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6 ENS, Paris, France,

{benjamin.lac, jacques.fournier, renaud.sirdey}@cea.fr,
marc.beunardeau@ingenico.com, anne.canteaut@inria.fr

Abstract. PRIDE is one of the most efficient lightweight block cipher
proposed so far for connected objects with high performance and low-
resource constraints. In this paper we describe the first ever complete
Differential Fault Analysis against PRIDE. We describe how fault attacks
can be used against implementations of PRIDE to recover the entire
encryption key. Our attack has been validated first through simulations,
and then in practice on a software implementation of PRIDE running on
a device that could typically be used in IoT devices. Faults have been
injected using electromagnetic pulses during the PRIDE execution and
the faulty ciphertexts have been used to recover the key bits. We also
discuss some countermeasures that could be used to thwart such attacks.

Keywords: lightweight cryptography · DFA · PRIDE · EM fault attacks.

1 Introduction

With the emergence of the Internet of Things (IoT), new cryptographic primitives
are needed to suit the high performance, low power and low resource constraints of
IoT devices. Ciphers like AES, which are good enough for devices like smart cards,
do not satisfy the constraints of devices like RFID tags or nodes in sensor networks.
During the past years, several lightweight block ciphers have been proposed, like
for example PRESENT [10], PRINCE [12], SIMON [6] or SPECK [6]. Among
those, the NSA proposal SPECK is a highly efficient software-oriented cipher,
but it does not have any ‘linear diffusion layer’ implying that it requires a huge
number of rounds to guarantee an appropriate security level. In order to keep
a small number of rounds, the PRIDE cipher [4] exploits an optimal linear
layer which provides a high diffusion and has highly efficient implementations.
Although hardware implementations are more efficient in terms of clock cycles
than software implementations, design and study of software-oriented ciphers is
nevertheless important since these implementations are used in practice because
they are less expensive and more flexible than hardware implementations. To date,
when looking at software implementations, PRIDE is one of the most efficient



lightweight cryptographic ciphers as shown the performance comparisons given
in [4,5]. This led us to study the security provided by PRIDE and its resistance
to malicious attacks. In terms of security, two of the differential attacks proposed
so far in the literature do not allow to recover the entire key [37,38], while a
third one [14] does achieve this but under stringent conditions. Since PRIDE is
to be used in IoT devices in pervasive environments, we ought to also look at
implementation-related issues. In that respect, we propose in this paper the first
Differential Fault Analysis (DFA) on PRIDE. DFA is a particular physical attack,
in which we compare the results of a correct computation to one which has been
disturbed at a precise time, in order to infer information about the key bits used
in the algorithm. It is closely related to differential cryptanalysis, but much more
efficient since it exploits differential characteristics on very few rounds only.

In this paper, we first present PRIDE before describing the theoretical DFA
using different fault models. Then we validate our hypotheses and equations
using data onto which fault models have been ‘simulated’. In order to validate
the practical feasibility of our attack, we used electromagnetic pulses to inject
faults during the execution of the PRIDE cipher running on an off-the-shelf chip
embedding an ARM Cortex-M3 micro-controller and applied our DFA on the
corrupted results obtained. So as to taking advantage of the 32-bit architecture
of the micro-controller, we have implemented PRIDE in ARM assembly language.
Thereby, we show the practical feasibility of our attack from 32-bit random faults.
Finally we discuss countermeasures that can be implemented to thwart such
attacks before concluding the paper with some perspectives.

2 Fault attacks against cryptographic algorithms

2.1 Physical attacks

Unlike mathematical attacks which target the actual definition of a cryptographic
cipher, physical attacks target the way the cipher is implemented. Physical
attacks can be divided into two categories: invasive and non-invasive ones. In
this paper, we further focus on non-invasive techniques which mainly consist
either in analysing side-channel information leakages or in injecting faults during
a cryptographic computation.

Side-Channel Analyses [23], [27] exploit the fact that some physical values
or “side channels” such as the power consumption [22], the electromagnetic
radiation [17], [31] or the calculation time [16], [21] of an integrated circuit depend
on the operations and data manipulated during a given computation. Information
about the internal processes of the chip and the data it is manipulating can be
derived by observing such external physical characteristics. Such analyses can be
quickly mounted with cheap equipment, without altering the physical integrity
of the circuit. This dependency between the side channels and the internal
computations can be analysed to infer information about the data manipulated
using mathematical tools like correlation [13], mutual information [18], variance
[25] or entropy [26] or using architecture-dependant behaviours such as cache
accesses [7], [29,30] or using branch predictions [2,1].
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2.2 Fault attacks

Fault Attacks, introduced in [11], consist in disturbing the behaviour of the circuit
in order to alter the correct progress of the cipher. The faults are injected into
the device by various means such as light pulses [34], laser [33], clock glitches [3],
spikes on the voltage supply [9] or electromagnetic (EM) perturbations [15].
Some of those techniques, like the one using a laser, are invasive requiring the
“decapsulation” of the chip using mechanical or chemical means. Laser allows to
target one bit in a given register if well manipulated. However it is a very costly
means of injection. Other techniques are not invasive such as glitches (power,
clock, electromagnetic). Clock and voltage glitches disturb the whole component,
and many injections have to be made before getting the faults required by
theoretical attacks. EM glitches on the other hand allow to have relatively high
spatial and temporal precisions using equipment at “affordable costs” [15].

One of the objectives of fault attacks, especially when considering crypto-
graphic ciphers, is to perform Differential Fault Analysis (DFA). DFA, originally
described in [8], consists in retrieving a cryptographic key by comparing the
correct ciphertexts with the faulty ones. DFA techniques have been described
and applied to most publicly known cryptographic ciphers going from symmetric-
key algorithms like the DES [8] or the AES [32] to asymmetric algorithms like
RSA [11] or even more complex schemes like pairing-based cryptography [24]. In
the particular field of lightweight cryptography, differential fault attacks have
been proposed against ciphers like PRESENT [39] (used in conjunction with a
cube attack), SPECK [36] (although about a hundred faults are needed which
is way more than usual), TRIVIUM [28] or PRINCE [35]. The latter PRINCE
block cipher has an SPN structure similar to PRIDE and in that respect the
DFA proposed in [35] is quite similar to the one proposed hereafter: in our case
the attack is not only adapted to the PRIDE cipher but has also been validated
in practice on an embedded device running PRIDE.

DFA techniques are very efficient in retrieving the keys used during a cryp-
tographic computation, usually requiring a few executions only. It is also quite
complex to devise countermeasures against such attacks because of the diversity
of the possible injection methods and because the usually deployed countermea-
sures (like redundancy, error-correcting codes etc) have serious impacts on the
performance of the targeted cryptographic cipher. For all those reasons, in our
approach of analysing the security of implementations of PRIDE, we decided
to first focus on its resistance against fault attacks in order to identify possible
attack paths and devise the most efficient countermeasures in order to keep the
high performance characteristics of the original cipher.

3 The PRIDE block cipher

PRIDE is an iterative block cipher composed of 20 rounds and introduced by
Albrecht & al. [4] in 2014. It takes as input a 64-bit block and uses a 128-bit
key k = k0||k1. The first 64 bits k0 are used for pre- and post-whitening. The
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last 64 bits k1 are used by a key schedule to produce the subkeys fr(k1) for each
round r. The key schedule simply adds round-constants to parts of the key.

