

A First DFA on PRIDE: from Theory to Practice

Works presentation at CRiSIS 2016

Benjamin Lac^{1,5}, Marc Beunardeau^{2,6}, Anne Canteaut³, Jacques J.A. Fournier¹, Renaud Sirdey⁴

1 CEATech/DPACA, Gardanne, France, 2 Ingenico Labs, Paris, France, 3 Inria, Paris, France, 4 CEATech/LIST, Saclay, France 5 ENSM-5E, Saint-Étienne, France, 6 ENS, Paris, France, (benjamin.lac, jacques.fournier, renaud.sirdey)@cea.fr, marc.beunardeav@ingenico.com, anne.canteauv@inria.fr

September 7th, 2016

The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function

Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective

Practical implementation of the DFA on PRIDE

- Implementation of the device
- Exploitation of obtained faults

4 Countermeasures

- Duplication of computations
- Desynchronization
- Masking

The PRIDE block cipher

The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function

2 Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective

Practical implementation of the DFA on PRIDE

- Implementation of the device
- Exploitation of obtained faults

Countermeasures

- Duplication of computations
- Desynchronization
- Masking

5 Conclusion and perspectives

The PRIDE block cipher The structure of PRIDE

The structure of PRIDE

Iterative block cipher composed of 20 rounds and introduced by Albrecht & al. in 2014. It takes as input a 64-bit block and uses a 128-bit key $k = k_0 ||k_1$.

The key scheduling We denote k_1 , the *i*-th byte of k_1 then

 $f_r(k_1) = k_{10} ||g_r^{(0)}(k_{11})||k_{12}||g_r^{(1)}(k_{13})||k_{14}||g_r^{(2)}(k_{15})||k_{16}||g_r^{(3)}(k_{17})||k_{17}||k_{17}||k_{17}||k_{17}||k_$

for round r with

 $g_r^{(i)}(x) = (x + C_i r) \mod 256$ where C_i is a constant.

Benjamin Lac DRT/CEATech/DPACA/LSAS

The PRIDE block cipher The structure of PRIDE

The structure of PRIDE

Iterative block cipher composed of 20 rounds and introduced by Albrecht & al. in 2014. It takes as input a 64-bit block and uses a 128-bit key $k = k_0 ||k_1$.

The key scheduling We denote k_{1_i} the *i*-th byte of k_1 then

$$f_r(k_1) = k_{10} ||g_r^{(0)}(k_{11})||k_{12}||g_r^{(1)}(k_{13})||k_{14}||g_r^{(2)}(k_{15})||k_{16}||g_r^{(3)}(k_{17})||k_{17}||g_r^{(3)}(k_{17})||k_{17}||k_{17}||k_{17}||k_{17}||k_$$

for round r with

 $g_r^{(i)}(x) = (x + C_i r) \mod 256$ where C_i is a constant.

Benjamin Lac DRT/CEATech/DPACA/LSAS

The PRIDE block cipher The PRIDE round function

2 of 19

The PRIDE round function

Benjamin Lac DRT/CEATech/DPACA/LSAS

- The PRIDE block cipher
 - The structure of PRIDE
 - The PRIDE round function
- Differential Fault Analysis of PRIDE
 - General principle
 - Differential properties of the PRIDE S-box
 - Properties that make the attack effective
- **3** Practical implementation of the DFA on PRIDE
 - Implementation of the device
 - Exploitation of obtained faults
- Countermeasures
 - Duplication of computations
 - Desynchronization
 - Masking
- Conclusion and perspectives

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

3 of 19

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

General principle

3 of 19

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

General principle

3 of 19

Differential Fault Analysis of PRIDE

General principle

4 of 19

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

General principle

4 of 19

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

5 of 19

Proposition

Let S be an n-bit S-box with differential uniformity 4. Let (a_1, b_1) and (a_2, b_2) be two differentials with $a_1 \neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$S(x \oplus a_1 \oplus a_2) \oplus S(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

or all i in $\{0, \dots, 15\}$ or a construction of the construction

l et

 $x = \mathcal{P}^{-1}(C)[i] \oplus k_0[i]$ $a_1 = \mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}(C^*)[i] = \Delta Y_{20}[i]$ $b_1 = \Delta X_{20}[i]$

