Alexandre Adomnicai 
email: a.adomnicai@trusted-objects.com
  
Benjamin Lac 
email: benjamin.lac@cea.fr
  
Anne Canteaut 
email: anne.canteaut@inria.fr
  
Jacques J A Fournier 
email: jacques.fournier@cea.fr
  
Laurent Masson 
email: l.masson@trusted-objects.com
  
Renaud Sirdey 
email: renaud.sirdey@cea.fr
  
Assia Tria 
email: assia.tria@cea.fr
  
On the importance of considering physical attacks when implementing lightweight cryptography

Keywords: LWC, PRIDE, Physical attacks, CEMA, DFA

Pervasive devices are usually deployed in hostile environments where they are physically accessible to attackers. As lightweight cryptography is designed for such devices, it has to be particularly resistant to physical attacks. In this paper, we illustrate how active and passive physical attacks against the lightweight block cipher PRIDE can be carried. A side channel attack and a fault attack have been successfully implemented on the same software implementation of the algorithm. In both cases, we were able to recover the entire encryption key. First, we present our attacks, then we analyze them in terms of complexity and feasibility and finally, we discuss possible countermeasures.

Introduction

Everyday, more objects are turned into interconnected pervasive devices. The expansion of the Internet of Things (IoT) brings many benefits but also raises a number of problems concerning security and privacy. Security is one of the biggest barriers to IoT adoption. To tackle this challenge, lightweight cryptography (LWC) is investigated in order to address IoT security issues while seeking the best compromise between security, power consumption, high performance and low footprint. During the last years, several lightweight block ciphers have been proposed, for example PRIDE [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF], PRESENT [START_REF] Bogdanov | PRESENT: An ultra-lightweight block cipher[END_REF], CLEFIA [33], PRINCE [START_REF] Borghoff | PRINCE -A low-latency block cipher for pervasive computing applications -extended abstract[END_REF], KLEIN [START_REF] Gong | RFID. Security and Privacy: 7th International Workshop[END_REF], SIMON [START_REF] Beaulieu | SIMON and SPECK: Block Ciphers for the Internet of Things[END_REF] or SPECK [START_REF] Beaulieu | SIMON and SPECK: Block Ciphers for the Internet of Things[END_REF]. LWC will be embedded into the IoT devices which shall have to store and handle secret/sensitive cryptographic keys at some points. The security of these keys within the device has to be guaranteed throughout the life cycle of the device (i.e. from the device's manufacturing through the personalization stage up to its end of life), which may last several years. In the meantime, the device will be in the field and as it can be a hostile environment (i.e. physically accessible to attackers), physical attacks must be taken in account. Indeed, resistance against side channel attacks is now considered as a valuable property which should be taken in consideration when designing lightweight ciphers, as underlined by the ciphers FIDES [START_REF] Bilgin | FIDES: Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware[END_REF], PICARO [START_REF] Piret | PICARO -A Block Cipher Allowing Efficient Higher-Order Side-Channel Resistance[END_REF], Zorro [START_REF] Gãľrard | Block ciphers that are easier to mask: How far can we go?[END_REF] and the LS-designs family [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF]. Although hardware implementations are more efficient in all aspects (performances, power consumption and security) than software ones, design and study of software-oriented ciphers is nevertheless important since these implementations are widely used in practice because of their flexibility and ease of development. In this paper we analyze the resistance of PRIDE against physical attacks because nowadays, when looking at software implementations, it is one of the most efficient lightweight block ciphers [START_REF] Baysal | Roadrunner: A Small and Fast Bitslice Block Cipher for Low Cost 8-bit processors[END_REF] as shown by the performance comparisons given in [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF][START_REF] Baysal | Roadrunner: A Small and Fast Bitslice Block Cipher for Low Cost 8-bit processors[END_REF]. In this paper we first present the PRIDE algorithm before introducing physical attacks. Then we introduce the two attacks that have been put into practice before analyzing them in terms of efficiency and feasibility. Finally we discuss countermeasures that can be implemented to thwart such attacks before concluding the paper with some perspectives.

PRIDE is an iterative block cipher composed of 20 rounds and introduced by Albrecht & al. [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF] in 2014. It takes as input a 64-bit block and uses a 128-bit key k = k 0 ||k 1 . The first 64 bits k 0 are used for preand post-whitening. The last 64 bits k 1 are used by a key schedule algorithm to produce the subkeys f r (k 1 ) for each round r. The key schedule adds round-constants to parts of the key.

We denote by k 1i the i-th byte of k 1 then f r (k 1 ) = k 10 ||g (0) r (k 11 )||k 12 ||g (1) r (k 13 )||k 14 ||g (2) r (k 15 )||k 16 ||g (3) r (k 17 )

for round r with g (0) r (x) = (x + 193r) mod 256 g (1) r (x) = (x + 165r) mod 256 g (2) r (x) = (x + 81r) mod 256

g (3) r (x) = (x + 197r) mod 256

The design of PRIDE is close to the one of a LS-design, a concept that was introduced by Grosso & al [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF] in 2014, the only differences being that it uses an additional key for pre-and post-whitening, several matrices for the linear layer and has no linear layer on the last round. In this paper, we chose to present PRIDE as a LS-design in order to explain more simply our analysis.The inner state of the cipher, as well as the plaintext, ciphertext, and key, are all represented as a 4 × 16 bits array. In this paper, B[n] denotes the n-th nibble (4 bits) of a binary word B while B n denotes the i-th byte of B. Moreover, the nibbles' rows and columns are numbered from left to right starting from 1. The following notations are used for the intermediate values of the state within a round function:

I r
the input of the r-th round X r the state after the key addition layer of the r-th round Y r the state after the substitution layer of the r-th round input O r the output of the r-th round A round r such that 1 ≤ r ≤ 19 is composed of the following steps:

i. XORing the current n-bit subkey f r (k 1 ) with the state: X r = I r ⊕ f r (k 1 ), ii. Applying the 4-bit S-box S, which definition is given in Appendix C, to each column of the state (i.e. apply the substitution layer S-layer to the state): Y r = S-layer(X r ), iii. Multiplying each row by a matrice L i , called L-box, given in [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF] for 0 ≤ i ≤ 3 (i.e. apply the linear layer L-layer to the state): O r = L-layer(Y r ).

The last round simply consists of the first two steps (i.e. without the linear layer).

