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Abstract—We consider the problem of reconstructing a signal
from multi-layered (possibly) non-linear measurements. Using
non-rigorous but standard methods from statistical physics we
present the Multi-Layer Approximate Message Passing (ML-
AMP) algorithm for computing marginal probabilities of the
corresponding estimation problem and derive the associated state
evolution equations to analyze its performance. We also give
the expression of the asymptotic free energy and the minimal
information-theoretically achievable reconstruction error. Finally,
we present some applications of this measurement model for
compressed sensing and perceptron learning with structured
matrices/patterns, and for a simple model of estimation of latent
variables in an auto-encoder.

In many natural and engineered systems, the interactions be-
tween sets of variables in different subsystems involve multiple
layers of interdependencies. This is for instance the case in the
neural networks developed in deep learning [1], the hierarchi-
cal models used in statistical inference [2], and the multiplex
networks considered in complex systems [3]. It is therefore
fundamental to generalize our theoretical and algorithmic tools
to deal with these multi-layer setups. Our goal in this paper is
to develop such a generalization of the cavity/replica approach
that originated in statistical physics [4] and that has been
shown to be quite successful for studying generalized linear
estimation with randomly chosen mixing, leading in particular
to the computation of the mutual information (or equivalently
free energy) and minimum achievable mean-squared error for
CDMA and compressed sensing [5]–[8]. This methodology
is also closely related to the approximate message passing
(AMP) algorithm, originally known in physics as Thouless-
Anderson-Palmer (TAP) equations [9]–[14].

We present in section I a multi-layer generalized linear
measurement (ML-GLM) model with random weights at each
layer and consider the Bayesian inference of the signal mea-
sured by the ML-GLM. We derive AMP for ML-GLM and, us-
ing non-rigorous but standard methods from statistical physics,
analyze its behavior by deriving the associated state evolu-
tion. We also present the expression for the associated free
energy (or mutual information) and the optimal information-
theoretically mean squared error (MMSE). We compare the
MMSE with the MSE achieved by AMP and describe the
associated phase transitions.

I. PROBLEM STATEMENT

ML-GLM model: Consider L known matrices W (1), W (2),
. . . , W (L) of dimension W (`) ∈ Rn`−1×n` . A control param-
eter which will be important is the ratio of the number of
rows to columns in each of these matrices, α`=n`−1/n`. The

components of each of these matrices are drawn independently
at random, from a probability distribution PW (`) having zero
mean and variance 1/n`. We consider a signal x∈RnL with
elements xi, i = 1, . . . , nL sampled independently from a
distribution PX(xi). We then collect n0 observations y ∈ Rn0

of the signal x as

y = f
(1)
ξ1 (W (1)f

(2)
ξ2 (W (2) · · · f (L)

ξL
(W (L)x))), (1)

where the so-called activation functions f (`)

ξ`
, ` = 1, . . . , L, are

applied element-wise. These functions can be deterministic or
stochastic and are, in general, non-linear. Assuming f

(`)
ξ (z)

depends on a variable z and some noise ξ distributed with
P (`)(ξ), we can define the probability distribution of the output
of the function h = f

(`)
ξ (z) as

P
(`)
out (h|z) =

∫
dξ P (`)(ξ) δ(h− f (`)

ξ (z)) , (2)

where δ(.) is the Dirac function. Pout is then interpreted as
a noisy channel through which the variable z is observed, h
being the observation. With the above definition of Pout we
can rewrite eq. (1) in an equivalent form introducing hidden
auxiliary variables h(`) ∈ Rn` for ` = 1, . . . , L− 1 as

yµ ∼ P (1)
out

(
yµ

∣∣∣∑n1

i=1W
(1)
µi h

(1)
i

)
, (3)

h(1)
µ ∼ P (2)

out

(
h(1)
µ

∣∣∣∑n2

i=1W
(2)
µi h

(2)
i

)
,

...

h(L−1)
µ ∼ P (L)

out

(
h(L−1)
µ

∣∣∣∑nL

i=1W
(L)
µi xi

)
,

xµ ∼ PX(xµ),

The inference problem of interest in this paper is the MMSE
estimation of the signal x from the knowledge of the obser-
vation y and the matrices W (`), for all ` = 1, . . . , L. This
inference is done through the computation of marginals of the
corresponding posterior distribution P (x|y).