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

5 of 19

Proposition

Let S be an n-bit S-box with differential uniformity 4. Let (a_1, b_1) and (a_2, b_2) be two differentials with $a_1 \neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$\Delta X_{20}[i] = \mathcal{S}^{-1}(\mathcal{P}^{-1}(C)[i] \oplus k_0[i]) \oplus \mathcal{S}^{-1}(\mathcal{P}^{-1}(C^*)[i] \oplus k_0[i])$$

Let

$$x = \mathcal{P}^{-1}(C)[i] \oplus k_0[i]$$
$$a_1 = \mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}(C^*)[i] = \Delta Y_{20}[i]$$
$$b_1 = \Delta X_{20}[i]$$

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

5 of 19

Proposition

Let S be an n-bit S-box with differential uniformity 4. Let (a_1, b_1) and (a_2, b_2) be two differentials with $a_1 \neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$\Delta X_{20}[i] = \mathcal{S}^{-1}(\mathcal{P}^{-1}(C)[i] \oplus k_0[i]) \oplus \mathcal{S}^{-1}(\mathcal{P}^{-1}(C^*)[i] \oplus k_0[i])$$

Let

$$egin{aligned} &x = \mathcal{P}^{-1}(C)[i] \oplus k_0[i] \ &\mu_1 = \mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}(C^*)[i] = \Delta Y_{20}[i] \ &b_1 = \Delta X_{20}[i] \end{aligned}$$

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

5 of 19

Proposition

Let S be an n-bit S-box with differential uniformity 4. Let (a_1, b_1) and (a_2, b_2) be two differentials with $a_1 \neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$\Delta X_{20}[i] = \mathcal{S}^{-1}(\mathcal{P}^{-1}(C)[i] \oplus k_0[i]) \oplus \mathcal{S}^{-1}(\mathcal{P}^{-1}(C^*)[i] \oplus k_0[i])$$

Let

$$x = \mathcal{P}^{-1}(C)[i] \oplus k_0[i]$$

$$a_1 = \mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}(C^*)[i] = \Delta Y_{20}[i]$$

$$b_1 = \Delta X_{20}[i]$$

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

5 of 19

Proposition

Let S be an n-bit S-box with differential uniformity 4. Let (a_1, b_1) and (a_2, b_2) be two differentials with $a_1 \neq a_2$ such that the system of two equations

$$\mathcal{S}(x \oplus a_1) \oplus \mathcal{S}(x) = b_1 \tag{1}$$

$$\mathcal{S}(x \oplus a_2) \oplus \mathcal{S}(x) = b_2 \tag{2}$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$\mathcal{S}(x \oplus a_1 \oplus a_2) \oplus \mathcal{S}(x) = b_1 \oplus b_2$$
 (3)

has at least four solutions.

Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$\Delta X_{20}[i] = \mathcal{S}^{-1}(\mathcal{P}^{-1}(C)[i] \oplus k_0[i]) \oplus \mathcal{S}^{-1}(\mathcal{P}^{-1}(C^*)[i] \oplus k_0[i])$$

Let

$$x = \mathcal{P}^{-1}(C)[i] \oplus k_0[i]$$

$$a_1 = \mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}(C^*)[i] = \Delta Y_{20}[i]$$

$$b_1 = \Delta X_{20}[i]$$

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

(a1, 0x1), (a2, 0x8)

Difference distribution table of the PRIDE S-box

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

 $(a_1, 0x1), (a_2, 0x8)$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0x2	0x3	0x4	0×5	0×6	0x7	0×8	0×9	0xa	0xb	0xc	0xd	0xe	0xf
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
0x5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0x9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
0xf	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

 $(a_1, 0x1), (a_2, 0x8)$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	0×8	0×9	0xa	0xb	0xc	0×d	0xe	0xf
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
0x5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0x9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
0xf	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

 $(a_1, 0x1), (a_2, 0x8)$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0×2	0x3	0×4	0×5	0×6	0×7	0×8	0×9	0xa	0×b	0xc	0×d	0xe	0×f
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0×2	0	0	0	0	0	0	0	0		0	0	4	2	2	2	2
0×3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0×4	0		0	0	0	0	4	0	0	2	2	0	2	0	0	2
0×5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0×9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
0×f	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