In order to encrypt a plaintext M , the cipher performs a XOR between M and P(k 0 ), where P is the permutation layer given in [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF]. It then applies the 20 rounds as previously described, and finally applies once again a XOR between M and P(k 0 ). Figure 1 shows the representation of PRIDE inner state with frames showing the inputs of S-box and the input of L-box. In this paper, we denote by S 1 • • • S 16 the inner state given in Figure 1 such that S i consists of the nibble s 1,i • • • s 4,i for all i. For example, the hexadecimal value 0xe8d3157f246e80cb denotes the inner state given in Figure 2. 

s1,1 • • • s1,16 . . . . . . . . . s4,1 • • • s4,16           Apply L-box Apply S-box
    1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1    

Physical attacks

Cryptographic algorithms are usually constructed to resist to algebraic (mathematical) cryptanalysis or exhaustive key searching by future computers. However, most cryptographic models do not cover physical attacks which target the cryptographic primitive's implementation. Physical attacks can be divided into two classes: passive attacks and active ones. Active attacks disturb the operation of a device or try to reverse-engineer functions by analysing the chip at the logic level. Passive attacks, also called side channel attack (SCA) [START_REF] Koeune | A tutorial on physical security and side-channel attacks[END_REF], can be divided into timing attacks [START_REF] Dhem | A practical implementation of the timing attack[END_REF], and interpretation of one or more traces [START_REF] Quisquater | Electromagnetic analysis (EMA): measures and counter-measures for smart cards[END_REF][START_REF] Mangard | Power analysis attacks -revealing the secrets of smart cards[END_REF] (i.e. recording of the power or electromagnetic emanation while a cryptographic primitive is running on the device). In this paper, we present an attack from each category (passive and active) on the PRIDE lightweight block cipher.

Side-channel attacks

Since the publication of differential power analysis (DPA) [START_REF] Kocher | Differential power analysis[END_REF], it is public knowledge that the analysis of a power trace obtained when executing a cryptographic primitive might reveal information about the secret involved. A few years later, correlation power analysis (CPA) has been widely adopted over DPA as it requires fewer traces and is more efficient [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]. The principle is to recover part of the secret key by targeting a specific intermediate state of the algorithm, and try to predict its value by making hypotheses on the portion of the key involved. Then, to uncover the link between the predictions and the traces, the Pearson correlation coefficient between these two variables is computed using an appropriate leakage model (usually based on the Hamming weight or the Hamming distance depending on the platform and the targeted implementation). It yields a value between -1 (total negative correlation) and +1 (total positive correlation) for every point in time, indicating how much the prediction correlates to the recorded values over several traces. The formula of this coefficient is

ρ(X, Y ) = Corr(X, Y ) = Cov(X, Y ) σ X σ Y = E(X Y ) -E(X)E(Y ) E X -E(X) 2 E Y -E(Y ) 2 . ( 1 
)
where E(X) is the expected value of the random variable X. Then, the hypothesis which matches with the real key should return a significantly higher coefficient than the other hypotheses. Note that other functions may be used to exploit the correlation between measured traces and the secret key used, like those based on template analyses or mutual information exploitation. The attack described above remains valid when analyzing electromagnetic (EM) emanation traces instead of power consumption ones. In this case, we talk about Correlation-based ElectroMagnetic Analysis (CEMA). Although there are many different ways to measure EM emissions (sensor types, positioning. . . ), this side channel has properties that make it more interesting than the "traditional" power consumption measurements. Among those properties, the ability to measure locally and in a contactless manner [2] makes electromagnetic emanations very attractive. Furthermore, power analysis often requires a slight modification of a device's printed circuit board (PCB) (e.g. by setting up a point to monitor core voltage), which is not necessary with EM analysis. These reasons led us to choose this side channel.

Regarding LWC, side channel attacks have been performed againsts ciphers like PRESENT [START_REF] Yang | Side Channel Cube Attack on PRESENT[END_REF][START_REF] Poschmann | Side-channel resistant crypto for less than 2, 300 ge[END_REF][START_REF] Renauld | Combining Algebraic and Side-Channel Cryptanalysis against Block Ciphers[END_REF], CLEFIA [START_REF] Rebeiro | Cryptanalysis of CLEFIA Using Differential Methods with Cache Trace Patterns[END_REF] or PRINCE and RECTANGLE [START_REF] Selvam | Side channel attacks: Vulnerability analysis of prince and rectangle using dpa 33[END_REF].

Fault attacks

Fault attacks, introduced in [START_REF] Boneh | On the importance of checking cryptographic protocols for faults (extended abstract)[END_REF], consist in disturbing the behaviour of the circuit in order to alter the correct execution of the cipher. Faults can be injected into the device by various means such as light pulses [START_REF] Skorobogatov | Optical fault induction attacks[END_REF], laser [START_REF] Skorobogatov | Semi-invasive attacks -A new approach to hardware security analysis[END_REF], clock glitches [START_REF] Agoyan | When clocks fail: On critical paths and clock faults[END_REF], spikes on the voltage supply [START_REF] Blömer | Fault based cryptanalysis of the advanced encryption standard (AES)[END_REF] or EM perturbations [START_REF] Dehbaoui | Electromagnetic transient faults injection on a hardware and a software implementations of AES[END_REF]. Some other techniques are not invasive, i.e. glitches (power, clock, electromagnetic). Clock and voltage glitches disturb the whole component while EM glitches allow to have more local effects with relatively high spatial and temporal precisions, using equipment at "affordable costs" [START_REF] Dehbaoui | Electromagnetic transient faults injection on a hardware and a software implementations of AES[END_REF].

One of the objectives of fault attacks, especially when considering cryptographic ciphers, is to perform Differential Fault Analysis (DFA). DFA, originally described in [START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF], consists in retrieving a cryptographic key by comparing the correct ciphertexts with the faulty ones yielded by computations during which a physical perturbation was applied. In the particular field of LWC, differential fault attacks have been proposed against ciphers like PRESENT [START_REF] Zhao | Improved side channel cube attacks on PRESENT[END_REF], SPECK [START_REF] Tupsamudre | Differential fault analysis on the families of SIMON and SPECK ciphers[END_REF], TRIVIUM [START_REF] Mohamed | Using SAT solving to improve differential fault analysis of trivium[END_REF], PRINCE [START_REF] Song | Differential fault attack on the PRINCE block cipher[END_REF] and PRIDE [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF]. DFA techniques are very efficient to retrieve keys used during a cryptographic computation, usually requiring only a few executions. For this main reason, in our analysis of PRIDE implementations security, we decided to first focus on its resistance against fault attacks in order to identify possible attack paths.

Setting up the attacks

In this section, we first describe how our device has been programmed and then detail the 'reverseengineering' done to carry out the attacks presented afterwards.

Implementation

In order to test the feasibility of our attacks against PRIDE, we have implemented and run the cipher on a chip embedding an ARM Cortex-M3 micro-controller. That specific chip was chosen because it is quite representative of the off-the-shelf devices used for IoT applications. Note that the chip does not embed any countermeasures against the kind of attacks presented in this paper. Our implementation, whose source code is given in Appendix D, works on bytes of data. In our experiment, we used a key k = k 0 ||k 1 where k 0 = 0xa371b246f90cf582 and k 1 = 0xe417d148e239ca5d.