Using the Bayes theorem and the above definition of the
hidden variables h(`) ∈ Rnl , the posterior is written as

P (x|y) = 1

Z(y)

nL∏
µ=1

PX(xµ)

∫ L−1∏
`=1

n∏̀
µ=1

dh(`)
µ

n1∏
µ=1

P
(1)
out

(
yµ

∣∣∣ n1∑
i=1

W
(1)
µi h

(1)
i

) nL∏
µ=1

P
(L)
out

(
h(L−1)
µ

∣∣∣ nL∑
i=1

W
(L)
µi xi

)
L−1∏
`=2

n∏̀
µ=1

P
(`)
out

(
h(`−1)
µ

∣∣∣ n∑̀
i=1

W
(`)
µi h

(`)
i

)
. (4)
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Fig. 1. Factor graph of the multi-layer generalized linear estimation problem
(4). Shaded circles correspond to observations y, empty circles to hidden
variables h and the signal x to be inferred. Squares represent the activation
functions relating the variables via eqs. (3).

We focus here on the “Bayes-optimal inference” where the
generative model and all its parameters are known, i.e. the only
unknown variables are x and the h(`), ` = 1, . . . , L−1. In this
case, in order to minimize the expected mean-squared error
between the ground truth value of x and its estimator x̂ one
needs to compute averages of the marginals of the posterior
distribution.

As usual, computing the marginals of the posterior (4) is
in general intractable. In this paper we develop an analysis of
the posterior and its marginals that is asymptotically exact, in
the sense that, with high probability, the estimated marginal
probabilities differ from the true ones by a factor that goes
to zero in the “thermodynamic” limit n` →∞ for every ` =
0, . . . , L (at fixed ratios α` = n`−1/n` = O(1)). Our analysis
is based on an AMP-type algorithm and an analysis of the
corresponding Bethe/replica free energy.

Context: The ML-GLM model considered in this paper
has a range of applications and is related to other models
considered in the literature. It is similar to the deep exponential
families of [2], [15] with fixed known random weights. It
can also be seen as the decoder-side of an autoencoder
neural network with fixed known weights (corresponding to
a randomly generated hierarchy of features), the goal being
to infer the vector of latent variables that is the closest to
some ground-truth values used to generate the data. One of the
main assets of the considered ML-GLM is that the activation
functions in each of the layers can be non-linear, as is the case
in deep neural networks, and our analysis handles these non-
linearities. When the intermediate layers are linear, the ML-
GLM can be interpreted as a model for compressed sensing
with a structured measurement matrix obtained as a product
of random matrices. Similarly, when the external layer has
a threshold activation function and all the other activation
functions are linear, the ML-GLM can be seen as a single layer
perceptron that aims to classify correlated patterns obtained by
products of random matrices.

We anticipate that the algorithm and theory developed in
this paper will find applications to other learning problems.
A natural direction of future work is to prove both the state
evolution of the algorithm and the Bethe free energy for the
ML-GLM rigorously, perhaps along the lines of [7], [8], [16].

II. ALGORITHM AND ANALYSIS

ML-AMP: We consider a probability distribution

P (x, {h(`)}L−1
`=1 |y) defined as the posterior distribution (4)

without the integral over the auxiliary variables {h(`)}L−1
`=1 ,

and represented by the graphical model depicted in Fig. 1.
We derive ML-AMP by first writing the belief propagation
equations [17] for this graphical model. As every factor
relates to many variables and every variable is contained
in many factors, we use the central limit theorem to keep
track of only the means and variances of the messages.
Furthermore, we express the iterations in terms of node-
variables instead of messages, giving rise to the so called
Onsager reaction terms. This derivation was presented for the
case of single-layer generalized linear estimation in e.g. [13],
[14]. The resulting multi-layer-AMP (ML-AMP) algorithm
then iteratively updates estimators of the means ĥ(`) and of
the variances σ(`), ` = 1, . . . , L of the auxiliary variables
h(`), ` = 1, . . . , L − 1 and of the signal x. For simplicity of
the multi-level notation we denote x̂ = ĥ(L), and similarly
for the variance.

