |Ω| + m ln As Jensen's inequality implies E[ln Z (G(n, m, p))] ≤ ln E[Z (G(n, m, p))], we obtain the first moment bound: σ∈Ω k E[ψ(σ)] |Ω| k + o(n + m). -1 n E[ln Z (G)] ≥ (d -1) ln |Ω| -d k ln σ∈Ω k E[ψ(σ)] + o(1) for all d > 0.	(2.6)
	For many important examples (2.6) is satisfied with equality for small enough d > 0 (say, below the giant com-ponent threshold; cf. Section 1.1). Indeed, a great amount of rigorous work effectively deals with estimating the
	largest d for which (2.6	

  Fact 3.19. For sufficiently large n the random factor graph G ′ is distributed as G Proof. Because all ψ ∈ Ψ are strictly positive D is bounded by some number depending on Ψ, d only. Therefore, λ > 0 for large enough n and λ+λ ′ = dn/k. Consequently, since a sum of independent Poisson variables is Poisson, CPL1 and CPL1 ′ ensure that G ′ has m(n) = Po(dn/k) independent constraint nodes drawn from (2.1). Moreover, by CPL2 and CPL2 ′ each variable node of G ′ gets pinned with probability θ/n independently. Hence, G ′ has the desired distribution. Analogously, by CPL2 and CPL3 ′′ each variable node of G ′′ gets pinned with probability θ/(n+1) independently. Further, by CPL1, CPL1 ′′ and CPL2 ′′ the total expected number of constraint nodes of G ′′ equals λ + D + λ ′′ = d(n + 1)/k for large enough n. Moreover, Definition 2.1 and (3.35) guarantee that D equals the expected number of constraint nodes adjacent to x n+1 in G * T (n + 1, m(n + 1), p, σ * n+1 ). Thus, G ′′ has distribution G *

	1), p, σ * n+1 ).	T (n + 1, m(n +

* T (n, m(n), p, σ * n ) and G ′′ is distributed as G * T (n + 1, m(n + 1), p, σ * n+1 ). Fact (3.19) implies that for large enough n,

  .[START_REF] Guerra | Broken replica symmetry bounds in the mean field spin glass model[END_REF] We need to get a handle on the distribution of b 1 , . . . , b γ * . With h 1 , h 2 , . . . mutually independent and uniformly distributed on [k], the assumptions SYM and σ * n ∈ E show that for every j ∈ [γ * ] and every (i 1 , . . . , i k ) ∈ [n +1] k with i h j = n + 1 we have

  .55) As a next step we plug in the definition (3.26) of ρ G ,ω . Due to (3.47) the denominator of (3.26) is |Ω| + o(1).

	Hence,
	(3.55) becomes

  Because the tails of the Poisson distribution decay sub-exponentially and since ln Z ( ĜT,t (m t , γ t )) = O n + m t + By Corollary 3.29 we can couple the two assignments σ′ = σn,m,γ t ,m t , σ′′ = σn,m,γ t ,m t +1 such that

			γ t ,x ,	
			x∈V	
	we may safely assume that			
	m t +	x∈V	γ t ,x ≤ (d + 1)n.	(3.62)

T,t

.

Proof.

  ′′ by pinning. The construction ensures that (G ′ ,G ′′ ) is a coupling of ĜT,t (n, m

	Z (G ′ )	.	(3.65)
	Further, (3.62) and (3.63) and the construction in case 2 ensure that		

). Consequently, we can couple G * (n, m t , γ t , π, σ′ ) and G * (n, m t + 1, γ t , π, σ′′ ) such that with probability 1 -O(n -2 ) no more than Õ( n) constraint nodes either have different neighborhoods or different weight functions. Let (G ′ ,G ′′ ) be the outcome of this coupling subjected to pinning the same set U of variable nodes to σ′ , σ′′ , respectively. Case 3:

| σ′ △ σ′′ | > n ln n: choose G * (n, m t , γ t , π, σ′ ) and G * (n, m t + 1, γ t ,