Simple Electromagnetic Analysis

First, we performed a simple electromagnetic analysis (SEMA) during one execution of PRIDE in order to identify our attack targets.

By inspecting the trace shown in Figure 3, we could clearly distinguish every twenty rounds. Then, we tried to recognize each operation by zooming onto the first two rounds, the corresponding trace is shown in Figure 4.

At first sight, it was easy to differentiate one round from the other but not one operation from the other. To distinguish each operation whithin a round, we first took a look at the last one, where the L-layer is omitted. Consequently, it allowed us to determine the pattern corresponding to the L-layer and so where the S-layer's one ends. Finally, we had to distinguish the round key whitening and the S-layer. As the round key whitening consist of 4 additions and 8 XORs, we made the educated guess depicted in Figure 4 intuitively. 

Correlation electromagnetic analysis

In this section, we introduce our attack to retrieve the secret key using CEMA on unprotected PRIDE computations. Then, we propose a pragmatic execution of the attack on our 8-bit implementation.

General principle

The principle is to make the attack in two stages: one for each halves of the key. The first step consists in recovering P(k 0 ). To do this, we chose to focus on the last round, as in the first round, P(k 0 ) and f 1 (k 1 ) are added successively to the state.

By characterizing our chip embedding an ARM Cortex-M3, we observed that information leaked upon register updates through the STRB ARM instruction. As the leak does not concern the previous state value, we used a leakage model based on the Hamming weight7 (HW) of the manipulated data.

CEMA against block ciphers usually focuses on the input (or output, depending on whether the attack focuses on the last round or not) of the S-box operation which is the only non-linear element of the algorithm. This non-linearity ensures a good distinguishability between the correct and incorrect key guesses for CEMA. Indeed, correlation between the observed and the predicted EM leakage will be close to zero if the key guess is incorrect, due to the non-linear relationship between the predicted state and the key. Although we could focus on the input of the last S-layer by starting from ciphertexts, we did not opt for this approach. At first glance, it seemed too convoluted because of our bitsliced implementation. It is due to the fact the permutations P and P -1 form an integral part of the S-layer and have not been explicitly implemented. Therefore, to recover the state's first byte at the last S-layer input, one should make hypotheses on P(k 0 ) 0 , P(k 0 ) 2 and P(k 0 ) 4 (i.e. on 24 bits). Contrary to some other block ciphers such as AES, where each byte passes through the S-box independently, in the case of PRIDE each byte depends on several others during the S-layer operation. Consequently, we decided to focus on the key additions where each byte could be treated independently. The first stage consists in recovering P(k 0 ) by predicting the state value at the S-layer output while the second one consists in recovering f 20 (k 1 ) by predicting the state value at the L-layer output.

Practical implementation

PRIDE was executed for 1000 random plaintexts with the fixed key k stated in the previous section. The last two rounds were targeted for the data acquisition and EM traces were captured with 6500 points per encryption of 1000 samples. Thereafter, we will note the matrix of traces.

T =      T 0 T 2 . . . T 6499      =      t 0,0 t 1,1 • • • t 0,999 t 2,0 t 2,1 • • • t 2,999 . . . . . . . . . . . . t 6499,1 t 6499,2 • • • t 6499,999      . ( 2 
)
To recover each byte P(k 0 ) i for 0 ≤ i ≤ 7, we first computed the estimation matrices E i by computing the Hamming weight of each ciphertext C j for 0 ≤ j ≤ 999 XORed with each key hypothesis 0 ≤ H K ≤ 255.

E i =      E i 0 E i 1 . . . E i 255      =      e i 0,0 e i 0,1 • • • e i 0,999 e i 1,0 e i 1,1 • • • e i 1,999 . . . . . . . . . . . . e i 255,0 e i 255,1 • • • e i 255,999      (3) 
where

e i H K ,j = HW (C j,i ⊕ H K ).
Then, we performed a classical CEMA attack (also called Vertical ) by computing the correlation coefficients matrices P i from E i and T where T ⊂ T denotes the traces points corresponding to the last S-layer.

P i =      P i 0 P i 1 . . . P i n-1      =      ρ i 0,0 ρ i 0,1 • • • ρ i 0,255 ρ i 1,0 ρ i 1,1 • • • ρ i 1,255 . . . . . . . . . . . . ρ i n-1,0 ρ i n-1,1 • • • ρ i n-1,255      (4) 
where #T = n ≈ 1300 and ρ i t,H K = Corr(T t , E i H K ). We can clearly distinguish a symmetry about the x-axis, which occurs due to the fact that the key hypotheses are simply XORed with the ciphertexts. Thus, the two's complement H K (i.e. 255 -H K ) of each key byte hypothesis H K leads to a symmetric relation regarding the Hamming weight estimation matrix i.e. ∀i ∀j, E i H K ,j = 8 -E i H K ,j . This results in a negative correlation coefficient as stated in Proposition 1. The proof of this proposition is given in Appendix B.

Proposition 1 Let X be an arbitrary variable. Let Y i = (y i,1 , y i,2 , ..., y i,n ) and Y j = (y j,1 , y j,2 , ..., y j,n ) be two variables such as

Y i = z -Y j i.e. ∀n, y i,n = z -y j,n with z ∈ R. Then, Corr(X, Y i ) = -Corr(X, Y j ).
Furthermore, we can differentiate 8 correlation classes. Each class corresponds to a set of key byte hypotheses S d where the Hamming distance between the real key byte and each element equals d (i.e.

∀H K ∈ S d , HD(H K , K) = d).
Therefore, we deduced that it was sufficient to make key byte hypotheses on 7 bits instead of 8. Consequently, in that way, if max(|P i |) = max(P i ) then the correct key byte is the matching H K , otherwise it is H K . Figure 6 shows the plot corresponding to P 1 with 128-bit hypotheses and Figure 7 shows the plot corresponding to P 2 as well with 128-bit hypotheses which illustrates the other case (i.e. highest negative correlation coefficient). In the same way, we were able to recover all the other bytes of P(k 0 ). After that, we were able to apply the S-layer without any complications and then we repeated the same reasoning to recover f 20 (k 1 ). The only differences concern the part of the trace which is analyzed T ⊂ T (i.e. the L-layer operation instead of the S-layer one) and the way to compute the estimation matrices: e i H K ,j = HW (C j,i ⊕ H K ) where C j = S-layer -1 C j ⊕ P(k 0 ) .

Differential faults analysis of PRIDE

In this section, we briefly recall the technique proposed in [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF] to retrieve the secret key using fault injections on PRIDE computations. More details on this attack are given in [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF]. Then, we propose a practical implementation of the attack on our 8-bit PRIDE implementation. Note that in this section, we chosed to apply P -1 to the differential inputs (resp. outputs) to clearly exhibit each S-box nibble input (resp. output).

