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Loreto Oyarte1, Pablo Gutiérrez2, Sébastien Aumâıtre2∗ and Nicolás Mujica3
1Departamento de F́ısica, Facultad de Ciencias Básicas,

Universidad Metropolitana de Ciencias de la Educación,

Avenida José Pedro Alessandri 774, Ñuñoa, Santiago, Chile
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We report an experimental study on the transition between a disordered liquid-like state and a
ordered solid-like one, in a collection of magnetically interacting macroscopic grains. A monolayer
of magnetized particles is vibrated vertically at a moderate density. At high excitation a disordered,
liquid-like state is observed. When the driving dimensionless acceleration Γ is quasi-statically re-
duced, clusters of ordered grains grow below a critical value Γc. These clusters have a well defined
hexagonal and compact structure. If the driving is subsequently increased, these clusters remain
stable up to a higher critical value Γl. Thus, the solid-liquid transition exhibits an hysteresis cycle.
However, the lower onset Γc is not well defined as it depends strongly on the acceleration ramp
speed and also on the magnetic interaction strength. Metastability is observed when the driving is
rapidly quenched from high acceleration, Γ > Γl, to a low final excitation Γq . After this quench,
solid clusters nucleate after a time lag τo, either immediately (τo = 0) or after some time lag (τo > 0)
that can vary from seconds up to several hundreds of seconds. The immediate growth occurs below
a particular acceleration value Γs (. Γc). In all cases, for t ≥ τo solid cluster’s temporal growth can
be phenomenologically described by a stretched exponential law. Finally, by taking into account
the finite size of our system and by using simple assumptions we propose an alternative tractable
theoretical model that reproduces cluster’s growth, but which analytical form is not a stretched
exponential law.

PACS numbers: 45.70.-n,05.70.Ln,64.70.Dv

I. INTRODUCTION

Granular matter dissipates energy by friction and in-
elastic collisions, therefore an external driving is neces-
sary to observe dynamical behaviors. Despite their in-
trinsic macroscopic and non-equilibrium nature, the re-
sulting excited state, from granular gas to an ordered
compact set of grains, often shares similarities with the
one of thermal systems described by statistical physics
at equilibrium. However, important non-equilibrium fea-
tures emerge, like the absence of a universal effective
temperature, deviations from Fourier’s conduction law,
spatio-temporal instabilities, the absence of scale separa-
tion, and so forth. Granular matter is therefore a good
candidate to study non-equilibrium phase transitions be-
tween these different excited states [1, 2].

The transition of granular media from liquid-like to
solid-like states have been already reported. Under shear-
ing or vertical tapping, monodisperse spheres tend to col-
lectively organize themselves in the most dense crystal
state [3–6]. When a monolayer of grains that is confined
between two horizontal plates is vibrated vertically, unex-
pected ordered structures nucleate from the liquid state
at high excitation [7–9]. This phase separation is driven
by the negative compressibility of the effective two di-

∗Corresponding author: sebastien.aumaitre@cea.fr

mensional fluid, as in the van der Waals model for molec-
ular fluids [9].

In the present experiment, we are concerned by gran-
ular systems where an another interaction is added to
the usual hard sphere collisions. To do so, we use pre-
magnetized spheres. Magnetized spheres have been stud-
ied under an external applied magnetic field [10, 11].
When a set of these magnetized spheres, compacted by
gravity, is submitted to a vertical magnetic field, the sur-
face of the granular packing is destabilized above a given
onset and forms peaks [10]. When a granular gas is sub-
mitted to an increasing horizontal magnetic field at a
given excitation, a transition to a clustered state is ob-
served [11]. A mixture of magnetic and non-magnetic
spheres has been also studied in a configuration simi-
lar to ours, but at a lower volume fraction of the mag-
netic particles and in an horizontal plate with no top lid,
which limits the energy injection as the system is kept
in a quasi-two-dimensional state. In this mixed system,
authors focused on the existence and the growth in time
of clusters composed of solely magnetic particles, in the
bath of non-magnetic ones, as function of control param-
eters [12, 13].