We first write the ML-AMP update equations for an in-
termediate layer ` and then specify how they change for the
very first (` = 1) and the very last (` = L) layers. At each
layer 1 ≥ ` ≥ L, there are two vectors, V (`) ∈ Rn`−1 and
ω(`) ∈ Rn`−1 , associated with the factor nodes, and two
vectors, A(`) ∈ Rnl and B(`) ∈ Rnl , associated with the
variable nodes. Their update reads

V (`)
µ (t) =

∑
i

[
W

(`)
µi

]2
σ

(`)
i (t),

ω(`)
µ (t) =

∑
i

W
(`)
µi ĥ

(`)
i (t)− V (`)

µ (t)g(`)
µ (t− 1),

A
(`)
i (t) = −

∑
µ

[
W

(`)
µi

]2
∂ωg

(`)
µ (t),

B
(`)
i (t) =

∑
µ

W
(`)
µi g

(`)
µ (t) +A

(`)
i (t)ĥ

(`)
i (t).

(5)

To define functions g(`)
µ (t), ∂ωg

(`)
µ (t) and to state how to use

eqs. (5) to update the estimators ĥ(`)
i (t) and variances σ(`)

i (t),
we need to define an auxiliary function Z(`) for 2 ≥ l ≥ L as

Z(`)(A(`−1), B(`−1), V (`), ω(`)) ≡ 1√
2πV (`)∫

dhdz P
(`)
out (h|z) e− 1

2A
(`−1)h2+B(`−1)h e

− (z−ω(`))2

2V (`) .

With this definition, the estimators of marginal mean of the
auxiliary variables ĥ

(`)
i , 1 ≥ ` ≥ L − 1, and the quantity

g
(`)
µ , 2 ≥ ` ≥ L, is computed as

g(`)µ (t) = ∂ω logZ(`)(A(`−1)
µ , B(`−1)

µ , V (`)
µ , ω(`)

µ ),

ĥ
(`)
i (t+ 1) = ∂B logZ(`+1)(A

(`)
i , B

(`)
i , V

(`+1)
i , ω

(`+1)
i ),

(6)

where the quantities on the right hand side of (6) are evaluated
at time index t.

The output function g(1)
µ in the first layer is obtained as in

the standard AMP algorithm for generalized linear estimation:

Z(1)(y, V (1), ω(1)) =

∫
dz P

(1)
out (y|z) e

− (z−ω(1))2

2V (1)

√
2πV (1)

, (7)



1: procedure ML-AMP
2: initialize g(`)

µ = 0 ∀(µ, `)
3: initialize h(`)

i = 0, σ
(`)
i = 1 ∀(i, `)

4: for t← 1 to tmax do
5: for `← 1 to L do
6: compute V (`)

µ , ω
(`)
µ ∀µ using (5)

7: compute g(`)
µ , ∂ωg

(`)
µ ∀µ using (6)

8: compute A(`)
i , B

(`)
i ∀i using (5)

9: end for
10: compute ĥ(`)

i , σ
(`)
i ∀(i, `) using (6)

11: end for
12: end procedure

g(1)
µ (t) = ∂ω logZ(1)(yµ, V

(1)
µ (t), ω(1)

µ (t)) . (8)

In the last layer, the estimator ĥ(L)
i = x̂i is obtained from

Z(L+1)(A(L), B(L)) =

∫
dhPX(h) e−

1
2A

(L)h2+B(L)h,

ĥ
(L)
i (t+ 1) = ∂B logZ(L+1)(A

(L)
i (t), B

(L)
i (t)).