We denote k1i the i-th byte of k1 then

fr(k1) = k10 ||g(0)r (k11)||k12 ||g(1)r (k13)||k14 ||g(2)r (k15)||k16 ||g(3)r (k17)

for round r with

g(0)r (x) = (x+ 193r) mod 256

g(1)r (x) = (x+ 165r) mod 256

g(2)r (x) = (x+ 81r) mod 256

g(3)r (x) = (x+ 197r) mod 256

In this paper, X[n] denotes the n-th nibble (4 bits) of a binary word X while
X{b} denotes its b-th bit. Moreover, the bits and nibbles are numbered from
left to right starting from 0. The following notation is used for the intermediate
values of the state within the round function R of PRIDE (see Figure 2):

Ir the input of the r-th round
Xr the state after the key addition layer of the r-th round
Yr the state after the substitution layer of the r-th round input
Zr the state after the permutation layer of the r-th round
Wr the state after the matrix layer of the r-th round
Or the output of the r-th round

The r-th round, 1 ≤ r ≤ 19, of PRIDE is then composed of the following
steps (see Figure 2).

i. Apply the inverse permutation layer P−1 given in [4] to fr(k1) and XOR the
permuted round subkey to the input state: Xr = Ir ⊕ P−1(fr(k1)),

ii. Apply the S-box S given in Table 1 to each of the 16 nibbles of Xr (i.e. apply
the substitution layer S−layer to Xr): Yr = S−layer(Xr),

iii. Apply the permutation layer P to Yr: Zr = P(Yr),

iv. Multiply vector

 Zr{16i}
...

Zr{16i+ 15}

 by Li given in [4] for i ∈ {0, · · · , 3}:

Wr = L0

 Zr{0}
...

Zr{15}

 ||L1

Zr{16}
...

Zr{31}

 ||L2

Zr{32}
...

Zr{47}

 ||L3

Zr{48}
...

Zr{63}

,

v. Apply the inverse permutation P−1 to Wr: Or = P−1(Wr).

Table 1: S-box of the block cipher PRIDE

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

S(x) 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

For the final round, denoted by R′, only the first two steps are applied.
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In order to encrypt a plaintext M , the cipher applies P−1 to M , then performs
an XOR between the result and k0. It then applies the 20 rounds as previously
described and performs again an XOR with k0. Finally, P is applied to the result
to obtain the ciphertext C. Figure 1 shows the general structure of PRIDE.

M P−1 R⊕

k0 f1(k1)

R

f2(k1)

R

f19(k1)

R′

f20(k1)

⊕

k0

P C

Figure 1: The structure of PRIDE

The PRIDE round function R is depicted on Figure 2.
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Figure 2: The PRIDE round function

4 Differential Fault Analysis of PRIDE

In this section, we present a technique adapted from the proposed attack in [35]
to retrieve the secret key using fault injections on PRIDE computations. The
aim of our analysis is to minimize the number of fault injections needed. We use
ideal fault models and we describe how to exploit them to retrieve the key.

4.1 General principle

Despite their similarities, a DFA is different from a classical differential analysis.
Indeed, for the latter, the differences must be injected on the input of the cipher
while for a DFA they can be injected at the moments where the attacker wants.
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The DFA that we propose in this paper also differs from most classical DFA since
it is not based on statistical methods: it is deterministic.

The attack is composed of two stages, one consists in corrupting data ma-
nipulated in the penultimate round to retrieve k0 and the other in attacking the
antepenultimate round to retrieve k1. The general structure of the attack is to
exploit the diffusion of a 16-bit word within the inverse permutation layer in
order to get a known 4-bit difference at the input of each S-box on the following
round. Together with the knowledge of the output difference of each S-box, which
are derived from the correct and faulty ciphertexts, C and C∗, this allows us
to retrieve information about the key. To this end, we exploit the difference
distribution table of the PRIDE S-box given in Appendix A. Indeed, obtaining
information on k0 is possible from the following equation:

∆X20 = S−layer−1(P−1(C)⊕ k0)⊕ S−layer−1(P−1(C∗)⊕ k0),

where S−layer = S−layer−1 denotes the substitution layer. We can use this
equation for each nibble 0 ≤ i ≤ 15:

x = P−1(C)[i]⊕ k0[i] and y = P−1(C∗)[i]⊕ k0[i] satisfy

x⊕ y = ∆Y20[i] = P−1(∆C)[i] and S−1(x)⊕ S−1(y) = ∆X20[i].

From the knowledge of a nonzero input difference ∆Y20[i] and of an output
difference ∆X20[i] for S−1, we deduce 2 or 4 candidates for the input value x,
because the differential uniformity of S−1 equals 4 (see the difference distribution
table in Appendix A). Moreover, Proposition 1 enables us to exhibit pairs of
differentials for the S-box which are simultaneously satisfied for a single element.
The proof to this proposition is given in Appendix A.

Proposition 1 Let S be an n-bit S-box with differential uniformity 4. Let (a1, b1)
and (a2, b2) be two differentials with a1 6= a2 such that the system of two equations

S(x⊕ a1)⊕ S(x) = b1 (1)

S(x⊕ a2)⊕ S(x) = b2 (2)

has at least two solutions. Then, each of the three equations (1), (2) and

S(x⊕ a1 ⊕ a2)⊕ S(x) = b1 ⊕ b2

has at least four solutions.

In other words, if we can find two differentials (a1, b1) and (a2, b2) such that
one out of the three entries in the difference distribution table (a1, b1), (a2, b2)
and (a1⊕a2, b1⊕ b2) equals to 2, then we can guarantee that the input satisfying
these two differentials simultaneously is unique.

Note: if one of the three equations does not have any solution, then the system
of two equations (1) and (2) does not have any solution neither.

6



Once k0 has been recovered (we will see in the next parts some strategies to
achieve this end), X20 and X∗20 can be computed from the ciphertexts C and C∗.
Let L denote the whole linear layer, i.e.,

L = P−1 ◦


L0 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L3

 ◦ P.
Then ∆Y19 can be computed and the following equation

∆X19 = S−layer−1(L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1))))

⊕S−layer−1(L−1(S−layer−1(P−1(C∗)⊕ k0)⊕ P−1(f20(k1)))),

allows the attacker to recover P−1(f20(k1)) and therefore k1, with the same
method but from fault injections in the 18-th round. Indeed, for 0 ≤ i ≤ 15:

x = L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1)))[i] and
y = L−1(S−layer−1(P−1(C∗)⊕ k0)⊕ P−1(f20(k1)))[i] satisfy

x⊕ y = ∆Y19[i] = L−1(S−layer−1(P−1(C ⊕ k0))⊕ S−layer−1(P−1(C∗ ⊕ k0)))[i]
and S−1(x)⊕ S−1(y) = ∆X19[i].