In our study, no external field is added and the re-
manent magnetic moment, present in all the particles,
generates a dipolar interaction between them. This kind
of 2D dipolar liquid (with 3D magnetostatics) has been
extensively studied numerically in order to understand
the transition from isolated to branched chains [14–16].

http://arxiv.org/abs/1207.6026v1
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Compared to our experiments, an important difference
is that these numerical studies are performed at equilib-
rium. Also, they use a lower surface density, ρ = Nd2/L2

up to 0.4 (were d is the particle diameter, N is the
number of particles, and L is the system size). Nu-
merical studies also introduce the reduced temperature
T ∗ = kBT/(µ

2/d3), where µ is the magnetic moment of
the sphere and d their diameter. Although it is not easy
to estimate it in our experiments, we verified at least
that the attractive force between particles with aligned
moments is weak. Actually, two particles have to be al-
most in contact to get an attraction that overcomes their
own weight, meaning that µ2/d3 ∼ mgd, with m their
mass and g the gravity acceleration. Therefore T ∗ can
be crudely estimated by T ∗ ∼ m(Aω)2/(µ2/d3), using
a granular temperature proportional to the energy per
grain provided by a vibration of amplitude A and an-
gular frequency ω, and using µ2/d3 ∼ mgd. One gets
T ∗ ∼ ΓA/d ∼ 0.2 − 0.6, which is actually in the range
of temperature accessible numerically. A comparison be-
tween experiments and numerical studies seems promis-
ing.

Here, we present an experimental study of the behavior
of a sub-monolayer of pre-magnetized particles that are
confined in a shallow geometry, with a height that is small
compared to the horizontal dimensions. The system is
therefore quasi-two-dimensional with three-dimensional
magnetostatics. The experimental cell is submitted to
vertical vibration, the control parameter being the di-
mensionless acceleration Γ = Aω2/g, which is varied
keeping constant the driving frequency ω.

This paper is organized in the following way: a de-
scription of our experimental device and procedures is
presented in section II. Then, we present first, in sec-
tion III A, the behavior of the system when the control
parameter Γ is quasi-statically reduced or increased. Be-
low a critical value of Γ, clusters organize in a hexagonal
lattice. An hysteretic behavior is observed whether the
acceleration of the cell is increased or decreased. In sec-
tion III B, we present results starting from a liquid-like
state, from which we quench the system into the hystere-
sis region in order to study the dynamical growth of the
ordered phase. After presenting our experimental obser-
vations on the dynamical evolution of solid clusters, we
show that their growth can be fitted by a stretched ex-
ponential law. The evolution of the parameters of this
law as function of the quenched acceleration is presented
and the values of fitted parameters are discussed. In sec-
tion IV we present a theoretical model for the solid clus-
ter’s growth, taking into account the specificity of our
experiment, in particular the conserved number of par-
ticles and the constant volume. Our model reproduces
well the growth but the analytical form is different to
the stretched exponential law. In the last section, part
V, we present a discussion of our results as well as our
conclusions. Some future perspectives are also outlined.

II. EXPERIMENTAL SETUP AND

PROCEDURES

The experimental device, illustrated in Fig.1, is sim-
ilar to the one presented in references [17, 18]. Stain-
less steel spheres (type 422) of diameter d = 1 mm are
confined between two horizontal glass plates, which have
an indium titanium oxide, ITO, coating layer to pre-
vent static electricity (resistivity 7.5 × 10−6 Ωm, thick-
ness 25 nm). The dimensions of the cell are: the gap
between the plates h = 1.8d, and lateral dimensions
Lx = Ly = L = 100d. The cell is submitted to sinu-
soidal vibration z(t) = A sin(ωt), provided by an elec-
tromagnetic shaker. We take care to screen its magnetic
field. The cell is illuminated from bellow by an array light
emitting diodes. A camera takes pictures from the top.
Typical images are shown in Fig. 2. Almost all particles
are tracked using an open source Matlab code [19], which
works well for the sub-monolayer surface filling fractions
that are used. The cell acceleration, a(t) = z̈(t), is mea-
sured with a piezoelectric accelerometer fixed to the base.
Our control parameter is the dimensionless acceleration
Γ = Aω2/g. Results presented here have been obtained
with filling fraction density φ = Nπd2/4LxLy = 0.59
(ρ = 0.75), where N = 7500 is the number of spheres,
frequency f = ω/2π = 100 Hz, period of base oscillation
P = 1/f = 0.01 s, and Γ = 3 − 5.3. We have verified
that the phenomenology is not qualitatively affected by
the number of particles as long as the system is not too
dense.
A major experimental challenge is to keep constant the

magnetization of the spheres. Indeed, depending on the
magnetization procedure, some shifts occur for the accel-
eration onset values, although the qualitative behavior of