π, σ′′ ) independently and obtain G ′ ,G t , γ t , π), ĜT,t (n, m t + 1, γ t , π). Hence, E ln Z ( ĜT,t (n, m t + 1, γ t , π)) -E ln Z ( ĜT,t (n, m t , γ t , π)) = E ln Z (G ′′ )

  Hence, we are left to compute E ln ψ a (σ G ′ ) G ′ . Writing σ, σ 1 , σ 2 , . . . for independent samples from µ G ′ and plugging in the definition (3.64) of a, we find E ln ψ a (σ G ′ ) G ′ = y 1 ,...,y k ∈V E ψ( σ′ (y 1 ), . . . , σ′ (y sign holds because σ 1 , σ 2 , . . . are mutually independent. Combining the last two equations, we obtain E ln ψ a (σ G ′ ) G ′ = o(1) -

	l ≥1 the second equality l ≥1 y 1 ,...,y k 1 l	1 -ψ(σ(y 1 ), . . . , σ(y k )) E ψ( σ′ (y 1 ), . . . , σ′ (y k )) l G ′ = -	l ≥1	1 l	l h=1	1 -ψ(σ G ′	;
						).	(3.67)

k )) ln ψ(σ(y 1 ), . . . , σ(y k )) G ′ y 1 ,...,y k ∈V E ψ( σ′ (y 1 ), . . . , σ′ (y k )) .

Since by Corollary 3.27 the empirical distribution λ σ′ is asymptotically uniform with very high probability, the denominator in the above expression equals n k (ξ + o(

1

)) with probability 1 -O(n -2 ). Thus,

E ln ψ a (σ G ′ ) G ′ = o(1) + 1 n k ξ y 1 ,...,y k ∈V E ψ( σ′ (y 1 ), . . . , σ′ (y k )) ln ψ(σ(y 1 ), . . . , σ(y k )) G ′ .

(3.68)

Further, because all weight functions ψ ∈ Ψ take values in (0, 2), expanding the logarithm gives ln ψ(σ(y 1 ), . . . , σ(y k )) G ′ =h (y 1 ), . . . , σ h (y k ))

  .75) Furthermore, Lemma 3.11 implies together with Corollary 3.27 that µdρ Ǧ T,t (µ) is within total variation distance o(1) of the uniform distribution w.h.p. Therefore, POS implies that Ξ ′ t ,l ≥ o(1). Finally, the assertion follows from Proposition 3.30 and (3.75). 3.4.4. Proof of Proposition 3.7. Let us recap what we learned from Proposition 3.25.

	Lemma 3.35. For any distribution π ∈ P 2

* (Ω) we have

  Proof of Theorem 2.6. The theorem is immediate from Theorem 2.7 and Lemma 3.41.3.6. Proof of Theorem 2.4.Here we prove that under the assumptions SYM, BAL and POS,

			.91)
	Further, by Proposition 3.2 and Lemma 3.3 we have E[ln Z (G * )] = E[ln Z ( Ĝ)] + o(n). Thus, the assertion follows from (3.85), (3.91) and Corollary 3.39.
	sup π∈P 2 * (Ω)	π∈P 2 fix (d ) B(d, π) = sup	B(d, π),
	where Since P 2 P 2 fix (d) = {π ∈ P 2 fix (d) ⊆ P 2 The other direction follows from the following bound limsup n→∞ 1 n π∈P 2 fix (d ) E ln Z ( Ĝ) ≤ sup B(d, π), (3.92)
	since Proposition 3.7 gives		
	sup		
	π∈P 2		

* (Ω) : T d (π) = π}. * (Ω), we have immediately sup π∈P 2 * (Ω) B(d, π) ≥ sup π∈P 2 fix (d ) B(d, π). * (Ω)

  Po(dn/k), θ uniformly from [0, T ], and a ground truth σ * n uniformly at random from Ω n . Then add m random constraint nodes with weight functions from Ψ and pin each variable node independently with probability θ/n. To obtain G ′ we add L additional variable nodes x n+1 , . . . x n+L , extending σ * n to σ * n+L by choosing σ * n+L (x n+1 ), . . . σ * n+L (x n+L ) uniformly at random, then we add Po(d) constraint nodes with weight functions from Ψ adjacent to each new variable node x n+1 , . . . x n+L with respect to σ * n+L , and finally pin each new variable node independently with probability θ/n.