General principle

In the first state of this attack, we corrupt, one by one, some rows of the inner state between the last two substitution layers in order to retrieve k 0 . Indeed, a flip of the bit 1 ≤ α ≤ 16 on the row 1 ≤ β ≤ 4 of X r at round 1 ≤ r ≤ 20 gives us a difference ∆In r [α] equals to 2 4-β on the S-box input α. Moreover, from the knowledge of the correct and the faulty ciphertexts C and C * , we can compute the corresponding difference ∆Out r [α] on the S-box output. Thereby, we obtain a known differential (∆In r [α], ∆Out r [α]).

The best case consists then in flipping all the bits of the row in order to activate all the S-boxes in the last round. For example Figure 8 shows the obtained state difference from a flip of the second row before the substitution layer. In this case, we got a difference equal to 0x4 on the input of each S-box. Then, we exploit the difference distribution table of the PRIDE S-box given in [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF]. Indeed, obtaining information on k 0 is possible from the following equation on each nibble 1 ≤ α ≤ 16:

0 0 • • • 0 0 1 1 • • • 1 1 0 0 • • • 0 0 0 0 • • • 0 0             Apply S-box
∆In 20 [α] = S (P -1 (C) ⊕ k 0 )[α] ⊕ S (P -1 (C * ) ⊕ k 0 )[α] Indeed, x = (P -1 (C) ⊕ k 0 )[α] and y = (P -1 (C * ) ⊕ k 0 )[α] satisfy x ⊕ y = ∆Out 20 [α] and S(x) ⊕ S(y) = ∆In 20 [α]
and, from the knowledge of a nonzero input difference ∆In 20 [α] and of an output difference ∆Out 20 [α] for S, we deduce 2 or 4 candidates for the input value x because the differential uniformity of S equals 4 (as we can see from the difference distribution table of the PRIDE S-box). Moreover, Proposition 2 introduced in [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF] enables us to exhibit pairs of differentials for the S-box which are simultaneously satisfied for a single element. The proof of this proposition is given in [START_REF] Lac | A First DFA on PRIDE: from Theory to Practice[END_REF].

Proposition 2 Let S be an n-bit S-box with differential uniformity 4. Let (a 1 , b 1 ) and (a 2 , b 2 ) be two differentials with a 1 = a 2 such that the system of two equations

S(x ⊕ a 1 ) ⊕ S(x) = b 1 (5) S(x ⊕ a 2 ) ⊕ S(x) = b 2 (6) 
has at least two solutions. Then, each of the three equations (5), [START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF] and

S(x ⊕ a 1 ⊕ a 2 ) ⊕ S(x) = b 1 ⊕ b 2
has at least four solutions.

In other words, if we can find two differentials (a 1 , b 1 ) and (a 2 , b 2 ) such that one out of the three entries in the difference distribution table (a 1 , b 1 ), (a 2 , b 2 ) and (a 1 ⊕ a 2 , b 1 ⊕ b 2 ) equals to 2, then we can guarantee that the input satisfying these two differentials simultaneously is unique.

Note: if one of the three equations does not have any solution, then the system of two equations ( 5) and (6) does not have any solution either.

Finally, for the first stage (which objective is to find k 0 ), we just have to flip two rows such that the obtained pairs of differentials complies with the proposition. For example, flipping the first row and then the last one, allows us to obtain respectively for all 1 ≤ α ≤ 16 pairs of differentials (∆Out 20 [α], ∆In 20 [α]) 1 = (a 1 , 0x8) and (∆Out 20 [α], ∆In 20 [α]) 2 = (a 2 , 0x1) with a 1 and a 2 known. Since 0x8⊕0x1 = 0x9 from the Proposition 2 (and the difference distribution table of the PRIDE S-box), only one element in the intersection of the two sets of solutions is obtained for each nibble. Therefore, we have shown that we get only one candidate for each nibble of P -1 (C) ⊕ k 0 and, from the knowledge of C, we retrieve k 0 .

Once k 0 has been recovered, X 20 and X * 20 can be computed from the ciphertexts C and C * . Then ∆Out 19 can be computed and the following equation, on each nibble 1 ≤ α ≤ 16,

∆In 19 [α] = S • P -1 • L-layer -1 S-layer C ⊕ P(k 0 ) ⊕ f 20 (k 1 ) [α] ⊕ S • P -1 • L-layer -1 S-layer C * ⊕ P(k 0 ) ⊕ f 20 (k 1 ) [α],
allows the attacker to recover f 20 (k 1 ), and therefore k 1 with the same method but from fault injections between the penultimate two substitution layers. Indeed,

x = P -1 • L-layer -1 S-layer C ⊕ P(k 0 ) ⊕ f 20 (k 1 ) [α] and y = P -1 • L-layer -1 S-layer C * ⊕ P(k 0 ) ⊕ f 20 (k 1 ) [α] satisfy x ⊕ y = ∆Out 19 [α] and S(x) ⊕ S(y) = ∆In 19 [α].

Practical implementation

In order to inject exploitable faults into such a chip, we used EM pulses because, with this approach, we did not need to decapsulate the chip and were able to inject faults at precise spatial locations and at precise enough instants to target specific rounds of the cipher during its execution. The set-up we used is quite similar to the one described in [START_REF] Dehbaoui | Electromagnetic transient faults injection on a hardware and a software implementations of AES[END_REF] but we did not need any motorized X-Y stage: injecting faults 'in the center' of the chip was good enough to have a random fault model (one chance out of two to flip a bit). Indeed, as we saw in the previous section, it is possible to target a precise 8-bit word (more precisely a specific instruction) but the injected faults follow a random pattern. We can thus retrieve the value of a random fault from the position of active S-boxes.

The plaintext used for all executions was 0xe8d3157f246e80cb and the correct ciphertext was 0x0b735baaf63aac9e. We used the SEMA presented in figure 3 to identify the last rounds in time. Then, we used an electromagnetic pulse generator to disrupt the PRIDE execution. All the obtained faults which were exploitable are given in Appendix A. Among the obtained faults, we underline in Appendix A those that give as much information as all faults. It also lists the candidates that we can extract from them.

From the obtained faults on the last two substitution layers and from P -1 (C) = 0x3636d3ec58eb71f8, with k 0 [3] ∈ {0x0, 0x1, 0x4, 0x5} and k 0 [START_REF] Borghoff | PRINCE -A low-latency block cipher for pervasive computing applications -extended abstract[END_REF] ∈ {0x8, 0x9, 0xc, 0xd}, we got 16 possible values for k 0 . In order to reduce the number of possible keys, we then used faulty ciphertexts obtained from fault injection between the penultimate two substitution layers. For this, we computed the difference output ∆Out 19 from all the 16 remaining candidates for the key. Then, we observed that some differentials (∆Out 19 , ∆In 19 ) were not possible on the inverse S-box and therefore we removed the corresponding candidates.