FIG. 1: Sketch of the experimental setup. The cell contains
the quasi-two-dimensional box where grains are confined be-
tween two ITO coated glass plates. The box is placed above
an array of light emitting diodes and a camera pictures the
particles from above. An accelerometer measures the applied
dimensionless acceleration Γ = Aω2/g.
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FIG. 2: Left: Disordered liquid state snapshot, Γ = 5. Yellow dots show groups of more that 10 particles that meet the criterium
used for defining particles in a solid cluster. In this liquid state, these clusters are continuously forming and disappearing, tracing
density fluctuations. Right: Coexistence of solid and liquid phases, Γ = 3.5. The solid cluster presents an hexagonal order. It
is about two thirds of its final size. Eventually, it will be composed of about 6500 particles, approximately 85% of all particles.

the system remains the same. Grains are magnetized by
contact with a strong Neodyme magnet. Some additional
thermal treatments have also been probed to maintain
the magnetization. The magnetic moment acquired by
the spheres is partially lost when the system is vibrated
for long times. This loss of interaction strength is pro-
duced by collisions and local particle heating. This issue
will be discussed in more detail below, in particular when
we present experimental results of quasi-static accelera-
tion ramps.

Starting from an homogeneous liquid state at Γ = 5,
and decreasing A for ω fixed, we observe that for Γ ≤ 3.5
clusters of ordered grains grow almost immediately, as
shown in Fig. 2-right. In contrast to numerical simula-
tion predictions where all particles form chains [14–16],
here clustered particles are well organized in a two di-
mensional triangular crystal, except at the edge of the
cluster where more linear chains coexist with disordered
liquid-like particles. In fact, the precise cluster’s topol-
ogy depends on Γ and the speed at which the solid cluster
grows. For rapid changes in driving from high accelera-
tion to Γ ∼ 1 − 3, the solid phase will grow quickly and
will be first formed by many sub-clusters separated by
defects as well as many linear chains. However, if driv-
ing is varied slowly from a liquid state, a single cluster
will first nucleate and then grow slowly, with a smaller
amount of defects, like the one shown in Fig. 2-right.

In order to define the number of particles that are in
a solid cluster, Nc, we compute the area of the Delau-
nay triangle, A, i.e the area of all the triangles joining
the center of each particle with two of this nearest neigh-

bors. All particles belonging into a Delaunay triangle for
which A < 0.5d2 are defined as belonging to a cluster.
The precise value of the onset does not modify qualita-
tively the results presented here. It has been chosen in
order to find all the particles inside a cluster in the cell,
as the example shown in Fig. 2-right. Some particles
in the liquid phase will inevitably fit this condition as
well. This will add a background noise about 1000 parti-
cles belonging to small unstable clusters, tracing density
fluctuations, like those shown in Fig. 2-left.

III. EXPERIMENTAL RESULTS

A. Quasi-static acceleration ramps

We first present results obtained performing quasi-

static cooling and heating ramps, by slowly decreas-
ing and increasing the driving acceleration respectively.
In Fig. 3, we plot the fraction of particles inside a clus-
ter Nc/N as function of Γ. Blue symbols represent the
fraction of crystallized particles when the acceleration is
slowly decreased from the liquid state, whereas red ones
represent this quantity when the acceleration is slowly
increased. Each similar pair of symbols correspond to
different experimental realizations. More precisely, the
procedure is the following: first the system is set at high
acceleration (Γ ≈ 5). The system is left to evolve to a
stationary state during a waiting time, tw. Then, five im-
ages are acquired at a rate of 1 fps. Immediately after, Γ
is reduced by a small amount and the system is again left
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FIG. 3: Total numbers of particles inside a cluster Nc/N as
function of Γ. Acceleration is varied quasi-statically. Blue
(red) symbols indicate the results when Γ is reduced (in-
creased). Several ramps are shown, for different realizations.
Each pair of symbols correspond to a closed Γ loop, realized
in this order: ◦, ◦, ∗, ∗, ⋄, ⋄, +, +, △, △, �, �, •, •. For each
ramp, Γ is varied with a waiting time of 15 s before obtaining
images during 5 s at 1 fps. There are two exceptions: ramps
for 30 s (+, +) and 180 s (•, •) waiting times. Magnetization
is reduced after many hours of experiments, evident in some
of the the decreasing ramps (+, △, �), were the transition Γ
is reduced, although not so in their correspondent increasing
ramps (+, △, �). The last two ramps correspond to a longer
waiting time (180 s, •, •) for which the transition point again
is practically the same as before. Inset: schematic represen-
tation of magnetic moment dependence on time.

to evolve during tw until the next acquisition of images.
This procedure is repeated until we reach the lowest ac-
celeration of about Γ = 3.1. Then, the same procedure is
used but increasing Γ until the completely fluidized state
is obtained again. For most of the symbols in Fig. 3,
tw = 15 s (i.e tw = 1500P ). For one case this loop has
been realized in the opposite way (symbols ⋄, ⋄ in Fig. 3),
with no difference in the resulting curves. In two cases,
the waiting times are different: ramps with waiting times
of 30 s (tw = 3000P : +, +) and 180 s (tw = 18000P :
•, •). In the caption of Fig. 3, we indicate the order in
which these ramps were realized. Particles were not re-
magnetized during all the experiments presented in this
figure.