4.2 Ideal fault model

The strategies we propose require at least 2 fault injections for each stage of the
attack to retrieve a round key (i.e 4 to retrieve the complete key). For the first
stage, whose objective is to find k0, one of the following approaches can be used:

(i.) Flip Z0
19 then Z3

19 or (ii.) Flip W 0
19 then W 3

19,

where Zi
r (resp. W i

r) denotes the input (resp. output) of the matrix Li at round r.
Then, to retrieve the key k1, and so the complete key, the possible fault injections
are the same but are carried out on Z18 or W18. A flip of Z0

r gives us a difference
equal to 0xffff on the input of the matrix L0. The matrix being linear, we know
that the output difference is also 0xffff. The latter being the same value than the
one obtained with a flip of W 0

r . The other matrices have differences in input and
output equal to zero. Then, the inverse permutation layer also being linear, we
know the input difference of each S-box of the substitution layer at round r + 1.
These values are equal to 0x8, so we obtain ∆Xr+1[i] = 0x8 for all i ∈ {0, · · · , 15}.
Moreover, we recall that the output differences are known from the correct and
faulty ciphertexts. Figure 3 shows the propagation of the difference (displayed
in red) obtained by a flip of Z0

19. In the same way, a flip of Z3
r or W 3

r yields
a difference of 0x1 on each S-box at round r + 1. Finally, with strategy (i.) or
(ii.), we obtain pairs of differentials (∆Y20[i], ∆X20[i])1 = (a1, 0x1) and (∆Y20[i],
∆X20[i])2 = (a2, 0x8) for all i ∈ {0, · · · , 15} with a1 and a2 known. We get the
same pairs for (∆Y19[i], ∆X19[i]) from faults on the 18-th round. Since 0x1⊕0x8 =
0x9, from the Proposition 1 (and the difference distribution table in Appendix A),
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Figure 3: Propagation on PRIDE of the difference obtained by a flip of Z0
19

there is only one element in the intersection of the two sets of solutions obtained
for each nibble. Therefore, we have shown that we get only one candidate for
each nibble of x = P−1(C)⊕k0 from faults on the 19-th round and one candidate
for each nibble of x = L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1)))[i]. Finally,
from the knowledge of C we retrieve k0 and from the key schedule we retrieve k1.

The strategies we have presented require 4 fault injections to retrieve the
complete key. In case the attacker obtains fewer faults, Table 2 shows the time
complexity, expressed as a number of encryptions, that an attacker can obtain
to retrieve the secret key k with 1 to 3 faults following the ideal fault model. A
proof of these values is given in Appendix B.

Table 2: Trade-offs between the time complexity, expressed as a number of
encryptions, and the number of faults with the ideal fault model.

Number of faults 1 2 3

Time complexity 264 232 227.7

4.3 Random fault model

In order to achieve the attack, we must flip all the bits of four 16-bit words
for the ideal fault model used in the preceding part. However, we can see that
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reversing one bit provides an active S-box, it is therefore enough to inverse all
the bits of the desired 16-bit words. Indeed, if we flip the bit i of W 0

19 from one
fault, we obtain 4 candidates for the nibble i of the subkey k0. Moreover, if we
flip the bit i of W 3

19 from an other fault, we retrieve (by intersection) the value
of the nibble i of k0.

It is easy to target a specific instruction from a simple power (or EM) analysis
for example in practice. If the instruction is less than 16 bits, we can then reduce
the key space from each active S-box, until it is enough small for an exhaustive
search. Finally, we will see in the section 5 that the attack is still effective from
32-bit faults, only the exploitation of the faults is different.

4.4 Properties exploited by our attack

Our attack mainly exploits two properties of the building-blocks of PRIDE:

The design of the linear layer based on the so-called interleaved construction.
Indeed, this construction aims at designing a diffusion layer with a high branch
number (see Theorem 1 in [4]). For a SPN whose substitution layer is composed
of n S-boxes over Fk

2 , the linear layer obtained by the interleaved construction is
defined as L = P−1 ◦ L ◦ P where P is an isomorphism from (Fk

2)n into (Fn
2 )k.

Then, we deduce from the definition of P that flipping the n bits of any word at
the input of P−1 in W = (W1, · · · ,Wk) activates all S-boxes in the next round.
Indeed, by construction, the n bits of any Wi go to different S-boxes. Hence
flipping n consecutive bits in the linear layer of the penultimate round allows the
attacker to recover information on all the n nibbles of the subkey used in the last
round. The number of candidates for this last-round subkey is upper-bounded
by δ(S)n, where δ(S) is the differential-uniformity of the S-box (δ(S) = 4 in the
case of PRIDE and of most block ciphers using 4-bit S-boxes).

The differential properties of the S-box, which avoids the existence of differentials
with high probability over a large number of rounds. The counterpart of this
resistance against classical differential cryptanalysis is that the number of inputs
which satisfy two valid differentials simultaneously is usually reduced to a single
element. This property enables the attacker to drastically reduce the number of
subkey candidates. In the case of PRIDE, two faults, each on n consecutive bits
in the linear layer, are enough to obtain a single candidate for the subkey.

4.5 Simulation of the DFA on PRIDE

In order to validate our theoretical DFA against PRIDE and test the correctness
of the proposed equations, we first performed a validation by simulation.

In this section we assume that a device executes PRIDE with a key k = k0||k1
where k0 = 0xefcdab8967452301 and k1 = 0x0123456789abcdef. We further
assume that an attacker successfully flips all the bits of Z0

19, Z3
19, W 0

18 and W 3
18.

Then, she obtains the following ciphertexts from 5 executions of the same
plaintext 0xfedcba9876543210:
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i. 0xc40f2551f39c63a9 the correct ciphertext,

ii. 0xe7f325510dc3b7a8, 0xc40fdaaec89376f7 from a flip of Z0
19, Z3

19,

iii. 0x2857589433cbdead, 0x461720d9729c1956 from a flip of W 0
18, W 3

18.

The knowledge of the plaintext is not necessary, it is sufficient to ensure that
the same plaintext is used for each execution.7 The attacker obtains the following
differentials for the last substitution layer from the first two faulty ciphertexts:

i. (∆X20, ∆Y20)1 = (0x8888888888888888, 0x33a323a88a8aaa23),

ii. (∆X20, ∆Y20)2 = (0x1111111111111111, 0x4467656745457776).

From the first differential, she obtains a set of candidates for each nibble
of P−1(C) ⊕ k0 where C is the correct ciphertext. She can then find a set of
candidates for each nibble of k0 from P−1(C) = 0xab720c373416ba8d. Table 3
shows the obtained sets of candidates.

Table 3: Sets of candidates obtained from (∆X20, ∆Y20)1
k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]

0x5 0x4 0x4 0x5 0x0 0x0 0x0 0x1 0x5 0x5 0x4 0x5 0x0 0x1 0x0 0x1
0x6 0x7 0x6 0x6 0x2 0x3 0x2 0x2 0x6 0x7 0x7 0x7 0x2 0x3 0x2 0x2
0xd 0xc 0xc 0xd 0x8 0x8 0x8 0x9 0xd 0xd 0xc 0xd 0x8 0x9 0x8 0x9
0xe 0xf 0xe 0xe 0xa 0xb 0xa 0xa 0xe 0xf 0xf 0xf 0xa 0xb 0xa 0xa

From the last differential, the attacker obtains another set of candidates for
each nibble of k0. Table 4 shows the resulting candidates.

