Saint-Étienne

A First DFA on PRIDE: from Theory to Practice

Works presentation at CRiSIS 2016

Benjamin Lac ${ }^{1,5}$, Marc Beunardeau ${ }^{2,6}$, Anne Canteaut ${ }^{3}$, Jacques J.A. Fournier ${ }^{1}$, Renaud Sirdey ${ }^{4}$

1 CEATech/DPACA, Gardanne, France,
2 Ingenico Labs, Paris, France,
3 Inria, Paris, France,
4 CEATech/LIST, Saclay, France
5 ENSM-SE, Saint-Étienne, France,
6 ENS, Paris, France,
\{benjamin.lac, jacques.fournier, renaud.sirdey\}@cea.fr, marc.beunardeau@ingenico.com, anne.canteaut@inria.fr
(1) The PRIDE block cipher

- The structure of PRIDE
- The PRIDE round function
(2) Differential Fault Analysis of PRIDE
- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective
(3) Practical implementation of the DFA on PRIDE
- Implementation of the device
- Exploitation of obtained faults
(4) Countermeasures
- Duplication of computations
- Desynchronization
- Masking
(5) Conclusion and perspectives
(1) The PRIDE block cipher
- The structure of PRIDE
- The PRIDE round function

2) Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effectivePractical implementation of the DFA on PRIDE
- Implementation of the device
- Exploitation of obtained faults
- Duplication of computations
- Desynchronization
- Masking

5 Conclusion and perspectives

The PRIDE block cipher
The structure of PRIDE
1 of 19

■ The structure of PRIDE

Iterative block cipher composed of 20 rounds and introduced by Albrecht \& al. in 2014. It takes as input a 64 -bit block and uses a 128-bit key $k=k_{0} \| k_{1}$.

[^0]
■ The structure of PRIDE

Iterative block cipher composed of 20 rounds and introduced by Albrecht \& al. in 2014. It takes as input a 64 -bit block and uses a 128 -bit key $k=k_{0} \| k_{1}$.

E The key scheduling

We denote $k_{1 i}$ the i-th byte of k_{1} then

$$
f_{r}\left(k_{1}\right)=k_{1_{0}}\left\|g_{r}^{(0)}\left(k_{1_{1}}\right)\right\| k_{1_{2}}\left\|g_{r}^{(1)}\left(k_{1_{3}}\right)\right\| k_{1_{4}}\left\|g_{r}^{(2)}\left(k_{1_{5}}\right)\right\| k_{1_{6}} \| g_{r}^{(3)}\left(k_{1_{7}}\right)
$$

for round r with

$$
g_{r}^{(i)}(x)=\left(x+C_{i} r\right) \bmod 256 \text { where } C_{i} \text { is a constant. }
$$

The PRIDE round function

Differential Fault Analysis of PRIDE

- The structure of PRIDE
- The PRIDE round function

2 Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effectiveactical implementation ortme DFA on PRIDE
- Implementation of the device
- Exploitation of obtained faults
- Duplication of computations
- Desynchronization
- MaskingConclusion and perspectives

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
3 of 19

Injecting faults on Z_{19}

Differential Fault Analysis of PRIDE
General principle
4 of 19

Injecting faults on W_{19}

Differential Fault Analysis of PRIDE
General principle
4 of 19

Injecting faults on W_{19}

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box
5 of 19

- Proposition

Let \mathcal{S} be an n -bit S -box with differential uniformity 4. Let $\left(a_{1}, b_{1}\right)$ and (a_{2}, b_{2}) be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

Differential Fault Analysis of PRIDE
Differential properties of the PRIDE S-box
5 of 19

- Proposition

Let \mathcal{S} be an n-bit S -box with differential uniformity 4. Let $\left(a_{1}, b_{1}\right)$ and (a_{2}, b_{2}) be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

© Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$
\Delta X_{20}[i]=\mathcal{S}^{-1}\left(\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i]\right) \oplus \mathcal{S}^{-1}\left(\mathcal{P}^{-1}\left(C^{*}\right)[i] \oplus k_{0}[i]\right)
$$

Differential Fault Analysis of PRIDE
Differential properties of the PRIDE S-box
5 of 19

- Proposition

Let \mathcal{S} be an n-bit S -box with differential uniformity 4. Let $\left(a_{1}, b_{1}\right)$ and (a_{2}, b_{2}) be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$
\Delta X_{20}[i]=\mathcal{S}^{-1}\left(\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i]\right) \oplus \mathcal{S}^{-1}\left(\mathcal{P}^{-1}\left(C^{*}\right)[i] \oplus k_{0}[i]\right)
$$

Let

$$
x=\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i]
$$

Differential Fault Analysis of PRIDE
Differential properties of the PRIDE S-box
5 of 19

- Proposition

Let \mathcal{S} be an n-bit S -box with differential uniformity 4. Let $\left(a_{1}, b_{1}\right)$ and (a_{2}, b_{2}) be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$
\Delta X_{20}[i]=\mathcal{S}^{-1}\left(\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i]\right) \oplus \mathcal{S}^{-1}\left(\mathcal{P}^{-1}\left(C^{*}\right)[i] \oplus k_{0}[i]\right)
$$

Let

$$
\begin{gathered}
x=\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i] \\
a_{1}=\mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}\left(C^{*}\right)[i]=\Delta Y_{20}[i]
\end{gathered}
$$