	.102)
	Fix ε > 0. For L = L(ε) large enough, we will couple the factor graph G * T = G * T (n, m(n), p, σ * n ) on n variable nodes with a factor graph G ′ on n + L variable nodes as follows. Form G * T (n, m(n), p, σ * n ) as usual by choos-ing m ∼

  the set of neighbors of a i is distinct from the set of neighbors of a i ′ . For any d > 0 there is ζ(d) > 0 such that for all q ≥ 2, β > 0 we have P [S] ≥ ζ(d) + o(1).

Proof. Given m, the number X 1 (G) of constraint nodes that hit the same variable node twice has mean (1 + o(

1

))m/n and a standard argument shows that X 1 (G) is asymptotically Poisson. Similarly, the number X 2 (G) of pairs of constraint nodes that have the same neighbors has mean (1 + o(

1

))2m 2 /n 2 . Since m = Po(dn/2), a standard argument shows that (X 1 (G), X 2 (G)) is within total variation distance o(

1

) of a pair of independent Poisson variables with means d/2 and d 2 /2. Hence, P [S] ≥ exp(-d/2d 2 /2 + o(1)).

  the average w.r.t. the conditional distribution µ[ • |S i ]. Due to (iii) we can choose δ

	small enough so that (4.6) implies				
	ρ(σ, τ) -ρ	2 2 i	< δ	for all i ∈ [K ].	(4.9)
	Further, define a random variable R st				

  Further, as in the proof ofLemma 3.32 this coupling extends to a coupling of G ′ = G * (n, m +1, p β , σ′ ) and G ′′ = G * (n, m, p β , σ′ ) such that in the case σ = σ′ we obtain G ′′ from G ′ by adding one additional random constraint node e chosen from (2.1) and such that E[ln(Z (G ′′

2 we can identify Ĝ(n, m + 1, p β ) with G * (n, m + 1, p β , σ′ ) and Ĝ(n, m, p β ) with G * (n, m, p β , σ) Moreover, Corollary 3.29 shows that we can couple σ, σ′ such that both coincide with probability 1 -O(1/n) and such that | σ△ σ′ | = Õ(n -1/2 ) with probability 1 -O(n -2 ).

  1/n l ] < q(1 -1/q) d /2 . (4.24) Moreover, by construction Z satisfies Z (G(n, m, p ∞ )) 2 ≤ 2 Z ⊗ (G(n, m, p ∞ )), provided δ is small enough. Hence, by Lemma 4.15 E[Z (G(n, m, p ∞ )) 2 ] ≤ 4 ε E[ Z (G(n, m, p ∞ ))] 2 . (4.31)Combining (4.30) and (4.31) and applying the Paley-Zygmund inequality, we findP Z (G(n, m, p ∞ )) ≥ E[ Z (G(n, m, p ∞ ))]/8 ≥ E[Z (G(n, m, p ∞ ))] 2 2E[Z (G(n, m, p ∞ )) 2 ]

				≥	ε 2 128	.	(4.32)
	Proof. By Proposition 3.2 and Lemma 3.3, (4.23) implies		
	liminf l →∞	1 n l	E ln Z (G d 2	ln(1 -c β /q) + δ.	(4.25)

* (n l , m d (n l ), p β , σ * )) > ln q + Further, we claim that (4.25) implies that for large enough

β liminf l →∞ 1 n l E ln Z β (G * (n l , m d (n l ), p ∞ , σ * )) > ln q + d 2 ln(1c β /q) + δ/2, (

4.26)