Indeed, from the faulty ciphertext 0xc42ec0dbb65e18db, we obtained the 16 following values for ∆Out 19 for each possible value of k 0 :

k0 0xa370b246f908f582 0xa370b246f909f582 0xa370b246f90cf582 0xa370b246f90df582 0xa371b246f908f582 0xa371b246f909f582 0xa371b246f90cf582 0xa371b246f90df582 ∆Out19 0x000800096445640e 0x020800096447440e 0x0000000064446407 0x0000000164456406 0x000800096445640e 0x020800096447440e 0x0000000064446407 0x0000000164456406 k0 0xa374b246f908f582 0xa374b246f909f582 0xa374b246f90cf582 0xa374b246f90df582 0xa375b246f908f582 0xa375b246f909f582 0xa375b246f90cf582 0xa375b246f90df582 ∆Out19 0x000800096445640e 0x020800096447440e 0x0000000064446407 0x0000000164456406 0x000800096445640e 0x020800096447440e 0x0000000064446407 0x0000000164456406
and as we knew that we injected faults on the last row of X 19 , we knew that each nibble of ∆In 19 was either 0x0 or 0x1. From the difference distribution table of the S-box, we saw that an input difference equals to 0x1 implies an output difference in {0x4, 0x5, 0x6, 0x7}. Then, we got only four possible candidates for k 0 (displayed in red). Similarly, from the faulty ciphertext 0x3165d7eea5f5f4dc, we obtained the following values for ∆Out 19 based on remaining values of k 0 :

k0 0xa370b246f90cf582 0xa371b246f90cf582 0xa374b246f90cf582 0xa375b246f90cf582 ∆Out19 0x03a98a8300000001 0x03a88a8200000000 0x03a9ce8b40080009 0x21a9ce8b40082009
and as we knew that the fault was injected on the first row of X 19 , we were able to retrieve k 0 (displayed in red).

Then, by doing the intersection between the sets for each nibble obtained from the faults injected between the penultimate two substitution layers, we got

P -1 • L-layer -1 S-layer C ⊕ P(k 0 ) ⊕ f 20 (k 1 ) = 0xdf36eb60a400d4e9.
Thus, S-layer C ⊕ P(k 0 ) ⊕ f 20 (k 1 ) = 0xffb81d4c69243ad7, and from S-layer C ⊕ P(k 0 ) = 0x1b93cc608ba9f016, we deduced f 20 (k 1 ) = 0xe42bd12ce28dcac1 and finally, we retrieved k 1 = 0xe417d148e239ca5d.

7 Costs analysis of CEMA and DFA on PRIDE

Attack paths

In terms of attack paths, CEMA exploits the key addition layer while DFA exploits the design of the PRIDE S-layer. This latter makes the CEMA more tricky since it uses the transparent bitwise permutation layers given in [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF] unlike classical substitution layers, which apply n-bit S-boxes singly on each n-bit words of the state. In the case of PRIDE, the substitution layer applies bitwise mathematical operations between each 16-bit words of the state (or bytes in our implementation). Consequently, it makes the intermediate state corresponding to input (or output) of the S-layer more delicate to target. However, attacking a simple XOR operation still allowed us to carry out the attack.

On the other hand, this property makes DFA much easier. Indeed, flipping the 16 bits of any row at its input activates all S-boxes in the next round. Hence, applying this property in the last round allows the attacker to recover information on all nibbles of the subkey k 0 . Then, the number of remaining candidates for k 0 is upper-bounded by δ(S) 16 , where δ(S) = 4 is the differential-uniformity of the PRIDE S-box. Moreover, the differential properties of the S-box avoids the existence of differentials with high probability over a large number of rounds. The counterpart of this resistance against classical differential cryptanalysis is that the number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element. This property enables the attacker to drastically reduce the number of subkey candidates. In the case of PRIDE, two faults, each on 16 consecutive bits before the substitution layer, are enough to obtain a single candidate for the subkey.

Costs

We now analyze the total cost of each attack. First, we study the attacks implementation cost. CEMA only requires many curves of simple electromagnetic analysis of the last rounds from different plaintexts. In this case the ring oscillator does not need to be particularly efficient and a simple picoscope would amply do the job. DFA is more difficult to implement: it only needs one simple electromagnetic analysis but requires an electromagnetic pulse generator. The number of needed pulses in order to obtain enough exploitable faults is close to the number of required curves for the CEMA but DFA requires only one plaintext. Then, we compute an approximation of each attack complexity from the required parameters.

In case of CEMA, we have shown that, by attacking the key addition layer, it is sufficient to make hypotheses on 7 bits only. So, for each half of the key, we have to make 2 7 × 8 = 2 10 hypotheses. It means that our attack reduces the key search space from 2 128 to 2 11 . To generalize, we denote n K the number of portion key hypotheses, n T the number of texts and n P the number of points per trace. Then, CEMA requires to compute n K × n C estimations and n K × n P correlation coefficients for each part of the key. Note that the attack can be optimized by reducing the number of points treated. For example, an educated guess on the interval to attack can be made in order to avoid computations overhead. This underlines that CEMA requires much more memory than DFA. In this experimentation, approximately 100Mo were required but depending on n K , n T and n C values, it can quickly become a handicap.

In case of DFA, we compute the number of remaining candidates from 8-bit random faults. We call 8-bit random fault the fact of having one chance out of two to flip each bit of a byte. This is close to what we have obtained in practice with electromagnetic pulses on our implementation. It is possible to target a precise word (more precisely a specific instruction) but the injected faults follow a random pattern. Moreover, injecting the faults before the linear layer allows us to obtain a difference pattern close to a 16-bit random difference pattern at the output. Thus, the complexity is close to an exhaustive search of the remaining candidates from random faults on the first and last row before the last two substitution layers. Then, when n random faults (one chance out of two to flip each bit) have been injected on one row, the probability to obtain no difference on a nibble is equal to 1/2 n and the probability to obtain one difference is equal to

n i=1 1/2 i = 1 -1/2 n = (2 n -1)/2 n .
Moreover, if we get no difference with all faults (on the first and last row) then, we still have 16 candidates for the corresponding nibble. On the other hand, if we get only one difference, we obtain 4 candidates. Finally, if we get the two differences, we retrieve the correct value.

Finally, the average number of remaining candidates for k 0 (resp. k 1 once k 0 have been recovered) from random faults before the last (resp. penultimate) linear layer, n 1 on the first row and n 2 on the last row, is equals to: 16 or equivalently

( 16 2 n1+n2 + n1 i=1 4 2 i+n2 + n2 i=1 4 2 i+n1 + ( n1 i=1 1 2 i )( n2 i=1 1 2 i ))
( 16 + 4(2 n1 -1) + 4(2 n2 -1) + (2 n1 -1)(2 n2 -1) 2 n1+n2
) 16 or similarly 16 As we can see, n 1 and n 2 are interchangeable. Moreover, for a given n = n 1 + n 2 , the minimum of the previous equation is reached for n 1 = (n/2) and n 2 = (n/2) . Table 1 shows the average number of remaining candidates for a subkey according to n from n 1 = (n/2) (resp. n 2 = (n/2)) random faults on the first (resp. last) row of the linear layer input in the previous round. Note : we can also reduce the number of remaining candidates for k 0 from the faults obtained before the penultimate substitution layer as we have seen in the previous section.