Differential Fault Analysis of PRIDE Differential properties of the PRIDE S-box

- Proposition

Let \mathcal{S} be an n -bit S -box with differential uniformity 4 . Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two differentials with $a_{1} \neq a_{2}$ such that the system of two equations

$$
\begin{align*}
& \mathcal{S}\left(x \oplus a_{1}\right) \oplus \mathcal{S}(x)=b_{1} \tag{1}\\
& \mathcal{S}\left(x \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{2} \tag{2}
\end{align*}
$$

has at least two solutions. Then, each of the three equations (1), (2) and

$$
\begin{equation*}
\mathcal{S}\left(x \oplus a_{1} \oplus a_{2}\right) \oplus \mathcal{S}(x)=b_{1} \oplus b_{2} \tag{3}
\end{equation*}
$$

has at least four solutions.

- Mathematical exploited relations

For all i in $\{0, \cdots, 15\}$

$$
\Delta X_{20}[i]=\mathcal{S}^{-1}\left(\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i]\right) \oplus \mathcal{S}^{-1}\left(\mathcal{P}^{-1}\left(C^{*}\right)[i] \oplus k_{0}[i]\right)
$$

Let

$$
\begin{gathered}
x=\mathcal{P}^{-1}(C)[i] \oplus k_{0}[i] \\
a_{1}=\mathcal{P}^{-1}(C)[i] \oplus \mathcal{P}^{-1}\left(C^{*}\right)[i]=\Delta Y_{20}[i] \\
b_{1}=\Delta X_{20}[i]
\end{gathered}
$$

Differential Fault Analysis of PRIDE

Differential properties of the PRIDE S-box
6 of 19

■ Obtained differences
From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

Obtained differences

From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

T	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	0×8	0×9	$0 \times a$	$0 \times b$	$0 \times c$	$0 \times d$	$0 \times \mathrm{c}$	$0 \times f$
0×0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0×2	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0×3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0×4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
0×5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0×6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
0×7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0×8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0×9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
$0 \times a$	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
$0 \times b$	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
$0 \times c$	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
$0 \times d$	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
$0 \times e$	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
$0 \times f$	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

Obtained differences

From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

| T | 0×0 | 0×1 | 0×2 | 0×3 | 0×4 | 0×5 | 0×6 | 0×7 | 0×8 | 0×9 | $0 \times a$ | $0 \times b$ | $0 \times c$ | $0 \times d$ | $0 \times \mathrm{c}$ | $0 \times f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0×0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×1 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×5 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×6 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0×9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times a$ | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| $0 \times b$ | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times c$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times d$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| $0 \times e$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times f$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |

- Obtained differences

From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

| T | 0×0 | 0×1 | 0×2 | 0×3 | 0×4 | 0×5 | 0×6 | 0×7 | 0×8 | 0×9 | $0 \times a$ | $0 \times b$ | $0 \times c$ | $0 \times d$ | $0 \times \mathrm{c}$ | $0 \times f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0×0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×1 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×5 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×6 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0×9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times a$ | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| $0 \times b$ | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times c$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times d$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| $0 \times e$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times f$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |

- Obtained differences

From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

| T | 0×0 | 0×1 | 0×2 | 0×3 | 0×4 | 0×5 | 0×6 | 0×7 | 0×8 | 0×9 | $0 \times a$ | $0 \times \mathrm{b}$ | $0 \times \mathrm{c}$ | $0 \times \mathrm{d}$ | $0 \times \mathrm{x}$ | $0 \times \mathrm{f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0×0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×1 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×5 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×6 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0×9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times a$ | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| $0 \times b$ | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times c$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times d$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| $0 \times e$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times f$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |

- Obtained differences

From injecting faults on Z_{19} or on W_{19}

$$
\left(a_{1}, 0 \times 1\right),\left(a_{2}, 0 \times 8\right)
$$

Difference distribution table of the PRIDE S-box

| T | 0×0 | 0×1 | 0×2 | 0×3 | 0×4 | 0×5 | 0×6 | 0×7 | 0×8 | 0×9 | $0 \times a$ | $0 \times \mathrm{b}$ | $0 \times \mathrm{c}$ | $0 \times \mathrm{d}$ | $0 \times \mathrm{x}$ | $0 \times \mathrm{f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0×0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×1 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0×2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 2 | 2 | 2 |
| 0×4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×5 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 |
| 0×6 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0×8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 0×9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times a$ | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| $0 \times b$ | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| $0 \times c$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times d$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| $0 \times e$ | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
| $0 \times f$ | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |

Differential Fault Analysis of PRIDE

Properties that make the attack effective
7 of 19

- The design of the linear layer
- Flip the 16 -bit output of one matrix after the \mathcal{L}-layer activates all S-boxes in the next round.

Differential Fault Analysis of PRIDE

Properties that make the attack effective
7 of 19

- The design of the linear layer
- Flip the 16 -bit output of one matrix after the \mathcal{L}-layer activates all S-boxes in the next round.
- Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_{0}.

Differential Fault Analysis of PRIDE

Properties that make the attack effective
7 of 19

- The design of the linear layer
- Flip the 16 -bit output of one matrix after the \mathcal{L}-layer activates all S-boxes in the next round.
- Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_{0}.
- The number of remaining candidates is at most 4^{16}, where 4 is the differential-uniformity of the PRIDE S-box.