  , if we fix d 2 < d 3 < d 4 < d q,cond with d 4d 2 sufficiently small, then Lemma 4.24 yieldslim l →∞ max d 3 n l /2<m<d 4 n l /2 P[Z (G(n l , m, p ∞ )) ≥ q n l (1 -1/q) m exp(-η/2)] = 0.Therefore, Corollary 4.16 shows that for any fixedd 3 < d 5 < d 6 < d 4 there is ε > 0 such that ρ 2 G(n l ,m,p ∞ ) < ε < 1.Since Lemma 4.3 shows that the Potts antiferromagnet meets the assumptions of Theorem 2.2, we concludeB Potts (q, d 6 , c β ) ≥ limsup ( Ĝ(n l , m d 6 (n l ), p β ) ≥ ln q + d 6 2 ln(1 -1/q) + δfor all large enough β. Finally, Lemma 4.19 shows that then

	liminf l →∞ ρ(σ, τ) Hence, Lemma 4.17 yields max d 5 n l /2≤m≤d 6 n l /2 P limsup l →∞ 1 n l E ln Z ( G(n l , m d 6 (n l ), p ∞ ) > ln k + Further, applying Lemma 4.18 we obtain limsup l →∞ 1 n l →∞ 1 n l E ln Z	d 6 2	ln(1 -1/q) + δ.

l E ln Z ( Ĝ(n l , m d 6 (n l ), p β ) > ln q + d 6 2

ln(1 -1/q) + δ for all large enough β.

This definition of 'phase transition', which is standard in mathematical physics, is in line with the random graphs terminology. For instance, the function that maps d to the expected fraction of vertices in the largest connected component of G(n,d /n) is non-analytic at d = 1.
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Clearly the last expression is non-negative, whence POS follows.

Proof of Theorem 1.1. A straightforward calculation reveals that in the case of the Potts model the formula from Theorem 1.2 boils down to the expression B Potts (q, d, 1-exp(-β)) from (1.2). Therefore, the assertion follows from Corollaries 2.7 and 4.2. 4.2. Proof of Theorem 1.3. To derive Theorem 1.3 from Theorem 2.2 a bit of work is required because the total number of edges that are present in the stochastic block model contains a small bit of information about the ground truth. Specifically, the total number of edges contains a hint as to how "balanced" the ground truth σ * is. Yet we will show that the disassortative stochastic block model is mutually contiguous with the planted Potts antiferromagnet. We tacitly condition on the event S that neither graph features multiple edges; this has a negligible effect on the mutual information as the number of multiple edges is well known to be Poisson with a constant mean (cf. Lemma 4.1).

Lemma 4.4. The random graphs G * sbm (σ * ) and G * (σ * ) are mutually contiguous for all q ≥ 2, d > 0, β > 0.

Proof. We identify G * sbm (σ * ) with a factor graph model in the obvious way by identifying the edges of the original graph correspond to the constraint nodes of the factor graph. Let G be any possible outcome of G * sbm (σ * ). Let m(G, σ * ) the number of monochromatic edges under σ * , and M(σ * ) the number of monochromatic pairs of vertices under σ * . Then

Hence, (4.9) and (i) imply that for all i ∈ [K ],

Consequently, for all s, t ∈ Ω we have q

Since a sum of squares is minimized by a uniform distribution, (4.10) implies that for all i ∈ [K ], 1

Together with (ii) and [START_REF] Bapst | Coja-Oghlan: Harnessing the Bethe free energy[END_REF]Lemma 2.8] equation (4.11) implies that µ is ε 3 -symmetric and 1

To prove (4.7), let U = σ-1 (i ) for some i ∈ [q]. Since σ is nearly balanced, we have |U | ≥ n/(2q). For s ∈ [q] let X s be the number of u ∈ U such that σ(u) = s. Then (4.12) implies that

Therefore, Chebyshev's inequality implies that

Proving (4.8) is similar. Let κ ∈ S q be a fixed permutation. Let U i = τ -1 (i ). Summing over all i ∈ [q], either |τ -1 (i )| < εn or as above we have 1{|X κ(i)q -1 |U |} > ε|U |} µ = O(ε), and so

Then summing over all κ ∈ S q gives (4.8).