Table 4: Sets of candidates obtained from (∆X20, ∆Y20)2
k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]

0xa 0xa 0xa 0xa 0xa 0xa 0x8 0x8 0x2 0x2 0x0 0x0 0x2 0x2 0x0 0x0
0xb 0xb 0xb 0xb 0xb 0xb 0x9 0x9 0x3 0x3 0x1 0x1 0x3 0x3 0x1 0x1
0xe 0xe 0xc 0xc 0xc 0xe 0xe 0xe 0x6 0x6 0x4 0x4 0x4 0x4 0x6 0x6
0xf 0xf 0xd 0xd 0xd 0xf 0xf 0xf 0x7 0x7 0x5 0x5 0x5 0x5 0x7 0x7

By doing the intersection of the obtained two sets for each nibble, the attacker
gets k0. Then, with this value of k0, she obtains the following differences for the
antepenultimate substitution layer from the flip of W 0

18 and W 3
18:

i. (∆X19, ∆Y19)1 = (0x8888888888888888, 0x23a2288338832828),

ii. (∆X19, ∆Y19)2 = (0x1111111111111111, 0x7777456474776476).

From the first differential, she obtains sets of candidates for each nibble Nibi

of L−1(S(P−1(C)⊕ k0)⊕P−1(f20(k1))) with i ∈ {0, · · · , 15}. Table 5 shows the
sets of candidates she gets.

7 If it is not the case, the attacker can mount an attack if she knows, for each faulty
ciphertext, the corresponding correct ciphertext - to obtain differentials for the S-
boxes. But the key may not be recovered in this case since the information obtained
by the attacker depends on the value of the correct ciphertext.
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Table 5: Sets of candidates obtained from (∆X19, ∆Y19)1
Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

0x0 0x4 0x1 0x0 0x0 0x5 0x5 0x4 0x4 0x5 0x5 0x4 0x0 0x5 0x0 0x5
0x2 0x7 0x3 0x2 0x2 0x6 0x6 0x7 0x7 0x6 0x6 0x7 0x2 0x6 0x2 0x6
0x8 0xc 0x9 0x8 0x8 0xd 0xd 0xc 0xc 0xd 0xd 0xc 0x8 0xd 0x8 0xd
0xa 0xf 0xb 0xa 0xa 0xe 0xe 0xf 0xf 0xe 0xe 0xf 0xa 0xe 0xa 0xe

From the last differential, the attacker obtains other sets of candidates for
each nibble Nibi of L−1(S(P−1(C)⊕ k0)⊕ P−1(f20(k1))) with i ∈ {0, · · · , 15}.
Table 6 shows the sets of candidates obtained.

Table 6: Sets of candidates obtained from (∆X19, ∆Y19)2
Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

0x8 0x8 0x8 0x8 0x0 0x2 0xa 0x0 0x8 0x0 0x8 0x8 0xa 0x0 0x8 0xa
0x9 0x9 0x9 0x9 0x1 0x3 0xb 0x1 0x9 0x1 0x9 0x9 0xb 0x1 0x9 0xb
0xe 0xe 0xe 0xe 0x4 0x6 0xc 0x4 0xe 0x4 0xe 0xe 0xc 0x4 0xe 0xc
0xf 0xf 0xf 0xf 0x5 0x7 0xd 0x5 0xf 0x5 0xf 0xf 0xd 0x5 0xf 0xd

By intersecting the obtained two sets for each nibble, the attacker gets

L−1(S(P−1(C)⊕ k0)⊕ P−1(f20(k1))) = 0x8f9806d4f5efa58d.

Then, she computes

S(P−1(C)⊕ k0)⊕ P−1(f20(k1)) = 0x24c39cc978f41dd4

and from S(P−1(C)⊕ k0) = 0x11c3a9c65f5f772b, she retrieves

P−1(f20(k1)) = 0x3500350f27ab6aff.

Finally she deduces f20(k1) = 0x0137454b89ffcd53, she gets k1 from the key
scheduling and so she retrieves the complete key.

5 Practical implementation of the DFA on PRIDE

In order to test the feasibility of our attack against the PRIDE block cipher, we
have implemented and run the cipher on an STM32 chip embedding an ARM
Cortex-M3 micro-controller. That particular chip was chosen because it is quite
representative of the off-the-shelf devices used for IoT applications. Note that
the chip does not embed any countermeasures against the kind of the fault
attacks implemented in this paper. We validated the attack on an implementation
in ARM assembly language taking advantage of the 32-bit architecture of the
micro-controller. We present in this section the full analysis conducted on this
implementation. The source code is given in Appendix C and Table 7 compares
the performances of this implementation with that of the implementation in AVR
assembly language whose source code and performances are given in [4].

So as to inject exploitable faults into such a chip, we used EM pulses because
with this approach we did not need to decapsulate the chip and we were able to
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Table 7: Comparison between AVR and ARM assembly implementation
Time (cycle) Size (bytes)

AVR assembly implementation (given in [4]) 1514 266

ARM assembly implementation (Appendix C) 2375 490

inject faults at precise enough instants to target specific instructions of the cipher
during its execution. The set-up we used is quite similar to the one described
in [15], with the difference that we did not need any motorized X-Y stage: injecting
faults ‘in the center’ of the chip was good enough for having a fault model close
to a random fault model (one chance over two to flip a bit). Indeed, it is possible
to target a precise 32-bit word (more precisely a specific instruction) but the
injected faults follow a random pattern. In order to obtain pairs of differentials
(∆X20[i], ∆Y20[i]) (resp. (∆X19[i], ∆Y19[i])) for i ∈ {0, · · · , 15}, we injected the
faults on the first and on the second 32-bit word of the state before the inverse
permutation in the 19-th (resp. 18-th) round. by as many faults as necessary.
Each fault on the first word provided us differences on each nibble of ∆X20 equal
to 0x0, 0x4, 0x8 or 0xc and equal to 0x0, 0x1, 0x2 or 0x3 from each fault on the
second word. We validated the attack from these 32-bit faults, we will see that
the faults exploitation is different (some pairs of differentials do not allow us a
single candidate) but the attack is nevertheless still effective.

In our experiment, we used a key k = k0||k1 where k0 = 0xf3f721cb1c882658
and k1 = 0xe417d148e239ca5d. The plaintext used for all executions was 0x0132546
798badcfe and the correct ciphertext was 0x9aecb37ea45a6c89. We used a simple
EM analysis to identify in time the 18-th and 19-th rounds. Figure 4 shows the
curve obtained on the oscilloscope, the 20 rounds are displayed in red.

Figure 4: EM curve measured of PRIDE cipher

Then we used an electromagnetic pulse generator to disrupt the PRIDE’s
execution. Table 8 (resp. Table 9) shows the faults we have obtained from the
electromagnetic injection on W19 (resp. W18) numbered from 1 to 25. For each
fault, Table 8 (resp. Table 9) provides the value of ∆X20 and ∆Y20 (resp. ∆X19

and ∆Y19), only obtained from the correct and the faulty ciphertexts. We denote
respectively by θ, β, γ, δ the possible pair of values (0x2,0x3), (0x4,0x8), (0x4,0xc),
(0x8,0xc). Indeed, some differences in output of the S-boxes can be obtained from
two distinct differences in input. Finally, we give in each table the fault value
computed after retrieving the key.
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Table 8: Faults obtained on the 19-th round
No. Faulty ciphertext Value of the fault on W19 Value of ∆Y20 Value of ∆X20