(9)

Finally, the expressions ∂ωg
(`)
µ and σ(`)

i in (5) are defined as:
∂ωg

(`)
µ (t) = ∂2

ω logZ(`)(t) and σ(`)
i (t+1) = ∂2

B logZ(`+1)(t).
Note that the ML-AMP is closely related to AMP for gen-

eralized linear estimation [13]. The form of ML-AMP is the
one we would obtain if we treated each layer separately, while
defining an effective prior P eff

X depending on the variables of
the next layer, and an effective output channel P eff

out depending
on the variables of the preceding layer:

P eff
X (h(`)|V (`+1), ω(`+1))=

∫
dz P

(`+1)
out (h(`)|z)e

− (z−ω(`+1))2

2V (`+1)

√
2πV (`+1)

,

P eff
out(z

(`)|A(`−1), B(`−1))=

∫
dhP

(`)
out (h|z

(`)) e−
1
2
A(`−1)h2+B(`−1)h.

State evolution: A very useful property of AMP, compared
to other algorithms commonly used for estimating marginals
of posterior distributions such as (4), is that its performance
can be traced analytically in the thermodynamic limit using
the so-called state evolution (SE) [13], [16]. This is a version
of the density evolution [4] for dense graphs. It is known as the
cavity method in statistical physics [4], where it is in general
non-rigorous.

Specifically, the cavity method implies that at each layer `,
the overlap between the ground true h(`) and its estimate
ĥ(`)(t) provided by the ML-AMP algorithm at iteration t
concentrates around an “overlap” m(`)(t)

m(`)(t)
n`→∞=

1

n`

n∑̀
i=1

h
(`)
i ĥ

(`)
i (t) . (10)

In the case of the Bayes-optimal inference of x, the state
evolution for the ML-AMP algorithm is written also in terms
of a parameter m̂(`), defined as the value around which the
components of A(`) concentrate.

For the intermediate layers, 2 ≥ ` ≥ L, the SE reads

m̂(`)(t) = −α` E(`)
h,z,b,w∂ωg

(`)(m̂(`−1)(t), b, ρ` −m(`)(t), w
)
,

m(`−1)(t+ 1) = E(`)
h,z,b,wh ĥ

(`−1)(m̂(`−1)(t), b, ρ` −m(`)(t), w),
(11)

where the scalar functions ∂ωg
(`) and ĥ(`) are defined in

eq. (6). The quantity ρ` is given by the second moment of the
components of the vector h(`). It can be computed from the
knowledge of PX and P (k)

out for k = `, . . . , L. The expectations
are taken over the joint distribution

P (`)(h, z, b, w) = P
(`)
out (h|z)N (z;w, ρ` −m(`))×

N (b; m̂(`−1)h, m̂(`−1))N (w; 0,m(`)).
(12)

In the above distribution, h, z, b, w are random variables
representing respectively: the ground truth hidden variables
at layer (`−1), the components of the estimator of W (`)h(`),
the components of B(`−1), and the components of ω(`). Note
that the probability distribution (12) is similar to the one
appearing in the single-layer G-AMP algorithm of [13] with
the exception that, in P

(`)
out(h|z), a known measurement is

replaced by the distribution of the hidden variable h(`−1) at the
previous layer. This makes the multi-layer SE quite intuitive
for readers well familiar with the SE for G-AMP.

At the first (leftmost) and last (rightmost) layers, the SE
order parameters are given by the same fixed point equations
as in the single-layer G-AMP setting, that is

m̂(1)(t) = −α1 Ey,z,w ∂ωg(1)(y, ρ1 −m(1)(t), w),

m(L)(t+ 1) = Ex,b x ĥ(L)(m̂(L)(t), b),
(13)

where expectations are taken over P (y, z, w) =

P
(1)
out (y|z)N (w; 0,m(1))N (z;w, ρ1 − m(1)) and
P (x, b) = PX(x)N (b; m̂(L)x, m̂(L)) respectively. Thus,
if L = 1, the state evolution equations of ML-AMP reduce to
that of the standard G-AMP algorithm.

The state evolution are iterative equations. We initialize
m(`)(t = 0) close to zero (or otherwise, corresponding to
the initialization of the ML-AMP algorithm), then compute
m̂(`)(t = 0) for all layers. We then compute m for the next
time step for all layers, then m̂ at the same time step and all
the layers, etc. Finally to obtain the mean-squared error on h(`)

from the state evolution, we evaluate MSE(`) = ρ` −m(`).