We now make a connection between the normalized agreement with the planted partition and the overlap.

Lemma 4.8. Suppose E ρ(σ, τ) -ρ 2 Ĝ > ε. Then there is an algorithm that given G * ( σ) outputs a nearly balanced τ(G * ( σ)) so that

Proof. By Proposition 3.2 ( Ĝ, σ Ĝ ) and (G * ( σ), σ) are identically distributed. Given Ĝ, the "obvious" (deterministic) algorithm is to output a coloring τ = τ( Ĝ) that maximizes A(σ Ĝ , τ) Ĝ , with ties broken arbitrarily. To establish that this algorithm delivers (4.13) it suffices to show that

Further, assuming that Ĝ is such that ρ(σ, τ) -ρ 2 Ĝ > ε, we obtain 

Furthermore, by Azuma's inequality both ln

)) are tightly concentrated. Therefore, there exists β > 0 such that

and thus the assertion follows from [START_REF] Bapst | The condensation phase transition in random graph coloring[END_REF]Lemma 6.2].

) be the set of all balanced σ. Further, for a factor graph G define the "balanced" partition function as

and let μG ( The proof of Proposition 3.2 extends to balanced assignments, which shows that G enjoys the Nishimori property; this was actually already observed (with different terminology) in [START_REF] Achlioptas | Algorithmic barriers from phase transitions[END_REF]. Formally, we have We recall that for two color assignments σ, τ : V → Ω the overlap is ρ(σ, τ) = (ρ i j (σ, τ)) i,j ∈Ω , where

Thus, ρ(σ, τ) ∈ P (Ω × Ω). For ρ ∈ P (Ω × Ω) let ρ 2 2 = i,j ∈Ω ρ 2 i j and write ρ for the uniform distribution.

Lemma 4.15 ([18, Proposition 5.6]). For any q ≥ 3 there exist ε > 0 such that for every 0 < d < (q -1) 2 there is n 0 > 0 such that for all n > n 0 and all and all m ≤ dn/2 the following is true. Let

Corollary 4.16. For any q ≥ 3, 0 < d < (q -1) 2 is such there exist δ > 0, n 0 > 0 such that for all n > n 0 the following is true. Suppose that m ≤ dn/2 is such that

Proof. Let ε > 0 be the number promised by Lemma 4.15 and pick δ = δ(ε, q) > 0 small enough. Define

(Thus, Z (G) = 0 if Z (G) = 0.) Combining (4.28) and (4.29), we obtain

The following observation shows that we can extend (4.35) to sufficiently large but finite β.

Lemma 4.18. Assume that d > 0 is such that for some δ > 0 and some subsequence (n l ) l we have

Then for all large enough β we have With the notation from (1.2) define

In the case of the Potts antiferromagnet, B(d, π) from Theorem 2.2 specializes to B Potts (π; q, d, c β ).

Lemma 4.19. For all π ∈ P 2 * (Ω) we have B Potts (π; q, d, 1) = lim β→∞ B Potts (π; d, q, c β ). Proof. This follows from the dominated convergence theorem because Λ is bounded and continuous on [0, 1].

Proof. The lower bound is attained at the distribution π = δ q -1 1 , i.e., the atom sitting on the uniform distribution on Ω. The upper bound is immediate from the definition (1.7) of d q,cond .

In order to derive an upper bound on d q,cond we use the following observation.