The differential properties of the S-box

Differential Fault Analysis of PRIDE

Properties that make the attack effective

- The design of the linear layer
- Flip the 16 -bit output of one matrix after the \mathcal{L}-layer activates all S-boxes in the next round.
- Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_{0}.
- The number of remaining candidates is at most 4^{16}, where 4 is the differential-uniformity of the PRIDE S-box.
- The differential properties of the S-box
- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.

Differential Fault Analysis of PRIDE

Properties that make the attack effective

- The design of the linear layer
- Flip the 16 -bit output of one matrix after the \mathcal{L}-layer activates all S-boxes in the next round.
- Use this property on the penultimate round allows the attacker to recover information on all nibbles of k_{0}.
- The number of remaining candidates is at most 4^{16}, where 4 is the differential-uniformity of the PRIDE S-box.
- The differential properties of the S-box
- The number of inputs which satisfy two valid differentials simultaneously is usually reduced to a single element.
- It is the case in each nibble for the presented strategies.

Practical implementation of the DFA on PRIDE

- The structure of PRIDE
- The PRIDE round function

Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective
(3) Practical implementation of the DFA on PRIDE
- Implementation of the device
- Exploitation of obtained faults
- Duplication of computations
- Desynchronization
- Masking
(5) Conclusion and perspectives

Practical implementation of the DFA on PRIDE

Implementation of the device
8 of 19

E The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for loT applications.

[^1]
Practical implementation of the DFA on PRIDE

Implementation of the device
8 of 19

E The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for loT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device
\qquad
\qquad
\qquad

Practical implementation of the DFA on PRIDE

 Implementation of the device8 of 19

E The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for loT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

- We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.

Practical implementation of the DFA on PRIDE

 Implementation of the device■ The chip used and our PRIDE implementation

- We have implemented PRIDE on a chip embedding an Cortex-M3 microcontroller. It is quite representative of the devices used for loT applications.
- In order to take advantage of the 32-bit architecture of the micro-controller, we have implemented PRIDE in ARM assembly language.

The faults injection device

- We used electromagnetic pulses to disrupt PRIDE execution. This approach requires no decapsulation of the chip and allows to precisely target a given time.
- We used a simple EM analysis to identify in time the 18 -th and 19-th rounds.

Practical implementation of the DFA on PRIDE 32-bit random faults

32-bit random faults on W_{19}

Practical implementation of the DFA on PRIDE

 32-bit random faults
32-bit random faults on W_{19}

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
10 of 19

- The parameter values
- We used a key $k=k_{0} \| k_{1}$ where

$$
k_{0}=0 \times f 3 f 721 \mathrm{cb} 1 \mathrm{c} 882658 \text { and } k_{1}=0 \times \mathrm{x} 417 \mathrm{~d} 148 \mathrm{e} 239 \mathrm{ca} 5 \mathrm{~d}
$$

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
10 of 19

The parameter values

- We used a key $k=k_{0} \| k_{1}$ where

$$
k_{0}=0 \times f 3 f 721 \mathrm{cb} 1 \mathrm{c} 882658 \text { and } k_{1}=0 \times 4417 \mathrm{~d} 148 \mathrm{e} 239 \mathrm{ca} 5 \mathrm{~d}
$$

- The plaintext used for all executions was 0×0132546798 badcfe and the correct ciphertext was 0×9 aecb37ea45a6c89. We denote respectively by $\theta, \beta, \gamma, \delta$ the possible pair of values $(0 \times 2,0 \times 3),(0 \times 4,0 \times 8)$, $(0 \times 4,0 \times c),(0 \times 8,0 \times c)$.

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
10 of 19

The parameter values

- We used a key $k=k_{0} \| k_{1}$ where

$$
k_{0}=0 \times f 3 f 721 \mathrm{cb} 1 \mathrm{c} 882658 \text { and } k_{1}=0 \times \mathrm{x} 417 \mathrm{~d} 148 \mathrm{e} 239 \mathrm{ca} 5 \mathrm{~d}
$$

- The plaintext used for all executions was 0×0132546798 badcfe and the correct ciphertext was 0×9 aecb37ea45a6c89. We denote respectively by $\theta, \beta, \gamma, \delta$ the possible pair of values $(0 \times 2,0 \times 3),(0 \times 4,0 \times 8),(0 \times 4,0 \times c),(0 \times 8,0 \times c)$.