( 9 2 n1+n2 + 3 2 n1 + 3 2 n2 + 1)

Countermeasures

In this section, we present and briefly analyze three possible countermeasures to thwart such attacks. The first one protects against correlation electromagnetic analysis, the second one against differential faults analysis and the last one against both but requires protocol modifications. This list of countermeasures is not exhaustive and any combination of those three can be used in practice.

Against correlation electromagnetic analysis

There are many strategies to protect a cipher from side channel attacks. At the software level, the most common countermeasure is masking, which consists in applying secret sharing at the implementation level. Most of the proposed solutions are polynomial-based masking schemes in which multiplications over a binary finite field are secured using the ISW scheme [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF]. In order to reduce the overhead introduced by this kind of countermeasure, bitslice masking has been recently proposed [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF][START_REF] Goudarzi | How fast can higher-order masking be in software?[END_REF][START_REF] Rivain | On the multiplicative complexity of boolean functions and bitsliced higher-order masking[END_REF]. As the PRIDE S-box is designed for bitsliced implementation, we have naturally investigated this method. 

A = c ⊕ ( a • b) B = d ⊕ ( b • c) C = a ⊕ ( A • B) D = b ⊕ ( B • C)
The challenging part of gate-level masking is to provide a construction for AND gates. Such a construction is proposed in [START_REF] Trichina | Combinational logic design for aes subbyte transformation on masked data[END_REF]. It consists in introducing a random r as a new mask and modifying the AND gate computation. For example, to compute z = a • b = (a ⊕ m a ) • (b ⊕ m b ) we will generate a random bit r and compute:

m z = r (7) z = ( a • b) ⊕ (m a • m b ) ⊕ (m a • b) ⊕ (m b • a) ⊕ r (8) 
In the particular case of PRIDE, by using the method described above, we will need to generate 4 random bits (r A , r B , r C , r D ) for each secure AND gate to compute the updated mask

M = M A || M B || M C || M D where M A = m c ⊕ r A M B = m d ⊕ r B M C = m a ⊕ r C M D = m b ⊕ r D
Concerning the L-layer, as it is a linear operation, we just have to compute it over the state mask M in parallel in order to be able to correctly unmask the masked state (i.e. to recover N from N and M ).

Against differential faults analysis

Making two computations for the last rounds is a simple countermeasure against this kind of attack. We save the state of the cipher X 18 in memory, possibly k times for more security -as it concerns lightweight cryptography it seems reasonable to take k = 1 or k = 2. Then, we make the computations up to O 20 and save the state again. We repeat the computation with the saved state (X 18 ) and compare it with the first result -possibly k times again. If two different computations give different results, we trap the cipher and no output is produced by the system. Otherwise, the execution performs normally. We can also apply a majority vote by duplicating the computations twice, possibly 2k times and give as output the one that appears most. Figure 9 shows a majority vote using duplication. This countermeasure uses, for encryption and decryption, two additional matrix layers and three additional substitution layers, subkey updates and subkey additions per duplication. It introduces an overhead of 15% of the total PRIDE cost per duplication.

Against both

Another countermeasure proposed by Guilley and al. in [START_REF] Guilley | Fault injection resilience[END_REF] is to add a random mask to the message in order to prevent two consecutive executions of the same plaintext. More precisely, in its original description, it consists in generating a 64-bit random mask different at each execution, which is XORed it with the asked plaintext and the corresponding ciphertext is sent with the mask.

In our case, we use a simple LFSR defined by a minimal primitive polynomial of degree 64 (X 64 + X 63 + X 61 + X 60 + 1 for example) and an initialization made public. The LFSR thus generates 2 64 -1 different masks. It must not be accessible to the user to avoid its reset. For that, it must be correctly implemented in hardware. We apply the mask by an XOR on the input of the 10-th round. This allows to prevent the adversary from getting two encryptions of the same plaintext, and therefore to run a DFA. For decryption, we apply an XOR between the mask and the output of the 10-th round and get the correct plaintext. We then have two options. The first one is to send the mask with the ciphertext. Unfortunately, in this case, this method does not protect against an attack on decryption. Indeed, the attacker can choose the same mask on each decryption. However, in the context of IoT, it is common that the device is only used for encryption and that decryption is carried out on a protected server. The second option is to synchronize the encryption and the decryption. They both use the same LFSR with the same initialization and the decryption must be applied in the same order as ciphertexts received. Therefore, the countermeasure protects both the encryption and the decryption, but with an additional synchronisation constraint.

In both cases, with same plaintext and key as inputs, the countermeasure protects against correlation power analysis (as the operations are not the same between two computations) and against differential faults analysis (as it does not return twice the same output). These two options are notexpensive but request a procedure constraint. Figure 10 The cost depends on the choice of the random mask generation. A simple LFSR -like the one mentioned above -implemented in hardware has a low cost with respect to IoT constraints. Moreover, in the second case, applying the mask requests an additional cost of an XOR for encryption and for decryption.

Conclusion

In this paper, we underline the importance of considering physical attacks when implementing lightweight cryptography by illustrating how passive and active physical attacks can be carried against a PRIDE software implementation. The results show that PRIDE is vulnerable to CEMA as well as DFA and so additional countermeasures are required when put into practice. Finally, we propose such countermeasures for both attacks. The next steps shall now be to analyse the countermeasures' effects in terms of security and performance. value of ∆Out 20 (resp. ∆Out 19 ), obtained from the correct and the faulty ciphertexts, which allowed us to retrieve the exact value of the fault and the value of ∆In 20 (resp. ∆In 19 ). Indeed, as the fault was injected in only one row, the positions and the values of the active nibbles in ∆Out 20 (resp. ∆Out 19 ) allowed us to derive the value of ∆In 20 (resp. ∆In 19 ) and then the value of the fault. Finally, some faults have corrupted two 8-bit instructions but remain exploitable as the fault model is on 16 bits. Value of ∆Out20 Value of ∆In20 0x83735baa7632ac9e 0x0080