1 0x1aad3b972c92ec09 0x00000000804108e8 0xf00060007e40600c 0xθ00010001θ10100θ

2 0x7b4c93dea55a6d89 0x00000000e1a0a0a0 0x88c0000bc0c00000 0xθθθ0000θθ0θ00000

3 0x1b6c733e255aadc9 0x0000000081804040 0xf500000b85000000 0xθ100000θθ1000000

4 0x71ecd27ee55a6d89 0x00000000eb00e900 0x8ec0808f00000000 0xθθθ0θ0θθ00000000

5 0x9aecb324a4426cdb 0x000000000000005a 0x0000000005076050 0x0000000001011010

6 0x9a57b33fa4626cf1 0x0000000000bb005a 0x0000000085bbb08c 0x00000000θ1θθθ0θθ

7 0x9a57b365a4606cb9 0x0000000000bb0000 0x0000000080bfe0ec 0x00000000θ0θθθ0θθ

8 0x77aa24313111ed8c 0x00000000ed461f4d 0xf8868e4f0e006de7 0xθθθ1θθ1θ0θ001θθ1

9 0x9ae8b37ac15a6989 0x6500040400000000 0x0220030300000c00 0x0δδ00δ0δ00000γ00

10 0x8aecb27e415abc89 0xe400d10000000000 0x3329020600000000 0xδδδγ0δ0400000000

11 0xa3e692ed909ee688 0x355fab9300000000 0x10ea921c620482c5 0x40cβγδ4γ4δ0c8δγc

12 0x05ecb27e565a7289 0xf3001f0000000000 0xa22b99bc00000000 0xβδδcγγcγ00000000

Note: Out of 2,000 shots, we don’t get any cipher for 1,219 cases and we get
247 faulty ciphers including 13 exploitable (i.e. which satisfied the conditions for
our DFA). Non exploitable faulty ciphers came from a dysfunction of the UART
due to the faults.

Table 9: Faults obtained on the 18-th round
No. Faulty ciphertext Value of the fault on W18 Value of ∆Y19 Value of ∆X19

13 0xf24690de8df8cc89 0x0000000082000000 0xc00000b000000000 0xθ00000θ000000000

14 0x2df93aebf5935009 0x0000000041c0d0d0 0x7807000bd8050000 0x1θ01000θθθ010000

15 0xa9a4a34f84604dde 0x0000000003010707 0x000004cd0000065c 0x000001θθ0000011θ

16 0x52c367c49a9b8786 0x0000000000b55858 0x05077000b6d84808 0x01011000θ1θθ1θ0θ

17 0x00632c247f18e99e 0x0000000058580000 0x0e0bb0000d0ef000 0x0θ0θθ0000θ0θθ000

18 0xecbc98d50864ad3a 0x00000000a7a70000 0xc0f008bbb0d00888 0xθ0θ00θθθθ0θ00θθθ

19 0x43b733ec34c1ec11 0x0093000000000000 0x00000000300a0022 0x00000000δ00β00δδ

20 0xcabdf870ee423736 0x75e5575700000000 0x0c8c0b123baf049e 0x0γ8γ0c4δδcβ40cγc

21 0x46eb59132610ef55 0x01e0c60100000000 0x6f0001133aa00006 0x4400044δδββ00004

22 0x9d13b57cf2211618 0x13974cd400000000 0x0f036133290c0422 0x040δ44δδδγ0γ0cδδ

23 0x1247352b2400c0ed 0x0000006700000000 0x0000000009900c96 0x000000000γγ00γγ4

24 0x770a084c5528c599 0x6363000000000000 0x0a8000330aa00022 0x0β8000δδ0ββ000δδ

25 0xc80ca16eb67b9711 0x3600a90000000000 0x6043623a00000000 0x40cδ4δδβ00000000

We now give, among the obtained faults, those that give as much information
as all faults and all sets of candidates that we can extract from each fault.
Table 10 shows all sets of candidates obtained for each nibble of k0 from the
differentials (∆Y20, ∆X20) and from P−1(C) = 0xe17c93c49ec6fc61 with C
the correct ciphertext. Symbol ∅ means that the fault does not provide any
information about the nibble (i.e. the 16 values are possible).

We eventually get 4 possible values for k0 with k0[8] ∈ {0x0, 0x1} and
k0[10] ∈ {0x8, 0x9}. In order to reduce the number of possible keys, we then
used faulty ciphers obtained from fault injection on the 18-th round. For this, we
compute the difference output ∆Y19 from the remaining 4 candidates for the key.
Then we can observe that some differentials (∆X19, ∆Y19) are not possible and
therefore remove the corresponding candidate.
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Table 10: Sets of candidates obtained from (∆Y20, ∆X20)
No. k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]

1

0x0

∅ ∅ ∅

0x2

∅ ∅ ∅

0x0 0x2 0x8

∅

0x2

∅ ∅

0x4
0x1 0x3 0x1 0x3 0x9 0x3 0x5
0xe 0x4 0x6 0xc 0xc 0x4 0x8
0xf 0x5 0x7 0xd 0xd 0x5 0x9

3

0x0 0x2

∅ ∅ ∅ ∅ ∅

0x0 0x1 0x0 0x1 0x8

∅ ∅ ∅ ∅ ∅ ∅0x1 0x3 0x2 0x3 0x2 0x3 0x9
0xe 0x6 0x8 0x9 0x8 0x9 0xc
0xf 0x7 0xa 0xb 0xa 0xb 0xd

6 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x0 0x1 0x8 0x0 0x1 0x0 0x1 0x0 0x1

∅

0x4 0x5 0x4
0x2 0x3 0x9 0x2 0x3 0x2 0x3 0x2 0x3 0x6 0x7 0x5
0x8 0x9 0xc 0x8 0x9 0x8 0x9 0x8 0x9 0xc 0xd 0x8
0xa 0xb 0xd 0xa 0xb 0xa 0xb 0xa 0xb 0xe 0xf 0x9

8

0x0 0x0 0x1 0x4 0x5 0x0 0x0 0x1 0x0 0x8 0x4

∅

0x2

∅ ∅

0x2 0x6 0x4 0x8
0x1 0x2 0x3 0x6 0x7 0x1 0x2 0x3 0x1 0x9 0x5 0x3 0x3 0x7 0x5 0x9
0xe 0x8 0x9 0xc 0xd 0x6 0x8 0x9 0xe 0xc 0xa 0xc 0x4 0xa 0xa 0xe
0xf 0xa 0xb 0xe 0xf 0x7 0xa 0xb 0xf 0xd 0xb 0xd 0x5 0xb 0xb 0xf

11 ∅

0x1 0x1 0x4

∅

0x4
0xa 0x5 0x2 0x3 0x8 0x2 0x0 0x6 0x1 0x6 0x0
0xb 0x1 0x7 0x4 0x4 0x9 0x7 0x1 0x9 0x8 0x2 0x9 0x5 0x8
0xe 0xf 0xb 0xb 0x6 0xc 0xb 0x6 0xb 0xc 0x9 0xb 0x9 0xd
0xf 0xd 0xd 0x9 0xd 0xe 0x7 0xc 0xa 0xc 0xc

0xf 0xb 0xe 0xe

12

0x3 0x1 0x0

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x5 0x3 0x2 0x2 0x1 0x2
0x7 0x4 0x5 0x7 0x4 0x7 0x7 0x7
0x9 0x6 0x7 0xc 0xb 0x8 0xc 0xb
0xd 0x9 0xd 0xd 0xe 0xe
0xf 0xb 0xf

Indeed, from the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault
on W18, we obtain the 4 following values for ∆Y19 for each possible value of k0:

k0
f3f721cb0c882658
f3f721cb0c982658
f3f721cb1c882658
f3f721cb1c982658

∆Y19

0xc000009022000000
0xe000009022220000
0xc00000b000000000
0xe00000b000220000

and since we know that we injected faults on the last 32 bits of W18, we know
that each nibble of ∆X19 is either 0x0, 0x1, 0x2 or 0x3. From the difference
distribution table of the S-box, we see that an input difference equal to 0x1, 0x2
or 0x3 can lead to an output difference in {0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd,
0xe, 0xf} only. Consequently, we retrieve k0 (displayed in red).