The inset of Fig. 3 shows an schematic representation
of the variation of the average magnetic dipole moment
µ with time. Here, “time” means vibration oscillations,
i.e. time during which the particles are in a fluidized col-
lisional state at a given Γ. Three stages are identified (a,
b and c), and the vertical dotted lines indicate the transi-
tions between them. The exact positions of the different
transitions depend on Γ and the particular magnetization
procedure. Stage a is characterized by a fast decrease of
µ; for Γ ∼ 5, this can endure for a few tenths of minutes.
Later, stage b corresponds to a stable average magnetiza-
tion, which typically lasts for several hours. And finally,

after many particle collisions, µ continues to decay.
The main result of Fig. 3 is that, for the current cool-

ing and heating rates and procedure, there is a stable
loop with two transition points: from an homogeneous
liquid to solid-liquid coexistence at Γc = 3.9 ± 0.1, and
from solid-liquid coexistence to the homogeneous liquid
state at Γl = 4.8 ± 0.1. Thus, when the driving is
slowly increased, the last cluster disappears always at
a critical value which is higher than the value at which
the first crystal appears when the driving is decreased:
Γl > Γc. We will refer to this loop as the quasi-static hys-

teresis loop (stage b), although it is not reproducible for
very long experiments because of a reduction in particle’s
magnetization (stage c).
Indeed, some curves obtained for decreasing ramps

have different Γc values as shown by the symbols +, △,
and � in Fig. 3. These shifted curves, which result in
a lower transition acceleration value (Γc ≈ 3.5) from the
liquid state to the coexistence of solid and liquid phases,
correspond to later runs without remagnetization in be-
tween. Therefore, these shifts are mainly due to particle
demagnetization. However, for such runs, Γl does not
change. We remark that when the waiting time tw is in-
creased to 180 s (18000P ), symbols •, • in Fig. 3, even
with a lower magnetization the previous hysteretic cycle
is recovered. It seems that for a lower magnetization and
with tw = 1500P or tw = 3000P , we do not wait enough
the obtain the crystal growth. Thus, the loss of mag-
netization seems to increase the time necessary to get
a quasi-stationary state. However, beyond this variabil-
ity, the main qualitative feature remains: the hysteretic
behavior with Γc < Γl.
Finally, measurements not shown here that are per-

formed just after remagnetization (stage a) show that
both Γc and Γl are shifted to higher values, whereas mea-
surements made later, for very long experimental times
after magnetization (very late times in stage c), present
both Γc and Γl shifted to lower values.

B. Quench experiments

Knowing the onset of crystallization, we now study
the dynamics when the homogeneous liquid phase is
quenched into a final state near the solid cluster nu-
cleation. Starting from Γ = 5, we reduce suddenly the
driving to a final value Γq between 3 and 4.5. We then
acquire images at a low frame rate (0.5 fps) for sev-
eral minutes. The typical measurement time is 10 min
(tm = 6× 104P ) in order to keep constant the particle’s
magnetic dipole moment during complete run (that is for
all the quenches), although some runs with tm = 20 min
have also been realized (tm = 1.2× 105P ). For each im-
age, we compute Nc, the total number of particles that
belong to a solid cluster.
The temporal evolution of Nc is shown in Fig. 4 for

different values of Γq. This series of quench experiments
was performed in between the quasi-static loops identi-
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FIG. 4: Number of particles that form part of a solid clus-
ter, Nc/N , versus time t/P , for several Γq (quenched state).
Initial time t = 0 corresponds to the moment Γ is abruptly
quenched from Γ = 5 to Γq . For each run, images are ac-
quired during 10 min, equivalent to 6 × 104P . From left to
right Γq = 3.15, 3.31, 3.42, 3.53, 3.63, 3.74, 3.94, 4.13, and
4.02. For Γq = 3.80 and 4.2 there was no transition within
the observation time. Continuous lines show fits for stretched
exponential growth law, Eqn. (1). In average, for increasing
Γq, τ and τo increase and N∞ decreases.