1-st row of Y19 0xa000800000002000 0x8000800000008000 0x03f3d30276128c9e 0xa8a8 2-nd row of X20 0x6010c000c0606000 0x4040400040404000 0xcb339beaf67aacde 0x0400 3-rd row of Y19 0xcc0000000f000000 0x2200000002000000 0xc47397aaf23aa09e 0xcf00 3-rd row of X20 0xcc00df8800000000 0x2200222200000000 0xcb329beaf67aacde 0x0081 3-rd row of Y19 0xcc0000000f000008 0x2200000002000002 0xadd5df8ad21c88b8 0xa6a6 3-rd row of X20 0xc0b00f8080f00bb0 0x2020022020200220 0x0b739f2276b22c96 0x004c 4-th row of Y19 0x7400040060007000 0x1100010010001000 0x0b730e41f793bcb4 0xbe00 4-th row of Y19 0x0405040664707056 0x0101010111101011 0x0b73d3a276322496 0x8000 4-th row of Y19 0x7000500000007000 0x1000100000001000 0x0b73c23377b33486 0x9999 4-th row of X20 0x7005500660057006 0x1001100110011001 0x0b73a40f759b34be 0x5a00 4-th row of Y19 0x7445546660700406 0x1111111110100101 0x0b737b88f61aacbc 0x0002 4-th row of Y19 0x0040000000700050 0x0010000000100010 0x0b73eb1176933ca4 0x000b 4-th row of Y19 0x7045000060757056 0x1011000010111011 Value of ∆In19 0xb3035fae64aabc8e 0x006a 1-st row of X19 0x0000000003208080 0x0000000008808080 0x3f6713aecea2948e 0xc100 1-st row of X19 0x8300000200000000 0x8800000800000000 0x1bdad38aff8aa4ae 0x0039 1-st row of X19 0x000000000022800a 0x0000000000888008 0x3165d7eea5f5f4dc 0x7f00 1-st row of X19 0x03a88a8200000000 0x0888888800000000 0x16fdd78aea9ca890 0x000b 2-nd row of X19 0x000000000000a066 0x0000000000004044 0x077fdeba72a7d9da 0xd100 2-nd row of X19 0xa60c000100000000 0x4404000400000000 0x12f193ceee10a898 0x0087 2-nd row of X19 0x00000000c0000166 0x0000000040000444 0x92f9c2927701dcdc 0xd10b 2-nd row of X19 0xa60c00010000a066 0x4404000400004044 0x81791f6e017bd89e 0x003c 3-rd row of X19 0x000000000088eb00 0x0000000000222200 0x827873a04d02ac8c 0x0083 3-rd row of X19 0x00000000800000fc 0x0000000020000022 0xb05e37e04c63acec 0x00d7 3-rd row of X19 0x000000008b080bfc 0x0000000022020222 0x411737ca9638aeba 0x0600 3-rd row of X19 0x00000dd000000000 0x0000022000000000 0x08bf2c2551e6f6bf 0x7a00 3-rd row of X19 0x0bedf0d000000000 0x0222202000000000 0x303fbc2c4076debe 0xe200 3-rd row of X19 0xebe000d000000000 0x2220002000000000 0xd4bfe13bb63fa8e8 0x00cb 4-th row of X19 0x0000000064006077 0x0000000011001011 0x91f0e1b0f632ada9 0x0063 4-th row of X19 0x0000000004400077 0x0000000001100011 0xc42ec0dbb65e18db 0x00fd 4-th row of X19 0x0000000064446407 0x0000000011111101 0x4cbfd8ca365e88d2 0x00fc 4-th row of X19 0x0000000064446400 0x0000000011111100 0x856cc59ff218d813 0x004d 4-th row of X19 0x0000000004006407 0x0000000001001101

Now we present the faults that give as much information as all other. Table 4 shows all sets of candidates obtained for each nibble Nib i of k 0 ⊕ P -1 (C) with i ∈ {0, • • • , 15}, from faults injected between the last two substitution layers. Symbol ∅ means that the fault did not provide any information about the nibble (i.e. the 16 values are possible). Then, Table 5 shows all sets of candidates obtained for each nibble Nib i of P

-1 • L-layer -1 S-layer C ⊕ P(k 0 ) ⊕ f 20 (k 1 ) with i ∈ {0, • • • , 15}, from
faults injected between the penultimate two substitution layers. We again denote by ∅ cases where the fault did not provide any information about the nibble (i.e. the 16 values are possible).

Table 4: Sets of candidates obtained from faults injected between the last two substitution layers

Value of (∆O20, ∆I20) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15 0x1

∅ ∅ ∅ 0x5 ∅ ∅ ∅ ∅ ∅ ∅ ∅ 0x0 ∅ ∅ ∅ (0xa000800000002000, 0x3 0x6 0x2 0x8000800000008000) 0x9 0xd 0x8 0xb 0xe 0xa ∅ ∅ 0x0 0x0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (0xcc00df8800000000, 0x5 0x5 0x6 0x1 0x2 0x2 0x2200222200000000) 0x9 0x9 0xb 0xe 0x8 0x8 0xa 0xa ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 0x0 (0xcc0000000f000008, 0x5 0x5 0x1 0x2 0x2200000002000002) 0x9 0x9 0xe 0x8 0xa ∅ 0x4 ∅ ∅ 0x0 ∅ 0x0 ∅ ∅ ∅ 0x4 0x4 ∅ (0xc0b00f8080f00bb0, 0x5 0x7 0x1 0x2 0x2 0x1 0x7 0x7 0x2020022020200220) 0x9 0xc 0xe 0x8 0x8 0xe 0xc 0xc 0xf 0xa 0xa 0xf 0xf ∅ 0x0 ∅ 0x2 ∅ 0x0 ∅ 0xa 0xa 0x0 0x8 ∅ 0x8 ∅ 0x2 0xa (0x0405040664707056, 0x1 0x3 0x1 0xb 0xb 0x1 0x9 0x9 0x3 0xb 0x0101010111101011) 0x4 0x6 0x4 0xc 0xc 0x4 0xe 0xe 0x6 0xc 0x5 0x7 0x5 0xd 0xd 0x5 0xf 0xf 0x7 0xd 0x8 ∅ ∅ 0x2 0x2 ∅ ∅ 0xa 0xa ∅ ∅ 0x2 0x8 ∅ ∅ 0xa (0x7005500660057006, 0x9 0x3 0x3 0xb 0xb 0x3 0x9 0xb 0x1001100110011001) 0xe 0x6 0x6 0xc 0xc 0x6 0xe 0xc 0xf 0x7 0x7 0xd 0xd 0x7 0xf 0xd 0x8 0x0 0x0 0x2 0x2 0x0 0xa 0xa 0xa ∅ 0x8 ∅ ∅ 0x0 ∅ 0xa (0x7445546660700406, 0x9 0x1 0x1 0x3 0x3 0x1 0xb 0xb 0xb 0x9 0x1 0xb 0x1111111110100101) 0xe 0x4 0x4 0x6 0x6 0x4 0xc 0xc 0xc 0xe 0x4 0xc 0xf 0x5 0x5 0x7 0x7 0x5 0xd 0xd 0xd 0xf 0x5 0xd
Table 5: Sets of candidates obtained from faults injected between the penultimate two substitution layers