The obtained faults on the 19 -th round

No.	Faulty ciphertext	Value of the fault on W_{19}	Value of ΔY_{20}	Value of ΔX_{20}
1	0x1aad3b972c92ec09	0x00000000804108e8	0xf00060007e40600c	$0 \times 000010001 \theta 10100 \theta$
2	0x7b4c93dea55a6d89	$0 \times 00000000 \mathrm{e} 1 \mathrm{a0a0a0}$	0x88c0000bc0c00000	$0 \times \theta \theta \theta 0000 \theta \theta 0 \theta 00000$
3	0x1b6c733e255aadc9	0x0000000081804040	0xf500000b85000000	$0 \times 100000 \theta \theta 1000000$
4	0x71ecd27ee55a6d89	$0 \times 00000000 \mathrm{eb} 00 \mathrm{e} 900$	0x8ec0808f00000000	$0 \times \theta \theta \theta 0 \theta 0 \theta \theta 00000000$
5	0x9aecb324a4426cdb	0x000000000000005a	0×0000000005076050	0×0000000001011010
6	0x9a57b33fa4626cf1	0x0000000000bb005a	0x0000000085bbb08c	$0 \times 00000000 \theta 1 \theta \theta \theta 0 \theta \theta$
7	0x9a57b365a4606cb9	0x0000000000bb0000	0x0000000080bfe0ec	$0 \times 00000000 \theta 0 \theta \theta \theta 0 \theta \theta$
8	0x77aa24313111ed8c	$0 \times 00000000 \mathrm{ed} 461 \mathrm{f4d}$	0xf8868e4f0e006de7	$0 \times \theta \theta \theta 1 \theta \theta 1 \theta 0 \theta 001 \theta \theta 1$
9	0x9ae8b37ac15a6989	0×6500040400000000	0x0220030300000c00	$0 \times 0 \delta \delta 00 \delta 0 \delta 00000 \gamma 00$
10	0x8aecb27e415abc89	0xe400d10000000000	0x3329020600000000	$0 \times \delta \delta \delta \gamma 080400000000$
11	0xa3e692ed909ee688	0x355fab9300000000	0x10ea921c620482c5	$0 \times 40 \mathrm{c} \beta \gamma \delta 4 \gamma 4 \delta 0 \mathrm{c} 8 \delta \gamma \mathrm{c}$
12	0x05ecb27e565a7289	0xf3001f0000000000	0xa22b99bc00000000	$0 \times \beta \delta \delta \subset \gamma \gamma \mathrm{c} \gamma 00000000$

Exploitation of the faults to retrieve k_{0}

No.	$k_{0}[0]$	$k_{0}[1]$	$k_{0}[2]$	$k_{0}[3]$	$k_{0}[4]$	$k_{0}[5]$	$k_{0}[6]$	$k_{0}[7]$	$k_{0}[8]$	$k_{0}[9]$	$k_{0}[10]$	$k_{0}(11)$	$k_{0}[12]$	$k_{0}(13)$	$k_{0}[14]$	$k_{0}[15]$
1	0x0	\emptyset	\emptyset	\emptyset	0x2	\emptyset	\emptyset	\emptyset	0x0	0x2	0×8	\emptyset	0×2	\emptyset	\emptyset	0×4
	0×1				0×3				0×1	0x3	0x9		0×3			0x5
	0xe				0x4				0x6	0xc	0xc		0x4			0x8
	0xf				0x5				0×7	0xd	0xd		0×5			0×9
3	0x0	0×2	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	$0 \times 0 \times 1$	$0 \times 0 \times 1$	0x8	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
	0x1	0×3						$0 \times 20 \times 3$	$0 \times 20 \times 3$	0x9						
	0xe	0x6						0×8 0×9	$0 \times 80 \times 9$	0xc						
	0xf	0×7						0xa 0xb	0xa 0xb	0xd						
6	\emptyset	$0 \times 0 \times 1$	0x8	0x0 0x1	0x0 0x1	0x0 0x1	\emptyset	0×4 0x5	0x4							
									$0 \times 20 \times 3$	0x9	$0 \times 20 \times 3$	$0 \times 20 \times 3$	$0 \times 20 \times 3$		$0 \times 60 \times 7$	0x5
									0×8 0×9	0xc	0×8 0×9	$0 \times 80 \times 9$	$0 \times 80 \times 9$		0xc 0xd	0×8
									0xa 0xb	0xd	0xa 0xb	0xa 0xb	0xa 0xb		0xe 0xf	0x9
8	0x0	$0 \times 0 \times 1$	$0 \times 40 \times 5$	0x0	0x0 0x1	0×0	0x8	0x4	\emptyset	0x2	\emptyset	\emptyset	0×2	0x6	0x4	0×8
	0x1	$0 \times 20 \times 3$	$0 \times 60 \times 7$	0×1	$0 \times 20 \times 3$	0x1	0x9	0x5		0x3			0x3	0x7	0x5	0x9
	0xe	$0 \times 80 \times 9$	0xc 0xd	0x6	0x8 0x9	0xe	0xc	0xa		0xc			0×4	0xa	0xa	0xe
	0xf	0xa 0xb	0xe 0xf	0×7	0xa 0xb	0xf	0xd	0xb		0xd			0×5	0xb	0xb	0xf
11		\emptyset	$\begin{aligned} & 0 \times 1 \\ & 0 \times f \end{aligned}$	0x1		0x1				0x4	\emptyset	$\begin{aligned} & 0 \times 8 \\ & 0 \times c \end{aligned}$		0x4		$\begin{aligned} & 0 \times 8 \\ & 0 \times d \end{aligned}$
	0xa			0x5	0×2	0×3	0×8	0×2	0x0	0x6			0×1	0×6	0x0	
	0xb			0×7	0x4	0×4	0x9	0x7	0x1	0x9			0x2	0x9	0x5	
	0xe			0xb	0xb	0×6	0xc	0xb	0x6	0xb			0x9	0xb	0x9	
	0xf			0xd	0xd	0x9	0xd	0xe	0×7	0xc			0xa	0xc	0xc	
				0xf		0xb				0xe				0xe		
12	0×3	0×1	0x0	$\begin{aligned} & 0 \times 7 \\ & 0 \times c \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	$\begin{aligned} & 0 \times 1 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times 8 \end{aligned}$	$\begin{aligned} & 0 \times 7 \\ & 0 \times c \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 7 \\ & 0 \times b \\ & 0 \times e \end{aligned}$	\emptyset							
	0x5	0x3	0x2													
	0x7	0x4	0×5													
	0x9	0×6	0x7													
	0xd	0x9	0xd													
	0xf	0xb	0xf													
\cap	0xf	0×3	0xf	0×7	0×2	0×1	0xc	0xb	0x0	0xc	0x8	0x8	0×2	0×6	0×5	0×8
									0×1		0x9					