III. FREE ENERGY AND PHASE TRANSITIONS

We define the free energy of the posterior (4) as

φ = − lim
{n`}→∞

1

nL
logZ(y) , (14)

where lim{n`}→∞ denotes the thermodynamic limit. This free
energy is self-averaging, meaning that the above limit is with
high probability independent of the realization of the random
variable y, it only depends on the parameters of the model
α`, L, PX , and P

(`)
out . A computation analogous to the one

that leads from belief propagation to the ML-AMP algorithm
and its SE can be used to rewrite the Bethe free energy [17]
into a single instance free energy evaluated using the fixed
points of the ML-AMP algorithm. Using averaging analogous
to the one of state evolution one then rewrites this into the



so-called replica symmetric free energy

φRS(m, m̂) =
1

2

L∑
`=1

α̃`m
(`)m̂(`) − α̃LI(L+1)(m̂(L))

−
L∑
`=2

α̃`−1I(`)(m(`), m̂(`−1))− α̃0I(1)(m(1)).

(15)

with α̃` = n`/nL, and

I(L+1)(m̂(L)) = Ex,b logZ(L+1)(m̂(L), b),

I(`)(m(`), m̂(`−1)) = E(`)
h,z,b,w logZ(`)(m̂(`−1), b, ρ` −m(`), w),

I(1)(m(1)) = Ey,z,w logZ(1)(y, ρ1 −m(1), w).

One can check, by computing derivatives of this free energy
with respect to m` and m̂`, that the stationary points of
φRS(m, m̂) are fixed points of the state evolution equations
(11) and (13). Let us now use (11) and (13) to express m̂ in
terms of m and consider the free energy φRS(m) only as a
function of the overlaps m (10). Define

φRS ≡ min
m

φRS(m),

mIT ≡ argmin
m

φRS(m).
(16)

In the setting of Bayes-optimal inference, the replica symmet-
ric free energy φRS is equal to the free energy (14). At the
same time the minimum mean squared error of the Bayes-
optimal estimation of x is given by

MMSE = ρL −m(L)
IT , (17)

where mIT is defined in (16) and ρL is the second moment
of PX . This has been recently proven for the single layer linear
estimation [7], [8], and based on statistical physics arguments
we conjecture it to be true also in the present problem.

We divide the region of parameters of the present problem
into three phases. If the MMSE is not low enough (defined in a
way depending on the application) we say that inference of the
signal x is information-theoretically impossible. If the MMSE
is sufficiently low and the ML-AMP algorithm analyzed via
state evolution matches it, then we say inference is easy.
Finally, and most interestingly, if MMSE is sufficiently low,
but ML-AMP achieves worse MSE we talk about a region
of algorithmically hard inference. Defining an algorithmically
hard region by the performance of one given algorithm might
seem in general unjustified. However, in the case of single
layer generalized linear estimation we know of no other
polynomial algorithm that would outperform AMP in the
thermodynamic limit for random W . This leads us to the above
definition of the hard phase also for the present multi-layer
problem.

IV. RESULTS FOR SELECTED PROBLEMS

We now focus on three examples of two-layer models and
draw their phase diagrams that indicate for which layer sizes
(i.e. for which values of α`) reconstruction of the signal is
information-theoretically possible. We also run the ML-AMP
on single instances sampled from the model and illustrate that

the mean-squared error it reaches after convergence matches
the one predicted by the state evolution.

Sparse linear regression using correlated data: Among
the simplest non-trivial cases of the ML-GLM model is a two-
layer analogue of sparse linear regression (SLR) defined as

y = W (1)(W (2)x+N (0,∆2)) +N (0,∆1). (18)

where the vector x we seek to infer is sparse, PX(x) =∏n2

i=1[ρN (xi; 0, 1) + (1− ρ) δ(xi)], and W (`)
µi ∼ N (0, 1/n`).