 $(a_1, 0x1), (a_2, 0x8)$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0x2	0x3	0x4	0×5	0×6	0x7	0×8	0×9	0xa	0xb	0xc	0xd	0xe	0xf
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0		0	0	4	2	2	2	2
0×3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
0×5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0		2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0×9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
0xf	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box

6 of 19

Obtained differences

From injecting faults on Z_{19} or on W_{19}

 $(a_1, 0x1), (a_2, 0x8)$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0×2	0x3	0×4	0×5	0×6	0×7	0×8	0×9	0xa	0×b	0xc	0×d	0xe	0xf
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0×2	0	0	0	0	0	0	0	0		0	0	4	2	2	2	2
0×3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0×4	0		0	0	0	0	4	0	0		2	0	2	0	0	2
0×5	0	4	0	0	0	4	0	0	0		2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0		2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0		2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0x9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0		0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0		0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0		0	2	2	0	2	0
0×f	0	0	2	2	2	2	0	0	0		0	2	0	2	0	2

Benjamin Lac DRT/CEATech/DPACA/LSAS

Differential Fault Analysis of PRIDE

Properties that make the attack effective

7 of 19

The design of the linear layer

– Flip the 16-bit output of one matrix after the $\mathcal L\text{-layer}$ activates all S-boxes in the next round.

Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_0 .

The number of remaining candidates is at most 4¹⁶, where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Differential Fault Analysis of PRIDE

Properties that make the attack effective

7 of 19

The design of the linear layer

– Flip the 16-bit output of one matrix after the $\mathcal L\text{-layer}$ activates all S-boxes in the next round.

– Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_0 .

The number of remaining candidates is at most 4¹⁶, where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Differential Fault Analysis of PRIDE

Properties that make the attack effective

7 of 19

The design of the linear layer

– Flip the 16-bit output of one matrix after the $\mathcal L\text{-layer}$ activates all S-boxes in the next round.

– Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_0 .

– The number of remaining candidates is at most 4^{16} , where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Differential Fault Analysis of PRIDE

Properties that make the attack effective

7 of 19

The design of the linear layer

– Flip the 16-bit output of one matrix after the $\mathcal L\text{-layer}$ activates all S-boxes in the next round.

– Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_0 .

- The number of remaining candidates is at most 4^{16} , where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Differential Fault Analysis of PRIDE

Properties that make the attack effective

7 of 19

The design of the linear layer

- Flip the 16-bit output of one matrix after the $\mathcal L\text{-layer}$ activates all S-boxes in the next round.
- Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_0 .
- The number of remaining candidates is at most 4^{16} , where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.
- It is the case in each nibble for the presented strategies.

The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function

2 Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective

Practical implementation of the DFA on PRIDE

- Implementation of the device
- Exploitation of obtained faults

Countermeasures

- Duplication of computations
- Desynchronization
- Masking

5 Conclusion and perspectives

Practical implementation of the DFA on PRIDE

Implementation of the device

8 of 19

The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for IoT applications.

In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time. We used a simple EM analysis to identify in time the 18-th and 19-th rounds.

Practical implementation of the DFA on PRIDE

Implementation of the device

8 of 19

The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for IoT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time. We used a simple EM analysis to identify in time the 18-th and 19-th rounds.

Implementation of the device

8 of 19

The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for IoT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

- We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

We used a simple EM analysis to identify in time the 18-th and 19-th rounds

Implementation of the device

8 of 19

The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for IoT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

- We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.
- We used a simple EM analysis to identify in time the 18-th and 19-th rounds.

Practical implementation of the DFA on PRIDE

32-bit random faults

9 of 19

32-bit random faults on W_{19}

Practical implementation of the DFA on PRIDE

32-bit random faults

9 of 19

32-bit random faults on W_{19}

Exploitation of obtained faults

10 of 19

The parameter values

- We used a key $k = k_0 ||k_1|$ where

$k_0 = 0$ xf3f721cb1c882658 and $k_1 = 0$ xe417d148e239ca5d

The plaintext used for all executions was 0x0132546798badcfe and the correct ciphertext was 0x9aecb37ea45a6c89. We denote respectively by θ , β , γ , δ the possible pair of values (0x2,0x3), (0x4,0x8), (0x4,0xc), (0x8,0xc).