Then, Table 11 shows all sets of candidates obtained for each nibble Nibi

of L−1(S(P−1(C)⊕ k0)⊕ P−1(f20(k1))) with i ∈ {0, · · · , 15}, from differentials
(∆Y19, ∆X19). We again denote by ∅ when the fault does not provide any
information about the nibble (i.e. the 16 values are possible).

Finally, by intersecting sets for each nibble, we deduce 8 candidates for k1
from k0 and C and we retrieve the correct value of k by testing all. With this
we provide, to the best of our knowledge, the first practical validation of a DFA
against PRIDE, even against any light weight SPN-block cipher.

Note : We observed that injecting 32-bit random faults allows us to have lower
complexity than with 16-bit random faults. Indeed, although the differential pairs
obtained do not always provide a single candidate in the case of 32-bit faults, the
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Table 11: Sets of candidates obtained from (∆Y19, ∆X19)
No. Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

16 ∅

0x2

∅

0x8 0x8

∅ ∅ ∅

0x4 0x5 0xa 0x6 0x0 0x1 0x0 0x0 0x1

∅

0x0 0x1
0x3 0x9 0x9 0x6 0x7 0xb 0x7 0x2 0x3 0x1 0x2 0x3 0x2 0x3
0x6 0xe 0xe 0xc 0xd 0xc 0xa 0x8 0x9 0x4 0x8 0x9 0x8 0x9
0x7 0xf 0xf 0xe 0xf 0xd 0xb 0xa 0xb 0x5 0xa 0xb 0xa 0xb

17 ∅

0x2

∅

0x4 0x5 0x4 0x5

∅ ∅ ∅ ∅

0x6

∅

0x2 0x0

∅ ∅ ∅0x3 0x6 0x7 0x6 0x7 0x7 0x3 0x1
0xa 0xc 0xd 0xc 0xd 0xa 0xa 0xe
0xb 0xe 0xf 0xe 0xf 0xb 0xb 0xf

18

0x4

∅

0x0

∅ ∅

0x0 0x1 0x4 0x5 0x4 0x5 0x4 0x5

∅

0x6

∅ ∅

0x0 0x1 0x0 0x1 0x0 0x1
0x5 0x1 0x2 0x3 0x6 0x7 0x6 0x7 0x6 0x7 0x7 0x2 0x3 0x2 0x3 0x2 0x3
0x8 0xe 0x8 0x9 0xc 0xd 0xc 0xd 0xc 0xd 0xa 0x8 0x9 0x8 0x9 0x8 0x9
0x9 0xf 0xa 0xb 0xe 0xf 0xe 0xf 0xe 0xf 0xb 0xa 0xb 0xa 0xb 0xa 0xb

20 ∅ ∅

0x0 0x1 0x1

∅

0x3 0x5 0x3 0x0 0x2 0x2 0x3 0x2
0x6 0x6 0x6 0x0 0x1 0x5 0x4 0x0 0x7 0x3 0xa 0x4 0x6
0xa 0xd 0xa 0xb 0x4 0x7 0x7 0xb 0x9 0xc 0xe 0xb 0x8
0xf 0xe 0xf 0x5 0x8 0xc 0xb 0xd

0xa 0xf 0xd

22 ∅ ∅

0x1 0x1 0x1 0x0

∅ ∅

0x0 0x0
0x2 0x8 0x0 0x2 0x2 0x2 0x2 0x3 0x2 0x2

0x3 0x4 0x9 0x1 0x4 0x4 0x5 0x4 0x6 0xa 0x5 0x5
0xc 0x7 0xe 0x4 0x7 0x7 0x7 0xb 0xa 0xe 0x7 0x7

0xc 0xf 0x5 0xc 0xc 0x8 0xd 0xf 0x8 0x8
0xf 0xf 0xf 0xa 0xa 0xa

23 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x2 0x2

∅ ∅

0x3 0x2 0x8
0x4 0x4 0x6 0x4 0x9
0xb 0xb 0xa 0xb 0xe
0xd 0xd 0xf 0xd 0xf

25 ∅

0x1 0x0 0x1 0x1

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x8 0x2 0x8 0x2 0x2 0x3
0x9 0xa 0x4 0x9 0x5 0x4 0x7
0xe 0xe 0x7 0xe 0x7 0x7 0x9
0xf 0xc 0xf 0x8 0xc 0xb

0xf 0xa 0xf 0xd

probability to obtain a differential is greater than with 16-bit faults. Finally we
showed that flipping one bit give us a known difference on a nibble, we can so
lead the attack with faults from 1 to 32 bits.

6 Countermeasures

In this section, we present and briefly analyze three possible countermeasures.
This list of countermeasures is not exhaustive and any combination of those three
can be used in practice to thwart the DFA proposed in this paper.

6.1 Duplication of computations

Description: A simple countermeasure is to make two computations for the last
two rounds. We save the state of the cipher W17 in memory, possibly k times for
more security - since we are in lightweight cryptography is seems reasonable to
take k = 1 or k = 2. Then we make the computations up to O20 and save the
state again. We repeat the computation with the saved state (W17) and compare
with the first result - possibly k times again. If two different computations give
different results we trap the cipher and no output is produced by the system.
Else the execution performs normally.
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Cost: This countermeasure uses, for encryption and decryption, two additional
matrix layer and three additional substitution layers, subkey updates and subkey
additions. The cost can be bounded from above by 15% of the total PRIDE cost.

6.2 Desynchronization

Description: This countermeasure consists in adding time randomization during
the cipher so that the temporal position of the 18-th and the 19-th round will
not be the same for each execution. For the time randomization generation we
can use a simple Linear Feedback Shift Register (LFSR) whose value indicates
the ‘random’ delay time. Those random delay functions can be added before the
18-th round.

Cost: The cost depends on the time randomization generation - a simple LFSR
implemented in hardware has a low cost with respect to IoT constraints, it also
depends on the duration of the ‘random delay’ and on the time needed to access
the random output of the LFSR.

6.3 Masking

Description: Another countermeasure proposed by Guilley and al. in [20] is
to add a random mask to the message to prevent two consecutive executions
of the same plaintext. More precisely, in its original description, it consists in
generating a 64-bit random mask different at each execution, XOR it with the
asked plaintext and the ciphertext obtained is sent with the mask.