fied by symbols ⋄ and + in Fig. 3. Two time scales
are clearly present: a growth time τ and a time lag τo.
Clusters grow slower for higher Γq. For Γq . 3.5, clus-
ters grow immediately (τo = 0); for higher Γq, cluster’s
nucleation is delayed (τo > 0). This allows us to de-
fine for this realization Γs ≈ 3.5 as the acceleration be-
low which τo ≈ 0. In the case τo > 0 the system is
metastable: it can be either in an homogeneous liquid
phase or in a solid-liquid phase separated state. The
transition from the former to the latter occurs if there
is a density fluctuation strong enough to nucleate crys-
tallization. Additionally, this density fluctuation has to
have particles aligned in such a way that they can bound
together. As Γq approaches Γl, this fluctuation has to be
stronger (more dense), because the granular temperature
is higher. Thus, it becomes less probable too. However,
at the same time, its final size is smaller, requesting less
bounding energy. The corresponding lag time τo becomes
usually larger, but its dependence on the appearance of
the correct density fluctuation makes it highly variable
from one realization to another. The general results is
valid for every quench experiment done in the stable hys-

teresis loop: For Γq approaching Γl, the crystal growth
time τ increases, the asymptotic number of particles in
the solid phase decreases, and the lag time τo seems to
increase in average but its variance too (much more in-
dependent realizations are needed to study τo properly).
In Fig. 4 we also present our data fitted by a stretched

exponential growth law

Nc(t) = N∞ + (No −N∞) exp[−[(t− τo)/τ ]
α], (1)

where N∞ is the asymptotic number of particles in the
solid phase and τ the growth time. No is the background
“noise” in the measurement of the number of solid parti-
cles; in the liquid state, there are many small short-living
clusters that are considered as composed by particles in
a solid phase, as shown in Fig. 2. Together with the
exponent α and time lag τo these are used as fit param-
eters. This stretched exponential law has been used in
first order phase transitions to model the growth of the
stable phase into the metastable one [20]. It has also
been used to describe the compaction of a sand pile un-
der tapping [4]. In our case, the adjustment shown by
the continuous lines in Fig. 4 is very good. The expo-
nent α fluctuates around 1/2 as function of Γq, as shown
in Fig 5a (data on the x-axis correspond to realizations
for which the phase separation was not achieved on the
experimental observation time). In fact, the results that
are discussed in what follows do not depend strongly on
the fact that α can be left as a free parameter or fixed to
α = 0.5.

The dependence of N∞ on Γq is shown in Fig. 5b.
The asymptotic fraction of particles in the solid phase,
N∞/Nc, decreases for high quenching accelerations, from
≈ 0.9 for Γq = 3 − 3.4 to ≈ 0.6 at Γq ≈ 4. We no-
tice that except for some experiments where we do not
wait enough to overcome the time lag τo (data on the
x-axis), the value of N∞(Γq) collapses with the one ob-
tained for Nc(Γ) by quasi-static heating, showing that we
really perform an adiabatic modification of the forcing for
the heating case with our quasi-static procedure.

In Figs. 5c and 5d we present τ and τo as func-
tions of Γq. Our results show that the both times in-
crease strongly in a small range of Γq: about two or-
ders of magnitude for Γq between 3.1 and 4.1. The
longest measured growth and lag times, for Γq ≈ 4.1, are
τ ≈ 3.5× 104P = 350 s and τo ≈ 5× 104P = 500 s. If Γq

is approached to Γl = 4.8, the lag time τo becomes larger
than the measurement time tm and no transition from
the homogeneous fluid state to the coexistence between
solid and fluid phases is observed. In the short parame-
ter range where equation (1) can be verified, we obtain
τ ∼ exp(a∗Γq), with a∗ = 4.1± 0.5. Concerning the time
lag τo, we observe that it is highly variable; much more
experiments seem necessary in order to obtain significant
statistics. For Γq < Γs = 3.4, this time lag tends to a
constant, τo ∼ 1 s. As we acquire images at 0.5 fps, this
saturation seems artificial. In fact, after doing many re-
alizations we conclude that for Γq < Γs = 3.4 the solid
cluster seems to grow immediately with no delay. No-
tice that defined this way, Γs is different and lower that
Γc. Thus, our current measurements do not allow us to
measure small values of τo with enough precision. How-
ever, for Γq > Γs = 3.4, τo is a few tenths of seconds,
and, despite the poorer statistics, a strong growth is ob-
served. Finally, the strong increases for both τ and τo is
the reason we can not get closer to Γl within the experi-
mental observation times. For example, for Γq = 4.5 and
Γq = 4.8, the extrapolation for τ gives τ ∼ 105P ∼ 1000
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FIG. 5: (Color online) Fitted parameters α (a), N∞ (b), τ (c) and τo (d) as functions of Γq . For (a) and (b) symbols on the
x-axis correspond to realizations for which the phase separation was not achieved on the experimental observation time. Open
circles (◦) represent raw data obtained from several independent ramps, whereas solid squares (�) correspond to averages of
data for subsets of Γq. Errorbars are computed from standard deviations. In (b), open circles (◦) have a total measurement
time tm = 6× 104P , but some data is shown for tm = 12 × 104P (N). Solid circles (•) show some of the quasi-static heating
curves from Fig. 3. In (c) and (d) the growth time τ and lag time τo are plotted in semi-log scale. Both times increase strongly
as Γl = 4.8 is approached. The continuous line in (c) shows an linear fit log(τ/P ) = a∗Γq + ã, with a∗ = 4.1± 0.5. The dashed
line in (d) indicates the boundary below which clusters grow immediately after a quench.