The obtained faults on the 19-th round

Exploitation of obtained faults

10 of 19

The parameter values

- We used a key $k = k_0 ||k_1|$ where

 $k_0 = 0$ xf3f721cb1c882658 and $k_1 = 0$ xe417d148e239ca5d

- The plaintext used for all executions was 0x0132546798badcfe and the correct ciphertext was 0x9aecb37ea45a6c89. We denote respectively by θ , β , γ , δ the possible pair of values (0x2,0x3), (0x4,0x8), (0x4,0xc), (0x8,0xc).

The obtained faults on the 19-th round

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

10 of 19

The parameter values

- We used a key $k = k_0 ||k_1|$ where

 $k_0 = 0 \times f3f721cb1c882658$ and $k_1 = 0 \times e417d148e239ca5d$

- The plaintext used for all executions was 0x0132546798badcfe and the correct ciphertext was 0x9aecb37ea45a6c89. We denote respectively by θ , β , γ , δ the possible pair of values (0x2,0x3), (0x4,0x8), (0x4,0xc), (0x8,0xc).

No.	Faulty ciphertext	Value of the fault on W_{19}	Value of ΔY_{20}	Value of ΔX_{20}
1	0x1aad3b972c92ec09	0×0000000804108e8	0xf00060007e40600c	0×000100010101000
2	0x7b4c93dea55a6d89	0×00000000e1a0a0a0	0x88c0000bc0c00000	0×000000000000000000000000000000000000
3	0x1b6c733e255aadc9	0×000000081804040	0×f500000b85000000	0×01000000000000
4	0x71ecd27ee55a6d89	0×0000000eb00e900	0x8ec0808f00000000	0×000000000000000000000000000000000000
5	0x9aecb324a4426cdb	0×00000000000005a	0×000000005076050	0×0000000001011010
6	0x9a57b33fa4626cf1	0x000000000bb005a	0×000000085bbb08c	$0 \times 00000000 \theta 1 \theta \theta \theta 0 \theta \theta$
7	0x9a57b365a4606cb9	0×000000000bb0000	0×000000080bfe0ec	0×000000000000000000000000000000000000
8	0x77aa24313111ed8c	0×00000000ed461f4d	0xf8868e4f0e006de7	$0 \times \theta \theta \theta 1 \theta \theta 1 \theta 0 \theta 0 0 1 \theta \theta 1$
9	0x9ae8b37ac15a6989	0×650004040000000	0x0220030300000c00	0×0δδ00δ0δ00000γ00
10	0x8aecb27e415abc89	0xe400d1000000000	0x332902060000000	$0 \times \delta \delta \delta \gamma 0 \delta 0400000000$
11	0xa3e692ed909ee688	0x355fab930000000	0x10ea921c620482c5	$0 \times 40 c \beta \gamma \delta 4 \gamma 4 \delta 0 c 8 \delta \gamma c$
12	0x05ecb27e565a7289	0×f3001f000000000	0xa22b99bc00000000	$0 \times \beta \delta \delta c \gamma \gamma c \gamma 00000000$