In our case, we use a simple LFSR defined by a minimal primitive polynomial
of degree 64 (X64 +X63 +X61 +X60 + 1 for example) and by an initialization
made public. The LFSR thus generates 264 − 1 different masks. It must not be
again accessible by the user to prevent its reset. For this, it must be correctly
implemented in hardware. We apply the mask by an XOR on the input of the
10-th round. This allows to prevent the adversary to get two encryption of the
same plaintext, and therefore to make a DFA. For decryption, we apply an XOR
between the mask and the output of the 10-th round and get the correct plaintext.
We then have two options. The first is to send the mask with the ciphertext.
Unfortunately in this case, this method does not protect against an attack on
decryption. Indeed, the attacker can choose the same mask on each decryption.
However, in the context of IoT it is common that the card is only used for
encryption and decryption is carried out on a protected server. The second is to
synchronize the encryption and the decryption. They both use the same LFSR
with the same initialization and the decryption must be applied in the same
order as ciphertexts received. Therefore, the countermeasure protects both the
encryption and the decryption but with an additional synchronisation constraint.

Cost: The cost depends on the choice of the random mask generation. A simple
LFSR - like the one we cited - implemented in hardware has a low cost with
respect to IoT constraints. Moreover, applying the mask requests an additional
cost of an XOR for encryption and the same for decryption in the second case.
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7 Conclusion

In this paper we propose the first differential fault analysis on the block cipher
PRIDE. We explain how this attack can be optimized and we demonstrate it,
with 4 faults only to retrieve the full secret key. We show that our attack is
indeed feasible from 32-bit random faults obtained with electromagnetic injection,
which is a low-cost means of injection. We believe that the resistance against
DFA is important for a cipher like PRIDE, which is expected to be largely
deployed in low-end devices thanks to its lightness. At last we propose some
countermeasures which leave the cipher still very efficient for IoT devices. They
can be combined to provide more security and are not exhaustive. An optimization
of these countermeasures is possible for make them less costly and keep the light
side of the cipher. It is also necessary to be careful that the protections to prevent
the DFA do not open doors to further attacks. Finally, it appears that our attack
applies to any SPN-based block ciphers with a linear layer similar to the one
used in PRIDE, like the LS-Designs family introduced by Grosso & al [19] in
2014. The details of this generalization will be studied in a future work.

Acknowledgement. Benjamin Lac’s research work is partly supported
by the French DGA-MRIS scholarship.
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A Differential properties of the PRIDE S-box

A.1 Difference distribution table of the PRIDE S-box

Table 12 shows the difference distribution table T of the PRIDE S-box which is
defined by T (i, j) = # {(x, y) ∈ {0, 1}4 × {0, 1}4 | x⊕ y = i,S(x)⊕ S(y) = j}.

Table 12: difference distribution table of the PRIDE S-box
T 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0
0x2 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
0x3 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
0x4 0 4 0 0 0 0 4 0 0 2 2 0 2 0 0 2
0x5 0 4 0 0 0 4 0 0 0 2 2 0 2 0 0 2
0x6 0 4 0 0 4 0 0 0 0 2 2 0 0 2 2 0
0x7 0 4 0 0 0 0 0 4 0 2 2 0 0 2 2 0
0x8 0 0 4 4 0 0 0 0 4 0 4 0 0 0 0 0
0x9 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
0xa 0 0 0 0 2 2 2 2 4 0 4 0 0 0 0 0
0xb 0 0 4 4 0 0 0 0 0 0 0 0 2 2 2 2
0xc 0 0 2 2 2 2 0 0 0 2 0 2 2 0 2 0
0xd 0 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2
0xe 0 0 2 2 0 0 2 2 0 2 0 2 2 0 2 0
0xf 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 2

A.2 Proof of Proposition 1

We can see that, from the knowledge of a nonzero input (x⊕ y) and of an output
difference (S(x)⊕ S(y)) for S we deduce 0, 2 or 4 candidates for the input value
x. Moreover, we can easily find pairs of differentials (a1, b1) and (a2, b2) which
are satisfied by a single input x. For this, we use Proposition 1 that we prove
here.

Proof (of Proposition 1). Let D(a, b) denote the set of solutions of the equation

S(x⊕ a)⊕ S(x) = b.

Let us consider (a1, b1) and (a2, b2) be two differentials with a1 6= a2 such that

#D(a1, b1) ∩ D(a2, b2) ≥ 2.

Let us first prove that both D(a1, b1) and D(a2, b2) have at least 4 elements. If
these two sets have two elements only, D(a1, b1) = {x, x⊕ a1} and D(a2, b2) =
{x, x⊕ a2}, implying that they cannot be the same since a1 6= a2. Then, at least
one of the two sets contains at least four elements. Suppose that #D(a1, b1) = 4
and #D(a2, b2) = 2. Then, x ⊕ a2 ∈ D(a1, b1), with D(a2, b2) = {x, x ⊕ a2}.
Consequently,

S(x⊕ a1 ⊕ a2)⊕ S(x⊕ a2) = b1 = S(x⊕ a1)⊕ S(x)
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implying that

S(x⊕ a2)⊕ S(x) = S(x⊕ a1 ⊕ a2)⊕ S(x⊕ a1).

Thus x⊕ a1 ∈ D(a2, b2), a contradiction. We have proved that #D(a2, b2) = 4.
Now, it is clear that any element x in D(a1, b1) ∩ D(a2, b2) is a solution of

S(x⊕ a2)⊕ S(x⊕ a1) = b1 ⊕ b2,

i.e., x⊕ a1 ∈ D(a1 ⊕ a2, b1 ⊕ b2) and x⊕ a2 ∈ D(a1 ⊕ a2, b1 ⊕ b2).
Suppose now that {x, x ⊕ a4} ⊆ D(a1, b1) ∩ D(a2, b2) for some a4 6= 0, we

deduce that the four elements x ⊕ a1, x ⊕ a2, x ⊕ a1 ⊕ a4 and x ⊕ a2 ⊕ a4
belong to D(a1 ⊕ a2, b1 ⊕ b2). These four elements are either distinct or satisfy
a4 = a1 ⊕ a2 which implies that x⊕ a4 ⊕ a2 = x⊕ a1 belongs to D(a2, b2), i.e.,
x⊕ a1 ∈ D(a1, b1) ∩ D(a2, b2). Therefore, x⊕ a1, x⊕ a2, x and x⊕ a1 ⊕ a2 all
belong to D(a1 ⊕ a2, b1 ⊕ b2) and #D(a1 ⊕ a2, b1 ⊕ b2) = 4. ut

B Other trade-offs between the number of faults and the
time complexity

We have shown that 4 faults with an appropriate strategy enable the attacker to
recover the whole key. In this section, we evaluate the number of key candidates
that an attacker can obtain with fewer faults. This number then corresponds to
the time complexity of the complete key recovery. Indeed, if the attacker knows
a pair of plaintext-ciphertext, encrypting the known plaintext under each key
candidate until the correct ciphertext is recovered leading to a complete key
recovery8. Firstly, the number of remaining candidates for the subkey k0 (resp.
k1) that an attacker can obtain with one fault on the 19-th round (resp. 18-th
round) is 232. We now use this result to estimate the cost of the full key recovery
from a few faults only.

With a single fault. We want to determine the cost of the key recovery if the
attacker can inject a single fault. If this fault is injected in the 19-th round, then
the possible values of k0 is reduces to a list of 232 candidates. This corresponds
to a total of 296 candidates for the whole 128-bit key. If the attacker knows
two plaintext-ciphertext pairs, he can then encrypt the first known plaintext
under each of these 296 key candidates, until the corresponding ciphertext is
recovered. Only 296−64 = 232 key candidates then remain, and the second
plaintext-ciphertext pair can then be exploited for recovering the key. The main
part of the time complexity in this attack is the cost of the exhaustive search
over the 296 candidates, which corresponds to 296 encryptions.