Lemma 4.21. For any d 1 > (q -1) 2 there exists δ > 0 such that for all d ≥ d 1 the following is true. W.h.p. there is an assignment τ G(n,m d ,p ∞ ) such that

Proof. We begin by observing that it suffices to prove the statement for d = d 1 . By the Nishimori property for balanced colorings from Fact 4.14, G(n, m d , p ∞ ) is distributed as G ′ = G * (n, m d , p ∞ , σ). Furthermore, if we obtain G ′′ from G ′ by deleting each constraint node with probability 1d 1 /d independently, then G ′′ is distributed as

Thus, assume that d = d 1 and fix some (q -1) 2 < d ′ < d. The algorithm of Abbe and Sandon [START_REF] Abbe | Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap[END_REF] delivers the following:

We are going to use this algorithm to achieve the same for the balanced planted coloring model. Given an instance of G 0 = G(n, m d , p ∞ , σ), delete a uniformly random set of εn vertices to form the graph G 1 for some suitable ε = ε(d, d ′ , δ ′ ) > 0 such that n 1 = (1 -ε)n is an integer. Let σ 1 be σ restricted to the vertices that remain after deletion. Then G 1 is distributed as G(n 1 , m (1-ε+O(ε 2 ))d , p ∞ , σ ′ ). Hence, by choosing an appropriate ε we can ensure that G 1 and G(n 1 , m d ′ , p ∞ , σ ′ ) have total variation distance o(1). Moreover, σ 1 and the uniformly random map σ * n 1 are mutually contiguous. Hence, so are G 1 and G(n 1 , m d ′ , p ∞ , σ * ). Thus, (4.42) applies to G 1 and we extend the assignment produced by that algorithm to an assignment of n vertices by assigning colors at random to the εn deleted vertices. Consequently, choosing dd ′ and thus ε sufficiently small, we deduce from (4.42) that there is an algorithm such that for some δ ′ > 0 w.h.p. the algorithm returns τ 

Let J ∈ {±1} be chosen uniformly. Then ψ = ψ J and 1 -

Hence, if we let

the assertion follows. Now with

completing the proof of Theorem 1.4.

4.5.

Further examples. Finally, we compile just a few further examples of well known models that satisfy the conditions SYM, BAL and POS. The first one is a hypergraph version of the Potts antiferromagnet related to the hypergraph q-coloring problem.

Lemma 4.25. Let Ω = [q] for some q ≥ 2, let k ≥ 2, β > 0 and let Ψ = {ψ} where

Then BAL, SYM and POS hold.

Proof. As in the Potts antiferromagnet SYM is immediate from the symmetry amongst the colors. Further, let c β = 1 -exp(-β). Then

Hence, for any µ ∈ P (Ω) we have

Thus, BAL follows from the convexity of x ∈ [0, 1] → x k . Moving on to POS, we fix π, π ′ ∈ P 2 * (Ω). In the present case the condition boils down to

Using the mutual independence of µ (π) 1 , µ (π ′ ) 1 , . . ., the expression simplifies to

Clearly the last expression is non-negative (because x k -kx y k-1 +(k -1)y k ≥ 0 for all x, y ≥ 0), whence POS follows.

As a second example we consider the random k-SAT model at inverse temperature β > 0. We represent the Boolean values by ±1 rather than 0, 1 to simplify the calculations. Moreover, the vector J represents the signs with which the literals appear in a given clause. 

Let p be the uniform distribution on Ψ. Then BAL, SYM and POS hold.

The assumption SYM is satisfied because for any i ∈

Moreover, BAL holds because

is a constant function. To check POS, we follow similar steps as in the interpolation argument from [START_REF] Panchenko | Bounds for diluted mean-fields spin glass models[END_REF]. Fix π, π ′ . We need to show that

Since µ (π) 1 , µ (π ′ ) 1 , . . . are independent, the last expectation simplifies to

.

The last expression is non-negative because x kkx y k-1 + (k -1)y k ≥ 0 for all x, y ≥ 0.

Finally, let us check the conditions for the random k-NAESAT model at inverse temperature β > 0. Again we represent the Boolean values by ±1 and the literal signs by a vector J . 

Let p be the uniform distribution on Ψ. Then BAL, SYM and POS hold. 

Due to the independence of the µ (π) 1 , µ (π ′ ) 1 , . . ., the last expression boils down to s 1 ,...,s l ∈{±1}

, which is non-negative because x kkx y k-1 + (k -1)y k ≥ 0 for all x, y ≥ 0.