The obtained faults on the 19-th round

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults

11 of 19

Exploitation of the faults to retrieve k_0

No.	$k_0[0]$	$k_0[1]$	$k_0[2]$	$k_0[3]$	$k_0[4]$	$k_0[5]$	$k_0[6]$	$k_0[7]$	$k_0[8]$	$k_0[9]$	$k_0[10]$	$k_0[11]$	$k_0[12]$	$k_0[13]$	$k_0[14]$	$k_0[15]$
1	0x0 0x1 0xe 0xf	0	0	Ø	0x2 0x3 0x4 0x5	Ø	0	Ø	0x0 0x1 0x6 0x7	0x2 0x3 0xc 0xd	0x8 0x9 0xc 0xd	Ø	0x2 0x3 0x4 0x5	0	0	0x4 0x5 0x8 0x9
3	0x0 0x1 0xe 0xf	0x2 0x3 0x6 0x7	Ø	0	Ø	0	-0	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x8 0x9 0xc 0xd	Ø	ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	ø	Ø	Ø	0	0	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x8 0x9 0xc 0xd	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	Ø	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0x4 0x5 0x8 0x9
8	0x0 0x1 0xe 0xf	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0×0 0×1 0×6 0×7	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0xe 0xf	0x8 0x9 0xc 0xd	0x4 0x5 0xa 0xb	0	0x2 0x3 0xc 0xd	0	Ø	0x2 0x3 0x4 0x5	0x6 0x7 0xa 0xb	0x4 0x5 0xa 0xb	0x8 0x9 0xe 0xf
1010	0xa 0xb 0xe 0xf		0x1 0xf	0x1 0x5 0x7 0xb 0xd 0xd	0x2 0x4 0xb 0xd	0x1 0x3 0x4 0x6 0x9 0xb	0x8 0x9 0xc 0xd	0x2 0x7 0xb 0xe	0x0 0x1 0x6 0x7	0x4 0x6 0x9 0xb 0xc 0xc	0	0x8 0xc	0x1 0x2 0x9 0xa	0x4 0x6 0x9 0xb 0xc 0xc	0x0 0x5 0x9 0xc	0x8 0xd
12	0x3 0x5 0x7 0x9 0xd 0xf	0×1 0×3 0×4 0×6 0×9 0×b	0x0 0x2 0x5 0x7 0xd 0xf	0×7 0×c	0x2 0x4 0xb 0xd	0×1 0×7 0×8 0xe	0x7 0xc	0x2 0x7 0xb 0xe	0	Ø	0	Ø	Ø	0	0	0
Ω	0xf	0×3	0xf	0x7	0x2	0×1	0xc	0xb	0x0 0x1	Охс	0x8 0x9	0x8	0x2	0x6	0x5	0x8

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

 k_0 f3f721cb0c882658 f3f721cb0c982658 f3f721cb1c882658 f3f721cb1c882658 f3f721cb1c982658 $\begin{array}{c} \Delta Y_{19} \\ 0 \times c00000902200000 \\ 0 \times e00009022220000 \\ 0 \times c00000b00000000 \\ 0 \times e00000b000220000 \end{array}$

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

k_0	ΔY_{19}
f3f721cb0c882658	0xc000009022000000
f3f721cb0c982658	0xe000009022220000
f3f721cb1c882658	0xc00000b00000000
f3f721cb1c982658	0xe00000b000220000

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

k_0	ΔY_{19}
f3f721cb0c882658	0xc000009022000000
f3f721cb0c982658	0xe000009022220000
f3f721cb1c882658	0xc00000b00000000
f3f721cb1c982658	0xe00000b000220000

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

- From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

k_0	ΔY_{19}
3f721cb0c882658	0xc000009022000000
f3f721cb0c982658	0xe000009022220000
f3f721cb1c882658	0xc00000b00000000
3f721cb1c982658	0xe00000b000220000

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

- From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Exploitation of obtained faults

12 of 19

Reducing the remaining candidates for k_0 from faults obtained on the 18-th round

– From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18} , we obtain the 4 following values for ΔY_{19} for each possible value of k_0

k₀ f3f721cb0c882658 f3f721cb0c982658 f3f721cb1c882658 f3f721cb1c982658 $\begin{array}{c} \Delta Y_{19} \\ 0 \times c00000902200000 \\ 0 \times e00009022220000 \\ 0 \times c00000b00000000 \\ 0 \times e00000b000220000 \end{array}$

and since we know that we injected faults on the last 32 bits of W_{18} , we know that each nibble of ΔX_{19} is either 0x0, 0x1, 0x2 or 0x3.