s and τ ∼ 4×105P ∼ 4000 s respectively. Because τo also
would increase significantly, then very long measurement
times will be needed and particles would decrease signif-
icantly their magnetic interaction strength during these
experiments.

IV. DETAILED BALANCE MODEL FOR

CRYSTAL GROWTH

In order to model crystal growth in our system, we
need to consider a few important considerations: first,
the transition occurs at constant volume, which in prac-
tice implies a constant surface L2 = Sc(t) + Sl(t), with
Sc(t) the surface occupied by the (2D) solid cluster at
time t and Sl(t) the surface available for the disordered
liquid phase at that time. Also, the number of parti-

cles is conserved, N = Nc(t) + Nl(t), where Nl(t) is
the number particles in the the disordered phase. Sec-
ondly, we will consider that clusters grow with a circu-
lar shape. Because of the well defined structure of the
cluster, once Nc(t) is determined, then Sc(t) is known
too. Indeed, they are just related by a geometrical fac-
tor: Sc = πR(t)2, where R(t) = b

√

Nc(t) is the mean
cluster radius at time t and b a geometrical constant of
order of the grains diameter. For instance, for a perfectly
ordered crystal in hexagonal close packing one gets

b

d
=

(√
3

2π

)1/2

= 0.53.
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Next, we can establish a detailed balance equation to de-
termine the time evolution of Nc(t). This can be written

dNc(t)

dt
= pl→cNl(t)− pc→lNc(t), (2)

where pl→c is the probability by unit time that a particle
of the disordered phase is captured by the solid cluster
and pc→l is the probability by unit time that a parti-
cle escapes from the cluster to the liquid phase. The
first can be estimated crudely as the collision frequency
between a cluster and the liquid particles which have a
velocity small enough to be caught by the former. If we
characterize these particles by their mean velocity vo, we
assume

pl→c ∼
Nl(t)

Sl(t)
vo2R(t)

since 2R(t) is almost the cross-section of the cluster (for
R(t) >> d). Now, particles leaving a cluster have to be
at its perimeter. We can assume that they have a con-
stant probability by unit time p to leave this perimeter.
Therefore, because for simplicity we consider an almost
circular cluster we obtain

pc→l ∼
2πR(t)b

πR(t)2
p.

Both vo and p would depend on quench acceleration Γq,
on the distance to Γl, that is ∆Γ = Γl−Γq, on the particle
density N/L2 and on dipole magnetization µ. Knowing
the relation between L2, Sl(t), R(t), N , Nl(t) and Nc(t)
imposed by the constant surface, number of particles and
the crystal structure of the clusters, we can rewrite (2) as

dn(θ)

dθ
=

(

(1− n(θ))
2

1− βn(θ)
− γ

)

√

n(θ), (3)

where we haved introduced the normalized number of
particles in the solid cluster, n(θ) = Nc(t)/N , the
rescaled time, θ = (2ρvob

√
No)t, with ρ = N/L2, the

geometrical factor β = πb2ρ and the parameter γ =
p/(bρvoN). Notice that these parameters are not free
fitting parameters. Indeed, the geometric parameter
should be β ≈ ρd2

√
3/2 ≈ 0.65. It will be fixed to

this value hereafter. Moreover, in the time-asymptotic
regime or along the quasi-static heating ramp we can
impose dn(θ)/dθ = 0. Then, the parameter γ is ob-
tained through the the well defined stationary values
n∞ = N∞/N shown Fig. 5b. Therefore, for a given
value of the quenched acceleration Γq, the value of γ is
obtained by

γ =
(1− n∞)

2

1− βn∞

. (4)

The only undetermined parameter is the characteristic
velocity vo, thus the time scale t∗ = (2ρvob

√
N)−1.