Value of (∆Y19, ∆X19) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15 ∅ 0x4 0x1 0x5 0x5 0x1 0x5 0x0

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (0x03a88a8200000000,
0x7 0x3 0x6 0x6 0x3 0x6 0x2 0x0888888800000000) 0xc 0x9 0xd 0xd 0x9 0xd 0x8 0xf 0xb 0xe 0xe 0xb 0xe 0xa 0x5 0x4

∅ ∅ ∅ ∅ ∅ 0x0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (0x8300000200000000, 0x6 0x7 0x2 0x8800000800000000) 0xd 0xc 0x8 0xe 0xf 0xa ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 0x4 0x0 ∅ 0x5 ∅ 0x5 ∅ (0x0000000003208080, 0x7 0x2 0x6 0x6 0x0000000008808080) 0xc 0x8 0xd 0xd 0xf 0xa 0xe 0xe 0x8 ∅ ∅ ∅ ∅ 0x0 ∅ ∅ ∅ ∅ ∅ 0x8 0x8 (0xa60c00010000a066, 0x7 0x9 0x6 0x1 0x7 0x9 0x9 0x4404000400004044) 0xd 0xe 0xa 0x4 0xd 0xe 0xe 0xf 0x5 0xf 0xf ∅ 0x4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (0x0bedf0d000000000, 0x7 0x3 0x6 0x1 0x6 0x0222202000000000) 0xc 0xd 0xb 0xe 0xb 0xf ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 0x0 0x4 ∅ 0x0 ∅ 0x4 (0x000000008b080bfc, 0x2 0x7 0x2 0x7 0x1 0x5 0x0000000022020222) 0x8 0xc 0x8 0xc 0xe 0x9 0xa 0xf 0xa 0xf ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (0x00000dd000000000, 0x6 0x6 0x0000022000000000) 0xb 0xb ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
0xa 0x0 0x0 0x0 0xa 0x0 ∅ 0x8 (0x0000000064446407, 0xb 0x1 0x1 0x1 0xb 0x1 0x9 0x0000000011111101) 0xc 0x4 0x4 0x4 0xc 0x4 0xe 0xd 0x5 0x5 0x5 0xd 0x5 0xf

B Proof of Proposition 1 s t a t e [START_REF] Agoyan | When clocks fail: On critical paths and clock faults[END_REF] ^= key [START_REF] Agoyan | When clocks fail: On critical paths and clock faults[END_REF] ; 10 s t a t e [ 2 ] ^= key [ 2 ] ; 11 s t a t e [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF] ^= key [START_REF] Albrecht | Block Ciphers -Focus on the Linear Layer (feat. PRIDE)[END_REF] ; 12 s t a t e [START_REF] Baysal | Roadrunner: A Small and Fast Bitslice Block Cipher for Low Cost 8-bit processors[END_REF] ^= key [START_REF] Baysal | Roadrunner: A Small and Fast Bitslice Block Cipher for Low Cost 8-bit processors[END_REF] ; 13 s t a t e [START_REF] Beaulieu | SIMON and SPECK: Block Ciphers for the Internet of Things[END_REF] ^= key [START_REF] Beaulieu | SIMON and SPECK: Block Ciphers for the Internet of Things[END_REF] ; 14 s t a t e [START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF] ^= key [START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF] ; 15 s t a t e [START_REF] Bilgin | FIDES: Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware[END_REF] ^= key [START_REF] Bilgin | FIDES: Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware[END_REF] ; 16 } u n s i g n e d c h a r tmp0 , tmp1 , tmp2 , tmp3 ; 

Corr(X, Y i ) = Cov(X, Y i ) σ X σ Yi = E(X Y i ) -E(X) E(Y i ) σ X E Y i -E(Y i ) 2 = E X (z -Y j ) -E(X) E(z -Y j ) σ X E z -Y j -E(z -Y j ) 2 = -E X Y j ) + E(X) E(Y j ) σ X E -Y j + E(Y j ) 2 = -E X Y j ) -E(X) E(Y j ) σ X E Y j -E(Y j ) 2 = -Cov(X, Y i ) σ X σ Yi = -Corr(X, Y j )

C S-box formulation

Figure 1 :

 1 Figure 1: Inner matrix state of PRIDE

Figure 2 :

 2 Figure 2: Inner state 0xe8d3157f246e80cb

Figure 3 :

 3 Figure 3: Electromagnetic emanations of the whole PRIDE block cipher

Figure 4 :

 4 Figure 4: Electromagnetic emanations of the first two rounds of PRIDE block cipher

Figure 5 Figure 5 :

 55 Figure5shows the plot corresponding to P 1 .

Figure 6 :

 6 Figure 6: Key recovery of P(k 0 ) 0 with 128-bit key hypotheses

Figure 7 :

 7 Figure 7: Key recovery of P(k 0 ) 1 with 128-bit key hypotheses

Figure 8 :

 8 Figure 8: State difference obtained from a flip of the second row before the substitution layer

  For a nibble denoted n = a || b || c || d, a mask of first order m = m a || m b || m c || m d and n = n ⊕ m = a || b || c || d, the S-Box returns the output nibble N = A || B || C || D where

Figure 9 :

 9 Figure 9: Majority vote using duplication

Figure 10 :

 10 Figure 10: Mask based on the Guilley countermeasure

A 2 // key s c h e d u l e 3 key [ 1 ]

 231 = c ⊕ (a & b) B = d ⊕ (b & c) C = a ⊕ (A & B) D = b ⊕ (B & C) D C source code D.1 Key addition layer 1 v o i d key_add_layer ( u n s i g n e d c h a r key [ 8 ] , u n s i g n e d c h a r s t a t e [ 8 ] ) { += 1 9 3 ;

7 // key a d d i t i o n 8 s

 78 t a t e [ 0 ] ^= key [ 0 ] ;

9

 9 

35 / 38 } 3 /

 35383 Listing 1.2: S-layer C source code 1 v o i d l _ l a y e r ( u n s i g n e d c h a r s t a t e [ 8 ] ) { 2 u n s i g n e d c h a r tmp0 , tmp1 , tmp2 ; / a p p l i e s L0 m a t r i x

Table 1 :

 1 Remaining candidates R for a subkey from n random faults

	n	2	4	6	8	10	12	14	16	18	20
	R 2 42.3 2 25.8 2 14.7 2 7.9 17.6 4.33 2.10 1.45 1.21 1.10

Table 2 :

 2 Faults obtained between the last two substitution layersFaulty ciphertext Fault value Fault position

Table 3 :

 3 Faults obtained between the penultimate two substitution layers

	Faulty ciphertext Fault value Fault position	Value of ∆Out19

The Hamming weight correponds to the number of ones in the binary representation of the data.

A Exploitable obtained faults