When ∆2 = 0 the model (18) is equivalent to a SLR
with a structured data matrix Φ = W (1)W (2), a prob-
lem previously studied by [18]–[22]. Interestingly, the state
evolution equations (11) have at their fixed point m̂(2) =
R
(
−(ρ2 −m(2))/∆1

)
/∆1, where R gives the R-transform

of ΦTΦ (see e.g. [23]). Together with eq. (13) these are the
same equations obtained by adaptive approaches in [18]–[22].
This confirms that the adaptative methods are exact in the
case of matrix product, as was already noted for the Hopfield
model [24].

In Fig. 2 (left) we draw the phase diagram as a function of
α ≡ α1α2 and α2. Remarkably, in the noiseless case, the phase
diagram of the problem with structured matrix Φ is reduced
to the statement that both α and α2 need to be larger than
the corresponding threshold known for the usual compressed
sensing problem [14].

For ∆2 > 0 this simple mapping does not hold and, as far as
we know, the ML-AMP and its SE analysis give new results.
We compared numerically the performance of ML-AMP to
the VAMP of [22]. Whereas for ∆2 = 0 the two algorithm
agree (within errorbars), for ∆2 > 0 the ML-AMP gives a
distinguishably lower MSE.

Perceptron learning with correlated patterns: A lot of
work has been dedicated to learning and generalization in a
perceptron with binary weights [25], [26], defined by:

y = sgn(Φx) (19)

with x ∼∏n2

i=1[ 1
2δ(xi−1)+ 1

2δ(xi+1)]. These works focused
on random patterns where the elements of Φ are iid.

It was recently argued that learning and generalization
of combinatorially structured patterns, defined as Φ =
W (1)W (2), is best studied using multilayer networks and
presents major differences [24]. Our analysis of this case
in Fig. 2 (center) quantifies how many extra samples are
needed so that a binary perceptron is able to correctly classify
combinatorially correlated patterns with respect to random
ones.

Two-layer decoder: The most exciting potential applica-
tions for the present results perhaps lie in the realm of deep
neural networks where models such as ML-GLM with learned
weights W (`) are used. A crucial ingredient of such neural
networks are non-linear activation functions present among
the layers. These activation functions can be seen as noisy
channels, e.g. in the context of the decoder-side of an auto-
encoder with known weights W (`): one is interested in how
well a vector of latent variables can be reconstructed when y
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Fig. 2. Main panels: Phase diagram for sparse linear regression (left) and perceptron (center) with correlated data/patterns, defined by (18) and (19)
respectively, and for the two-layer decoder (right), problem (20). Model parameters in SLR are ρ = 0.3, ∆2 = 0 and ∆1 = 10−8, and in the two-layer
decoder ∆1 = ∆2 = 10−8. The ML-AMP algorithm succeeds to reconstruct the signal with very small MSE above the dotted red line. Between the two
lines reconstruction is information-theoretically possible, but ML-AMP does not achieve it. Below the full red line good reconstruction is impossible. The
grey lines plotted for the perceptron is a comparison with the case of random patterns. Insets: Comparisons between the MSE predicted by the state evolution
(lines) and that provided by ML-AMP on a single instance with n` = 2000 (symbols), α2 = 1.0 for the left and center figures, and α2 = 2.0 for the right.
Dashed lines indicate the MMSE. Red triangles in the right inset compare to the performance of normal AMP in solving the decoder problem in the first
layer assuming a binary i.i.d. prior on h(1), this works for α1 & 0.48. ML-AMP takes into account correlations in h(1) and performs better.

is observed at the output. In Fig. 2 (right) we draw a phase
diagram for the following example

y = W (1) sgn(W (2)x+N (0,∆2)) +N (0,∆1), (20)

with x ∼∏n2

i=1[ 1
2δ(xi−1)+ 1

2δ(xi+1)]. Our results illustrate
that the ML-AMP algorithm provides better results than a
layer-wise estimation with ordinary AMP, because it takes into
account correctly the correlations among the hidden variables.
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[20] Y. Kabashima and M. Vehkaperä, “Signal recovery using expectation
consistent approximation for linear observations,” in 2014 IEEE Inter-
national Symposium on Information Theory (ISIT), Jun. 2014, p. 226.
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[23] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless
Communications. Now Publishers Inc, 2004.
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