- From the difference distribution table of the S-box, we see that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference only in

{0x4, 0x5, 0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf}

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

13 of 19

The obtained faults on the 18-th round

No.	Faulty ciphertext	Value of the fault on W_{18}	Value of ΔY_{19}	Value of ΔX_{19}
13	0xf24690de8df8cc89	0×000000082000000	0xc00000b00000000	0×000000000000000000000000000000000000
14	0x2df93aebf5935009	0×000000041c0d0d0	0x7807000bd8050000	0×1001000000000
15	0xa9a4a34f84604dde	0×000000003010707	0×000004cd0000065c	$0 \times 000001 \theta \theta 0000011 \theta$
16	0x52c367c49a9b8786	0×000000000b55858	0×05077000b6d84808	$0 \times 01011000 \theta 1 \theta \theta 1 \theta 0 \theta$
17	0x00632c247f18e99e	0×000000058580000	0x0e0bb0000d0ef000	0×000000000000000000000000000000000000
18	0xecbc98d50864ad3a	0×0000000a7a70000	0xc0f008bbb0d00888	$0 \times \theta 0 \theta 0 0 \theta \theta \theta \theta 0 \theta 0 0 \theta \theta \theta$
19	0x43b733ec34c1ec11	0×009300000000000	0x0000000300a0022	0×00000000δ00β00δδ
20	0xcabdf870ee423736	0x75e5575700000000	0x0c8c0b123baf049e	$0 \times 0 \gamma 8 \gamma 0 c 4 \delta \delta c \beta 4 0 c \gamma c$
21	0x46eb59132610ef55	0×01e0c6010000000	0x6f0001133aa00006	0x4400044δδββ00004
22	0x9d13b57cf2211618	0×13974cd40000000	0×0f036133290c0422	$0 \times 040\delta 44\delta\delta\delta\gamma 0\gamma 0c\delta\delta$
23	0x1247352b2400c0ed	0×00000670000000	0×000000009900c96	0×00000000γγ00γγ4
24	0x770a084c5528c599	0×636300000000000	0x0a8000330aa00022	0×0β8000δδ0ββ000δδ
25	0xc80ca16eb67b9711	0x3600a9000000000	0×6043623a0000000	$0 \times 40 c \delta 4 \delta \delta \beta 00000000$

We first retrieved each nibble Nib_i of $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C) \oplus k_0) \oplus \mathcal{P}^{-1}(f_{20}(k_1)))$.

Exploitation of obtained faults

14 of 19

Exploitation of the faults to retrieve $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C) \oplus k_0) \oplus \mathcal{P}^{-1}(f_{20}(k_1)))$

No.	Nib ₀	Nib ₁	Nib ₂	Nib ₃	Nib ₄	Nib ₅	Nib ₆	Nib7	Nib ₈	Nib ₉	Nib ₁₀	Nib11	Nib ₁₂	Nib13	Nib ₁₄	Nib ₁₅
16	Ø	0x2 0x3 0x6 0x7	Ø	0x8 0x9 0xe 0xf	0x8 0x9 0xe 0xf	Ø	Ø	Ø	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0xa 0xb 0xc 0xd	0x6 0x7 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x4 0x5	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	ø	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb
17	0	0x2 0x3 0xa 0xb	0	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	Ø	50	Ø	0	0×6 0×7 0×a 0×b	0	0x2 0x3 0xa 0xb	0x0 0x1 0xe 0xf	Ø	Ø	0
18	0x4 0x5 0x8 0x9	ø	0x0 0x1 0xe 0xf	Ø	ø	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0x4 0x5 0x6 0x7 0xc 0xd 0xe 0xf	0	0x6 0x7 0xa 0xb	Ø	Ø	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb	0x0 0x1 0x2 0x3 0x8 0x9 0xa 0xb
20	0	0x3 0x6 0xa 0xf	0x5 0x6 0xd 0xe	0x3 0x6 0xa 0xf	0	0x0 0xb	0x0 0x1 0x4 0x5	0x0 0x2 0x5 0x7 0x8 0xa	0x1 0x2 0x4 0x7 0xc 0xf	0x0 0xb	0x1 0x3 0x7 0x9 0xb 0xd	0x3 0xc	0	0xa 0xe	0x2 0x4 0xb 0xd	0x6 0x8
22	1010	0x3 0xc	0	0x1 0x2 0x4 0x7 0xc 0xf	0x8 0x9 0xe 0xf	0x0 0x1 0x4 0x5	0x1 0x2 0x4 0x7 0xc 0xf	0×1 0×2 0×4 0×7 0×c 0×f	0x0 0x2 0x5 0x7 0x8 0xa	0x2 0x4 0xb 0xd	0	0x3 0x6 0xa 0xf	0	0xa 0xe	0x0 0x2 0x5 0x7 0x8 0xa	0x0 0x2 0x5 0x7 0x8 0xa
23	Ø	Ø	Ø	Ø	ø	0	ø	Ø	Ø	0×2 0×4 0xb 0xd	0x2 0x4 0xb 0xd	ø	Ø	0x3 0x6 0xa 0xf	0x2 0x4 0xb 0xd	0x8 0x9 0xe 0xf
25	0x8 0x9 0xe 0xf	Ø	0xa 0xe	0x1 0x2 0x4 0x7 0xc 0xf	0x8 0x9 0xe 0xf	0x0 0x2 0x5 0x7 0x8 0xa	0x1 0x2 0x4 0x7 0xc 0xf	0×1 0×3 0×7 0×9 0×b 0×d	0	0	0	Ø	Ø	Ø	0	0
Ω	0x8 0x9	0x3	0xe	0xf	0xe 0xf	0×0	0x4	0×7	0×7	0xb	0×b	0×3	0×0 0×1	0xa	0x2	0×8