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
12 of 19

EReducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
12 of 19

EReducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}

$$
\begin{gathered}
k_{0} \\
\text { f3f721cb0c882658 } \\
\text { f3f721cb0c982658 } \\
\text { f3f721cb1c882658 } \\
\text { f3f721cb1c982658 }
\end{gathered}
$$

ΔY_{19}
$0 \times c 000009022000000$
0xe000009022220000
0xc00000b000000000
0xe00000b000220000

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
12 of 19

EReducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}

$$
\begin{gathered}
k_{0} \\
\mathrm{f3f721cb0c882658} \\
\mathrm{f} 3 \mathrm{f} 721 \mathrm{cb} 0 \mathrm{c} 982658 \\
\mathrm{f} 3 \mathrm{f721cb} 1 \mathrm{c} 882658 \\
\mathrm{f} 3 \mathrm{f} 721 \mathrm{cb} 1 \mathrm{c} 982658
\end{gathered}
$$

ΔY_{19}
0xc000009022000000
0xe000009022220000
0xc00000b000000000 0xe00000b000220000
and since we know that we injected faults on the last 32 bits of W_{18}, we know that each nibble of ΔX_{19} is either $0 \times 0,0 \times 1,0 \times 2$ or 0×3.

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
12 of 19

E Reducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}
k_{0}
f3f721cb0c882658
f3ff21cb0c982658
f3ff21cb1c882658
f3f721cb1c982658
ΔY_{19}
$0 \times c 000009022000000$
0xe000009022220000
0xc00000b000000000 0xe00000b000220000
and since we know that we injected faults on the last 32 bits of W_{18}, we know that each nibble of ΔX_{19} is either $0 \times 0,0 \times 1,0 \times 2$ or 0×3.
- From the difference distribution table of the S-box, we see that an input difference equal to $0 \times 1,0 \times 2$ or 0×3 can lead to an output difference only in

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
12 of 19

EReducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}

$$
\begin{gathered}
k_{0} \\
\text { f3f721cb0c882658 } \\
\text { f3f721cb0c982658 } \\
\text { f3f721cb1c882658 } \\
\text { f3f721cb1c982658 }
\end{gathered}
$$

ΔY_{19}
$0 \times c 000009022000000$
0xe000009022220000
0xc00000b000000000 0xe00000b000220000
and since we know that we injected faults on the last 32 bits of W_{18}, we know that each nibble of ΔX_{19} is either $0 \times 0,0 \times 1,0 \times 2$ or 0×3.

- From the difference distribution table of the S-box, we see that an input difference equal to $0 \times 1,0 \times 2$ or 0×3 can lead to an output difference only in

$$
\{0 \times 4,0 \times 5,0 \times 6,0 \times 7,0 \times 8,0 \times b, 0 \times c, 0 \times d, 0 \times e, 0 \times f\}
$$

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
12 of 19

E Reducing the remaining candidates for k_{0} from faults obtained on the 18 -th round

- From the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W_{18}, we obtain the 4 following values for ΔY_{19} for each possible value of k_{0}
k_{0}
f3f721cb0c882658
f3f721cb0c982658
f3f721cb1c882658
f3f721cb1c982658
ΔY_{19}
$0 \times c 000009022000000$
0xe000009022220000
0xc00000b000000000 0xe00000b000220000
and since we know that we injected faults on the last 32 bits of W_{18}, we know that each nibble of ΔX_{19} is either $0 \times 0,0 \times 1,0 \times 2$ or 0×3.
- From the difference distribution table of the S-box, we see that an input difference equal to $0 \times 1,0 \times 2$ or 0×3 can lead to an output difference only in

$$
\{0 \times 4,0 \times 5,0 \times 6,0 \times 7,0 \times 8,0 \times b, 0 \times c, 0 \times d, 0 \times e, 0 \times f\}
$$