0 1 2 3 4 5 6

x 10
4
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FIG. 6: (color online) The adjustment of experimental results
with equation (6) is shown with a continuous curve (red) for
Γq = 3.92 for which N∞/N = 0.662 and β = 0.65. Fit pa-
rameters are the time scale t∗/P = 4000 and growth starting
time to/P = 6500. For comparison the dashed line (black)
shows the stretched exponential fit given by Eqn. (1), with
parameters No/N = 0.130 ± 0.001, N∞/N = 0.661 ± 0.001,
α = 0.77 ± 0.02, τ/P = 5350 ± 80, and τo/P = 11520 ± 50.

Equation (3) can be solved to obtain the following ex-
pression for θ as a function of n:

θ

θo
= C1 · tanh−1

(
√

n
n∞

)

− C2 · tanh−1
(√

n
n∗

)

(5)

= ln

[

(

1+
√

n/n∞

1−
√

n/n∞

)C1/2

·
(

1−
√

n/n∗

1+
√

n/n∗

)C2/2
]

(6)

where

n∗ =
(2− n∞ − β)

(1− βn∞)

is the second root (larger than 1) of the polynomial rela-
tion issued of (4),

C1 =
(1− βn∞)√

n∞

,

C2 =
(1− β)2

√

(2− n∞ − β)(1 − n∞β)
,

and

θo =
2(1− βn∞)

(2− n∞ − β)(1 − n∞β)
.

Fig. 6 shows that a numerically inverted relation (6) with
t∗ as a fit parameter reproduces also quite satisfactorily
the experimental results. We stress that this fit has only
two adjustable parameters, t∗ and to (the starting growth
time), whereas the stretched exponential form has five,
No, N∞, τ , τo and α (when α is left as a free parameter).
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V. DISCUSSION AND CONCLUSIONS

In summary, quasi-static cooling and heating of a
layer of dipolar interacting spheres is performed by slow
changes of the driving acceleration. The system ex-
hibits an hysteretic phase transition between a disor-
dered liquid–like phase and an ordered phase. The or-
dered phase is formed by dense clusters, structured in
an hexagonal lattice, coexisting with disordered grains
in a liquid-like phase. By quenching the system in the
vicinity of the transition, we study the dynamical growth
of the ordered clusters, which can arise after a time de-
lay. The time evolution of the number of particles in the
solid-crystal phase is well fitted by a stretched exponen-
tial law, but also by relation (6) that we have obtained
analytically.
The first point to discuss is why we do not observe

particles in a state of branched chain, as reported in nu-
merical simulations [14–16]. Indeed our filling fraction,
φ = 0.59 as well as the reduced temperature T ∗ ∼ 0.4, are
not so far from the values used in [14–16]. However, we do
not observe the branched state reported in these studies,
at least not as a stable, stationary configuration. For our
experiment, as mentioned in section II, if a quench is done
deeply into the solid phase, Γq ∼ 1− 3, then many small
solid clusters are formed quickly and many linear chains
are present. However, this state eventually evolves to a
more densely packed state, with almost no linear chains,
in coexistence with the liquid phase. More systematic
experiments should be performed to study properly this
aging process.
Compared to numerical simulations, one of the major

differences is in the vertical vibration imposed in our ex-
periment to sustain particle motion. Indeed, instead of
the 2D thermal motion used in numerical studies, a par-
ticle in the solid phase collides the bottom and top plates
during an excitation period. The vertical motion might
disadvantage the formation of long chains, and compact
clusters might be more stable under such driving. More-
over, in contrast to numerical simulations, the magnetic
dipole moments are probably not uniformly distributed
in all the particles. Although it is really difficult to es-
timate the width of dipole moments distribution in our
experiment, a faction of them could be small enough to
prevent bounding.
The second point deserving discussion is the existence

of the quasi-static hysteresis loop when the driving am-
plitude is slowly modified. A crucial point is that dur-
ing a cooling ramp there is a specific driving, Γc, which
depending on the particular magnetization history is be-
tween 3.5 and 3.9, below which solid clusters grow. Due
to magnetization reduction and because τ and τo vary
with driving amplitude, this specific boundary is very dif-
ficult to determine more precisely. How slow one should
vary the driving depends on the time scales that are
present in the system, that is on τ and τo. The quench
experiments show that, within the hysteresis loop, both
times grow strongly with driving amplitude. These same

quench experiments show the existence of another par-
ticular acceleration Γs (. Γc), below which τo ≈ 0. This
onset value seems to be better defined that Γc.
Our quasi-static increasing acceleration ramps show

that the heating branch of the loop seems to be a sta-
ble, adiabatic branch. In particular, all quasi-static heat-
ing ramps follow the same curve and the critical driving
above which solid clusters disappear, Γl = 4.8 ± 0.1, is
very reproducible. The fact that we are able to follow
adiabatically this stable branch can be understood with
the following reasoning:

• A ramp starts at low Γ with a well formed solid
cluster (or clusters) in coexistence with the liquid
phase;

• The driving amplitude is increased in a small
amount, which increases the system’s kinetic en-
ergy (granular “temperature”);

• Particles in the solid phase but at the cluster’s
boundary will receive stronger collisions from those
in the liquid phase, so the probability of getting
ripped off increases;

• This results in a cluster size reduction, more or less
continuously as the driving is increased further;

• As the change from the one state to another occurs
smoothly, the time it takes can be short.

The fact that Γl > Γs demonstrates that there is a
metastable region for which the system might stay in
a completely fluidized state, but from which eventually
a solid cluster will nucleate and grow until a station-
ary size is reached. Also, quench experiments done for
Γq = 3.4− 3.9 show that the final cluster size is the same
as the obtained for the heating ramp (N∞/N collapses
with Nc/N of the heating quasi-static loop). This shows
that the cooling ramp branch of the quasi-static loop is
not stable, implying that the cooling ramp was proba-
bly not done slowly enough. This is consistent with the
fact that for a given magnetic interaction strength, the
value of Γc depends on the decreasing ramp rate. As
the number of solid particles has to grow from the back-
ground noise level to the final asymptotic one, then wait-
ing times much longer that τo are necessary. Another
possible route for the metastable state characterization
would be to study precursors through density and veloc-
ity correlations.
We now turn to the values of α used to fit experimental

data with a stretched exponential law. At equilibrium,
we would expect an exponent α = D+ 1 = 3 [20], where
D = 2 is the spatial dimension, but instead we obtain
α ≈ 0.5. Due to the anisotropy of the attractive force,
of the special shape of the interface and of the fact that
most of the clusters start to grow from boundaries, one
could assume that our experiment behaves more like 1D
system, but even in this extreme case, we should have get
D ≥ 1 and α ≥ 2. Moreover, one has to underline that
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we are in a out-of-equilibrium dissipative system. Others
aspects can therefore play a role, like dissipation, which
is probably different in the cluster and liquid phase, or
the very particular thermalization imposed by vertical
vibration. This effect could be especially important near
the transition where a critical behavior can be expected.
Actually, an exponent α < 1 is measured in another out-
of-equilibrium system: the slow compaction of granular
packing by tapping [4], but the meaning of such law is
still under debate in this case. This issue deserves further
studies by changing the boundary shape (from square to
circular) or by doing the experiment in a viscous fluid to
modify the dissipation or by exciting the grains by vibra-
tion using colored noise with a broad frequency range.
It is clear that the present system is strongly out of

equilibrium. Despite it can reach stationary states, at
coexistence the effective in plane “granular” kinetic tem-
peratures can be very different between the liquid and
solid phases. In the metastable region, the transition
from the liquid state to the coexisting one can be achieved
with the experimental time scales that are available. This
transition occurs because the appropriate fluctuation oc-
curs in the liquid state. But, once a particle is trapped in
the solid state, specially those deep inside the boundary
layer, it is very difficult for them to escape. Indeed, from
our model we can estimate in a stationary regime that
the ratio between the probability rates pl→c and pc→l is
given by

pl→c

pc→l
=

n∞

1− n∞

. (7)

For Γ < Γs, pl→c/pc→l & 7. This allows us to propose
that the transition in our system is a good candidate to
be considered as quasi-absorbing hysteretic phase tran-
sition. However, the relative small size of the system
and our imperfect control on the spheres magnetization
and therefore on the transition onsets, makes very dif-
ficult any quantitative benchmark between our system
with other systems exhibiting out-of-equilibrium quasi-
absorbing phase transitions. Nonetheless, some promis-
ing qualitative similarities can be underlined between
our experiment and the out-of-equilibrium transition ob-
served between two turbulent phases of a liquid crystals,
transition that belongs to the direct percolation univer-
sality class [2]. In this system an hysteresis loop is ob-
served between a turbulent phase stable at high excita-
tion (called DSM2) and a quasi-absorbing state (called
DSM1) [21, 22]. Also, an exponential decay of DSM2
phase is observed when it is quenched in the DSM1 sta-
ble region [2]. Computations of the critical exponents
is beyond the experimental accuracy accessible with our
system and procedures and will need a larger device and
also a better control of the magnetic interaction strength.
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