If the fault is now injected in the 18-th round, then the attack consists
in successively examining all 264 possible values for k0. For each of these 264

8 provided that the number of key candidates is smaller than 264. Otherwise, two
plaintext-ciphertext pairs are needed.
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candidates, the attacker inverts the last encryption round for both the correct
and the faulty ciphertexts C and C∗. He deduces the value of ∆X20, and then of
∆Y19. When choosing a random k0, ∆X20 varies in the set of all input differences
which can appear when the output difference equals ∆Y20. From the difference
distribution table of the S-box, the average number of valid input differences
corresponding to a fixed output difference is

1

16
(1 + 4× 2 + 6× 8 + 8× 5) = 6.0625.

Therefore, ∆X20 (and then ∆Y19) takes in average 6.062516 = 241.6 different
values, and each of these differences appears for 222.4 values of k0 in average.

But, the difference ∆X20 is not valid if the corresponding value of ∆Y19 does
not have the form expected from the value of the fault. As the fault has been
injected on Z0

18 or Z3
18, each nibble of ∆X19 is equal either to 0x1, or to 0x8.

Then, the corresponding nibble ∆Y19 can take 4 values only. Therefore, the
proportion of valid values for ∆Y19 is 416 × 2−64 = 2−32. It follows that, among
the 241.6 values of ∆Y19 which are obtained from the partial decryption, only
29.6 are valid, implying that only 232 values of k0 need to be considered. For each
of these 232 values of k0, the value of the fault, and then of ∆X19 provides 232

candidates for k1 as proved in the previous section. This step then leads to a
list of 264 candidates for the whole 128-bit key, with a time complexity which
mainly corresponds to the cost for decrypting one round of PRIDE 264 times.
The bottleneck of the attack is then the final key recovery procedure, which
consists in testing the 264 remaining keys on two plaintext-ciphertext pairs. The
overall cost of the attack is then roughly the cost of 264 encryption.

With two faults. If the two faults are injected in the 18-th round, then the
previously described technique which enables the attacker to eliminate some
candidates for k0 is repeated twice. Only a proportion of 2−64 values of ∆Y19
will be valid, implying that only the correct value of ∆Y19 will remain after this
step. As previously explained, each value of ∆Y19 is obtained for 222.4 values of
k0 in average. Therefore, this sieving procedure leads to a list of 222.4 candidates
for k0. Now, exploiting the two faults injected in the 18-th round provides one
candidate for k1. Therefore, we get 222.4 candidates for the whole key. The total
time complexity of the attack then corresponds to 264 decryption of a single
round, and to an exhaustive search among the 222.4 remaining keys. The first step
is then the bottleneck and its cost is less than the cost of 264/20 = 259.7 complete
encryptions.

If the first fault is now injected in the 19-th round, then the list of possible
values for k0 is first reduced to a list of size 232 as explained in the previous
section. The second fault, injected on the 18-th round, then enables to reduce this
list to 232−32 = 1 possible value for k0. For this value of k0, a list of 232 candidates
for k1 is obtained from the second fault. The number of candidates for the whole
key, which need to tested, is then 232. The bottleneck of the attack is then the
exhaustive search over the 232 remaining key candidates, which corresponds to a
time complexity equal to the cost of 232 encryptions.
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With three faults. The best strategy with three faults consists in injecting one
fault in the 19-th round, and two in the 18-th round. From the fault in the 19-th
round, the attacker gets a list of 232 candidates for k0. By decrypting the last
round under these 232 values of k0, we roughly get 232 pairs of values for ∆Y19
among which one is expected to be consistent with the two faults injected in the
18-th round. Moreover, these two faults lead to one candidate for k1, i.e., one
candidate for the whole key. The time complexity of the attack then corresponds
to the cost of 232 encryptions of a single round, i.e., 227.7 full encryptions.

C ARM source code

C.1 L-layer

; L0 and L1

; State s0
; Temporary registers t0, · · · , t6
(1) MOV t0, #0x00F0
(2) MOVT t0, #0xF0F0
(3) AND t1, t0, s0, LSL#4
(4) LSR t0, #4
(5) AND t2, t0, s0, LSR#4
(6) AND t0, s0, #0xFF000000
(7) AND t3, s0, #0XFF0000
(8) EOR t1, t1, t2
(9) AND s0, s0, #0xFF00
(10) EOR s0, s0, t1
(11) AND t1, s0, #0x8000
(12) AND t2, s0, #0x01
(13) AND t4, s0, #0xFF00
(14) AND t5, s0, #0x00FF
(15) MOV t6, #0xFF000000
(16) AND t6, t6, s0, LSL#8
(17) EOR s0, s0, r10
(18) AND t6, s0, #0xFF000000
(19) EOR t0, t0, t6
(20) BIC s0, s0, #0xFF0000
(21) EOR s0, s0, t0, LSR#8
(22) EOR s0, s0, t3, LSL#8
(23) MOV t0, #0xFF00
(24) AND t0, t0, t4, LSL#1
(25) EOR t0, t0, t1, LSR#7
(26) LSR t3, t5, #1
(27) EOR t3, t3, t2, LSL#7
(28) EOR s0, s0, t3, LSL#8
(29) AND t3, s0, #0xFF00
(30) EOR s0, s0, t0
(31) EOR s0, s0, t3, LSR#8

; L2 and L3

; State s1
; Temporary registers t0, · · · , t5
(1) MOV t0, #0xF0F0
(2) MOVT t0, #0xF000
(3) AND t1, t0, s1, LSL#4
(4) LSR t0, #4
(5) AND t2, t0, s1, LSR#4
(6) AND t0, s1, #0xFF00
(7) AND t3, s1, #0X00FF
(8) AND s1, s1, #0xFF0000
(9) EOR t1, t1, t2
(10) EOR s1, s1, t1
(11) AND t1, s1, #0x80000000
(12) AND t2, s1, #0x00010000
(13) MOV t4, #0xFF000000
(14) AND t5, s1, t4
(15) AND t4, t4, t5, LSL#1
(16) EOR t1, t4, t1, LSR#7
(17) MOV t4, #0x00FF0000
(18) AND t5, s1, t4
(19) AND t4, t4, t5, LSR#1
(20) EOR t2, t4, t2, LSL#7
(21) EOR s1, s1, t2, LSL#8
(22) AND t2, s1, #0xFF000000
(23) EOR s1, s1, t1
(24) EOR s1, s1, t2, LSR#8
(25) AND t4, s1, #0x00FF
(26) EOR s1, s1, t4, LSL#8
(27) AND t4, s1, #0xFF00
(28) EOR t3, t3, t4, LSR#8
(29) EOR t0, t0, t3
(30) BIC s1, s1, #0x00FF
(31) EOR s1, s1, t0
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C.2 S-layer

; State s0, s1
; Temporary registers t0, t1
(1) MOV t1, s0
(2) AND t0, s0, s0, LSL#16
(3) EOR t0, t0, s1
(4) AND s0, s0, s1, LSR#16
(5) EOR s0, s0, t0
(6) AND t0, s0, s0, LSL#16
(7) EOR t0, t0, t1
(8) AND s1, s0, t0, LSR#16
(9) EOR s1, s1, t0
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