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults

13 of 19

The obtained faults on the 18 -th round

No.	Faulty ciphertext	Value of the fault on W_{18}	Value of ΔY_{19}	Value of ΔX_{19}
13	0xf24690de8df8cc89	$0 \times 0000000082000000$	0xc00000b000000000	0x0000000000000000
14	0x2df93aebf5935009	0x0000000041c0d0d0	0x7807000bd8050000	$0 \times 1 \theta 01000 \theta \theta \theta 010000$
15	0xa9a4a34f84604dde	0x0000000003010707	0x000004cd0000065c	$0 \times 000001 \theta \theta 0000011 \theta$
16	0x52c367c49a9b8786	0x0000000000b55858	0x05077000b6d84808	$0 \times 01011000 \theta 1 \theta \theta 1 \theta 0 \theta$
17	0x00632c247f18e99e	0x0000000058580000	0x0e0bb0000d0ef000	$0 \times 0 \theta 0 \theta \theta 0000 \theta 0 \theta \theta 000$
18	0xecbc98d50864ad3a	0x00000000a7a70000	0xc0f008bbb0d00888	$0 \times \theta 0 \theta 00 \theta \theta \theta \theta 0 \theta 00 \theta \theta \theta$
19	0x43b733ec34c1ec11	0x0093000000000000	0x00000000300a0022	0x00000000 $00 \beta \beta 00 \delta \delta$
20	0xcabdf870ee423736	0x75e5575700000000	0x0c8c0b123baf049e	$0 \times 0 \gamma 8 \gamma 0 \mathrm{c} 4 \delta \delta \mathrm{c} \beta 40 \mathrm{c} \gamma \mathrm{c}$
21	0x46eb59132610ef55	0x01e0c60100000000	0x6f0001133aa00006	$0 \times 4400044 \delta \delta \beta \beta 00004$
22	0x9d13b57cf2211618	0x13974cd400000000	0x0f036133290c0422	$0 \times 040 \delta 44 \delta \delta \delta \gamma 0 \gamma 0 \mathrm{c} \delta \delta$
23	0x1247352b2400c0ed	$0 \times 0000006700000000$	0x0000000009900c96	0x000000000 $\gamma \gamma 00 \gamma \gamma 4$
24	0x770a084c5528c599	0x6363000000000000	0x0a8000330aa00022	$0 \times 0 \beta 8000 \delta \delta 0 \beta \beta 000 \delta \delta$
25	0xc80ca16eb67b9711	0x3600a90000000000	0x6043623a00000000	$0 \times 40 ¢ \delta 4 \delta \delta \beta 00000000$

We first retrieved each nibble Nib_{i} of $\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)$.

Exploitation of the faults to retrieve $\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)$