Exploitation of obtained faults

15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

 $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1)))$

Then, we calculated the 8 possible $S(\mathcal{P}^{-1}(C) \oplus k_0) \oplus \mathcal{P}^{-1}(f_{20}(k_1))$, and from $S(\mathcal{P}^{-1}(C) \oplus k_0) = 0$ x128bb20f824eda39, we deduced 8 candidates for $\mathcal{P}^{-1}(f_{20}(k_1))$. Finally we got 8 values for $f_{20}(k_1)$ and so for k_1 . We eventually obtained, by testing all possible k_1 , the secret key

 $k = 0 \times f3f721cb1c882658e417d148e239ca5d$

from a few number of faults.

Exploitation of obtained faults

15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

 $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1)))$

- Then, we calculated the 8 possible $\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1))$, and from

 $\mathcal{S}(\mathcal{P}^{-1}(C) \oplus k_0) = 0 \times 128 \text{bb} 20 \text{f} 824 \text{ed} a 39,$

we deduced 8 candidates for $\mathcal{P}^{-1}(f_{20}(k_1))$.

Finally we got 8 values for $f_{20}(k_1)$ and so for k_1 . We eventually obtained, by testing all possible k_1 , the secret ke

 $k = 0 \times f3f721cb1c882658e417d148e239ca5d$

from a few number of faults

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

 $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1)))$

- Then, we calculated the 8 possible $\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1))$, and from

 $\mathcal{S}(\mathcal{P}^{-1}(C) \oplus k_0) = 0 \times 128 \text{bb} 20 \text{f} 824 \text{ed} a 39,$

we deduced 8 candidates for $\mathcal{P}^{-1}(f_{20}(k_1))$.

- Finally we got 8 values for $f_{20}(k_1)$ and so for k_1 .

We eventually obtained, by testing all possible k_1 , the secret key

 $k = 0 \times f3f721cb1c882658e417d148e239ca5d$

from a few number of faults.

Benjamin Lac DRT/CEATech/DPACA/LSAS

Exploitation of obtained faults

15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

 $\mathcal{L}^{-1}(\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1)))$

- Then, we calculated the 8 possible $\mathcal{S}(\mathcal{P}^{-1}(C)\oplus k_0)\oplus \mathcal{P}^{-1}(f_{20}(k_1))$, and from

 $\mathcal{S}(\mathcal{P}^{-1}(C) \oplus k_0) = 0 \times 128 \text{bb} 20 \text{f} 824 \text{ed} a 39,$

we deduced 8 candidates for $\mathcal{P}^{-1}(f_{20}(k_1))$.

- Finally we got 8 values for $f_{20}(k_1)$ and so for k_1 .
- We eventually obtained, by testing all possible k_1 , the secret key

 $k = 0 \times f3f721cb1c882658e417d148e239ca5d$

from a few number of faults.