No.	Nib_{0}	Nib_{1}	Nib_{2}	Nib_{3}	Nib_{4}	Nib_{5}	Nib_{6}	Nib_{7}	Nib_{8}	Nib_{9}	Nib_{10}	Nib_{11}	Nib_{12}	Nib_{13}	Nib_{14}	Nib_{15}
16	\emptyset	$\begin{aligned} & \hline 0 \times 2 \\ & 0 \times 3 \\ & 0 \times 6 \\ & 0 \times 7 \\ & \hline \end{aligned}$	\emptyset	$\begin{aligned} & \hline 0 \times 8 \\ & 0 \times 9 \\ & 0 \times \mathrm{e} \\ & 0 \times f \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \times 8 \\ & 0 \times 9 \\ & 0 \times \mathrm{e} \\ & 0 \times f \end{aligned}$	0	\emptyset	\emptyset	$0 \times 40 \times 5$ $0 \times 60 \times 7$ 0xc 0xd 0xe 0xf	$\begin{aligned} & \hline 0 \times \mathrm{a} \\ & 0 \times \mathrm{b} \\ & 0 \times \mathrm{c} \\ & 0 \times \mathrm{d} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \times 6 \\ & 0 \times 7 \\ & 0 \times \mathrm{a} \\ & 0 \times \mathrm{b} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \times 0 \quad 0 \times 1 \\ & 0 \times 2 \quad 0 \times 3 \\ & 0 \times 8 \quad 0 \times 9 \\ & 0 \times a \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 1 \\ & 0 \times 4 \\ & 0 \times 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \times 0 \quad 0 \times 1 \\ & 0 \times 20 \times 3 \\ & 0 \times 8 \quad 0 \times 9 \\ & 0 \times a \quad 0 \times b \\ & \hline \end{aligned}$	\emptyset	$\begin{array}{ll} 0 \times 0 & 0 \times 1 \\ 0 \times 2 & 0 \times 3 \\ 0 \times 8 & 0 \times 9 \\ 0 \times a & 0 \times b \end{array}$
17	\emptyset	$\begin{aligned} & 0 \times 2 \\ & 0 \times 3 \\ & 0 \times a \\ & 0 \times b \end{aligned}$	\emptyset	$\begin{aligned} & 0 \times 40 \times 5 \\ & 0 \times 6 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times d \\ & 0 \times e \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 40 \times 5 \\ & 0 \times 6 \quad 0 \times 7 \\ & 0 \times 40 \times d \\ & 0 \times e ~ 0 \times f \end{aligned}$	\emptyset	\emptyset	\emptyset	\emptyset	$\begin{aligned} & 0 \times 6 \\ & 0 \times 7 \\ & 0 \times a \\ & 0 \times b \end{aligned}$	\emptyset	$\begin{aligned} & \hline 0 \times 2 \\ & 0 \times 3 \\ & 0 \times a \\ & 0 \times b \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 1 \\ & 0 \times e \\ & 0 \times f \end{aligned}$	\emptyset	\emptyset	\emptyset
18	$\begin{aligned} & \hline 0 \times 4 \\ & 0 \times 5 \\ & 0 \times 8 \\ & 0 \times 9 \end{aligned}$	\emptyset	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 1 \\ & 0 \times \mathrm{e} \\ & 0 \times f \end{aligned}$	\emptyset	0	$\begin{aligned} & \hline 0 \times 0 \quad 0 \times 1 \\ & 0 \times 20 \times 3 \\ & 0 \times 8 \quad 0 \times 9 \\ & 0 \times a \quad 0 \times b \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \times 4 \quad 0 \times 5 \\ & 0 \times 6 \quad 0 \times 7 \\ & 0 \times c \quad 0 \times d \\ & 0 \times e \\ & 0 \times f \end{aligned}$	$0 \times 40 \times 5$ $0 \times 60 \times 7$ 0xc 0xd 0xe 0xf	$0 \times 40 \times 5$ $0 \times 60 \times 7$ 0xc 0xd 0xe 0xf	\emptyset	$\begin{aligned} & \hline 0 \times 6 \\ & 0 \times 7 \\ & 0 \times a \\ & 0 \times b \\ & \hline \end{aligned}$	\emptyset	0	$\begin{array}{ll} 0 \times 0 & 0 \times 1 \\ 0 \times 2 & 0 \times 3 \\ 0 \times 8 & 0 \times 9 \\ 0 \times a & 0 \times b \\ \hline \end{array}$	$\begin{array}{ll} 0 \times 0 & 0 \times 1 \\ 0 \times 2 & 0 \times 3 \\ 0 \times 8 & 0 \times 9 \\ 0 \times a & 0 \times b \end{array}$	$\begin{aligned} & \hline 0 \times 0 \quad 0 \times 1 \\ & 0 \times 20 \times 3 \\ & 0 \times 80 \times 9 \\ & 0 \times a \quad 0 \times b \\ & \hline \end{aligned}$
20	\emptyset	$\begin{aligned} & 0 \times 3 \\ & 0 \times 6 \\ & 0 \times a \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 5 \\ & 0 \times 6 \\ & 0 \times d \\ & 0 \times e \end{aligned}$	$\begin{aligned} & 0 \times 3 \\ & 0 \times 6 \\ & 0 \times a \\ & 0 \times f \end{aligned}$	\emptyset	$\begin{aligned} & 0 \times 0 \\ & 0 \times b \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times 1 \\ & 0 \times 4 \\ & 0 \times 5 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 2 \\ & 0 \times 5 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times a \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times b \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 3 \\ & 0 \times 7 \\ & 0 \times 9 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	$\begin{aligned} & 0 \times 3 \\ & 0 \times c \end{aligned}$	\emptyset	$\begin{aligned} & \text { Oxa } \\ & \text { Oxe } \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	$\begin{aligned} & 0 \times 6 \\ & 0 \times 8 \end{aligned}$
22	\emptyset	$\begin{aligned} & 0 \times 3 \\ & 0 \times c \end{aligned}$	\emptyset	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 8 \\ & 0 \times 9 \\ & 0 \times e \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times 1 \\ & 0 \times 4 \\ & 0 \times 5 \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 2 \\ & 0 \times 5 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times a \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	\emptyset	$\begin{aligned} & 0 \times 3 \\ & 0 \times 6 \\ & 0 \times a \\ & 0 \times f \end{aligned}$	\emptyset	$\begin{aligned} & \text { 0xa } \\ & \text { Oxe } \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 2 \\ & 0 \times 5 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times a \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 2 \\ & 0 \times 5 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times a \end{aligned}$
23	\emptyset	$\begin{aligned} & \hline 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	\emptyset	\emptyset	$\begin{aligned} & \hline 0 \times 3 \\ & 0 \times 6 \\ & 0 \times a \\ & 0 \times f \end{aligned}$	$\begin{aligned} & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times b \\ & 0 \times d \end{aligned}$	$\begin{aligned} & 0 \times 8 \\ & 0 \times 9 \\ & 0 \times e \\ & 0 \times f \end{aligned}$								
25	$\begin{aligned} & 0 \times 8 \\ & 0 \times 9 \\ & 0 \times e \\ & 0 \times f \end{aligned}$	\emptyset	$\begin{aligned} & \text { 0xa } \\ & \text { Oxe } \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \times 8 \\ & 0 \times 9 \\ & 0 \times e \\ & 0 \times f \end{aligned}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times 2 \\ & 0 \times 5 \\ & 0 \times 7 \\ & 0 \times 8 \\ & 0 \times a \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 2 \\ & 0 \times 4 \\ & 0 \times 7 \\ & 0 \times c \\ & 0 \times f \end{aligned}$	$\begin{aligned} & \hline 0 \times 1 \\ & 0 \times 3 \\ & 0 \times 7 \\ & 0 \times 9 \\ & 0 \times b \\ & 0 \times d \\ & \hline \end{aligned}$	\emptyset							
\cap	$\begin{aligned} & \hline \hline 0 \times 8 \\ & 0 \times 9 \\ & \hline \end{aligned}$	0x3	0xe	0xf	$\begin{aligned} & \hline \hline 0 \times e \\ & 0 \times f \\ & \hline \end{aligned}$	0×0	0×4	0×7	0×7	0xb	0xb	0×3	$\begin{aligned} & \hline \hline 0 \times 0 \\ & 0 \times 1 \end{aligned}$	0xa	0×2	0×8

Practical implementation of the DFA on PRIDE

Exploitation of obtained faults
15 of 19

■ Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

$$
\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)
$$

we deduced 8 candidates for $\mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$.
Finally wie met 8 valune farl fan(tw) and on for k
\qquad
$0 \times f 3 f 721 c b 1 c 882658$ e417d148e239ca5d

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
15 of 19

■ Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

$$
\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)
$$

- Then, we calculated the 8 possible $\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$, and from

$$
\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right)=0 \times 128 \mathrm{bb} 20 f 824 \mathrm{eda} 39,
$$

we deduced 8 candidates for $\mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$.
Finally we got 8 values for $f_{20}\left(k_{1}\right)$ and so for k_{1}.
We eventually obtained, by testing all possible k_{1}, the secret

$$
k=0 \times f 3 f 721 \mathrm{cb1c} 882658 \mathrm{e} 417 \mathrm{~d} 148 \mathrm{e} 239 \mathrm{ca5c}
$$

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

$$
\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)
$$

- Then, we calculated the 8 possible $\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$, and from

$$
\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right)=0 \times 128 \mathrm{bb} 20 f 824 \mathrm{eda} 39
$$

we deduced 8 candidates for $\mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$.

- Finally we got 8 values for $f_{20}\left(k_{1}\right)$ and so for k_{1}.

Practical implementation of the DFA on PRIDE
Exploitation of obtained faults
15 of 19

Calculating the value of k

- By intersecting sets for each nibble, we got 8 candidates for

$$
\mathcal{L}^{-1}\left(\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)\right)
$$

- Then, we calculated the 8 possible $\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right) \oplus \mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$, and from

$$
\mathcal{S}\left(\mathcal{P}^{-1}(C) \oplus k_{0}\right)=0 \times 128 \mathrm{bb} 20 f 824 \mathrm{eda} 39
$$

we deduced 8 candidates for $\mathcal{P}^{-1}\left(f_{20}\left(k_{1}\right)\right)$.

- Finally we got 8 values for $f_{20}\left(k_{1}\right)$ and so for k_{1}.
- We eventually obtained, by testing all possible k_{1}, the secret key

$$
k=0 x f 3 f 721 c b 1 c 882658 \mathrm{e} 417 \mathrm{~d} 148 \mathrm{e} 239 \mathrm{ca} 5 \mathrm{~d}
$$

from a few number of faults.

Countermeasures

(1)

- The structure of PRIDE
- The PRIDE round function

Differential Fault Analysis of PRIDE

- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effectivemactical thntementation of the DFA mninE
- Implementation of the device
- Exploitation of obtained faults

4 Countermeasures

- Duplication of computations
- Desynchronization
- Masking
(5) Conclusion and perspectives

■ Description

$W_{17} \xrightarrow{\text { enc. }} O_{20}$

Cost per duplication
\qquad
3 substitution layers
\qquad

■ Description

■ Description

■ Description

Description

- Cost per duplication
- 2 matrix layers
- 3 substitution layers
- 3 subkey updates

- 3 subkey additions

Description

Cost per duplication

- 2 matrix layers
- 3 substitution layers

Total $<15 \%$ of PRIDE enc./dec.

- 3 subkey updates \qquad

- 3 subkey additions

Desynchronization

E Description

Please Wait

Countermeasures

Desynchronization

E Description

Cost
Generation of the PRNG's output
Access to the PRNG's output

Duration of the 'random delay'

E Description

E Description

E Description

Cost

- Generation of the PRNG's output
- Access to the PRNG's output
- Duration of the 'random delay'

Countermeasures
Masking

■ Description

Countermeasures
Masking

- Description

Cost
Generation of the PRNG's output

Countermeasures

Masking

■ Description

■ Description

Conclusion and perspectives

- The structure of PRIDE
- The PRIDE round functionDifferential Fault Analysis of PRIDE
- General principle
- Differential properties of the PRIDE S-box
- Properties that make the attack effective
(5) nactical thmtemetitation oftemra ofn mniDE
- Implementation of the device
- Exploitation of obtained faults
- Duplication of computations
- Desynchronization
- Masking
(5) Conclusion and perspectives

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
> electromagnetic injection, which is a low-cost means of injection
> Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness. Some countermeasures which leave the cipher still efficient for lo T devices.

Perspectives

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
\qquad

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.

Some countermeasures which leave the cipher still efficient for loT devices.

Perspectives

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for loT devices.

Perspectives

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for loT devices.

■ Perspectives

- Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks.

Conclusion and perspectives

- Conclusion
- First DFA on PRIDE with 4 faults only to retrieve the full secret key.
- Practical implementation from 32-bit random faults obtained with electromagnetic injection, which is a low-cost means of injection.
- Resistance against DFA is important for a cipher like PRIDE, which will be dedicated to low-end devices thanks to its lightness.
- Some countermeasures which leave the cipher still efficient for loT devices.

Perspectives

- Optimize countermeasures to make them less costly and keep the light side of PRIDE : be careful that the protections do not open doors to further attacks.
- Apply our attack to SPN-based block ciphers with a linear layer similar to the one used in PRIDE like the LS-Designs family : will be studied in a future work.

ingenico LABS

informatiques mathématiques

THANKS FOR YOUR ATTENTION

MINES Saint-Étienne

SUPERIEURE

Commissariat à l'énergie atomique et aux énergies alternatives
Benjamin Lac I DRT/CEATech/DPACA/LSAS
Public Industrial and Commercial Establishment I RCS Paris B 775685019

[^0]: The key scheduling

[^1]: we have implemented PRIDE in ARM assembly language

 The faults injection device
 We used electromagnetic pulses to disrupt PRIDE execution. This approach
 \qquad
 \qquad