Countermeasures

The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function

2 Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective

Practical implementation of the DFA on PRIDE

- Implementation of the device
- Exploitation of obtained faults

4 Countermeasures

- Duplication of computations
- Desynchronization
- Masking

Conclusion and perspectives

Countermeasures Duplication of computations 16 of 19

Description

- $W_{17} \xrightarrow{\text{enc.}} O_{20}$ -
- $W_{17} \xrightarrow{\text{enc.}} O'_{20}$

- Cost per duplication
- 2 matrix layers -
- 3 substitution layers -

Total < 15% of PRIDE enc./dec

- 3 subkey updates
- 3 subkey additions -

Countermeasures Duplication of computations 16 of 19

Cost per duplicatio

- 2 matrix layers -
- 3 substitution layers -

Total < 15% of PRIDE enc./dec

- 3 subkey updates
- 3 subkey additions -

Countermeasures Duplication of computations 16 of 19

- $V_{17} \xrightarrow{\text{enc.}} O_{20}^{\prime\prime}$
- Cost per duplication
- 2 matrix layers -
- 3 substitution layers -
- Total < 15% of PRIDE enc./dec

- 3 subkey updates
- 3 subkey additions –

Countermeasures Duplication of computations 16 of 19

Description

- Cost per duplication
 - 2 matrix layers -
- 3 substitution layers -
- Fotal < 15% of PRIDE enc./dec

- 3 subkey updates
- 3 subkey additions –

Countermeasures Duplication of computations 16 of 19

Description

- Cost per duplication
- 2 matrix layers
- 3 substitution layers
- 3 subkey updates -
- 3 subkey additions

Countermeasures Duplication of computations 16 of 19

Description

- Cost per duplication
- 2 matrix layers ——
- 3 substitution layers —

Total < 15% of PRIDE enc./dec.

- 3 subkey updates —
- 3 subkey additions —

Countermeasures Desynchronization 17 of 19

Description Init ----PRNG ➤ Out

Countermeasures Desynchronization 17 of 19

Benjamin Lac DRT/CEATech/DPACA/LSAS

Countermeasures Desynchronization 17 of 19

iphertext + W₁₇ + W₁₇ + Cost Generation of the PRNG's output Access to the PRNG's output Duration of the 'random delay'

Benjamin Lac DRT/CEATech/DPACA/LSAS

Countermeasures Desynchronization 17 of 19

Cost Generation of the PRNG's output Access to the PRNG's output Duration of the 'random delay'

Benjamin Lac DRT/CEATech/DPACA/LSAS

Countermeasures Desynchronization 17 of 19

Cost

- Generation of the PRNG's output
- Access to the PRNG's output
- Duration of the 'random delay'

Benjamin Lac DRT/CEATech/DPACA/LSAS

Countermeasures Masking 18 of 19

■ Description Init → PRNG → Out

Plaintext $I_{10} \oplus Out$ enc. Ciphertext, OCostGeneration of the PRNG's outputAccess to the PRNG's output

Countermeasures Masking 18 of 19

Cost Generation of the PRNG's output Access to the PRNG's output

Countermeasures Masking 18 of 19

Cost Generation of the

Access to the PRNG's output

Countermeasures Masking 18 of 19

- Cost
- Generation of the PRNG's output
- Access to the PRNG's output

The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function

2 Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective

Practical implementation of the DFA on PRIDE

- Implementation of the device
- Exploitation of obtained faults

Countermeasures

- Duplication of computations
- Desynchronization
- Masking

Conclusion and perspectives

Benjamin Lac DRT/CEATech/DPACA/LSAS

DE LA RECHERCHE À L'INDUSTI

Conclusion and perspectives

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.

Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.

Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks

Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

Benjamin Lac DRT/CEATech/DPACA/LSAS

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.

Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks.

Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

Benjamin Lac DRT/CEATech/DPACA/LSAS

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.

- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.

- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks

Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

Benjamin Lac DRT/CEATech/DPACA/LSAS

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks

Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

Benjamin Lac DRT/CEATech/DPACA/LSAS

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

- Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks.

Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

Benjamin Lac DRT/CEATech/DPACA/LSAS

19 of 19

Conclusion

- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for IoT devices.

Perspectives

- Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks.
- Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

ingenico

DE LA RECHERCHE À L'INDUSTRIE

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Benjamin Lac DRT/CEATech/DPACA/LSAS

Public Industrial and Commercial Establishment RCS Paris B 775 685 019