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Abstract.We investigate theoretically how sheath radio-frequency (RF) oscillations 

relate to the spatial structure of the near RF parallel electric fieldE//emitted by Ion 

Cyclotron (IC) wave launchers. We use a simple model of Slow Wave 

(SW)evanescence coupled with Direct Current(DC) plasma biasingvia sheath boundary 

conditions in a 3D parallelepipedfilled with homogeneous cold magnetized 

plasma.Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF 

fields,the RF part of this simple RF+DC model becomes linear: the sheath oscillating 

voltage VRFat open field line boundariescan be re-expressed as a linear combination of 

individual contributions by every emitting point in the input field map. SW evanescence 

makes individual contributions all the larger as the wave emission point is located 

closer to the sheath walls. The decay of |VRF| with the emission point/sheath poloidal 

distance involves the transverse SW evanescence length and the radial protrusion depth 

of lateral boundaries. The decay of |VRF| with the emitter/sheath parallel distance is 

quantified as a function of the parallel SW evanescence length and the parallel 

connection length of open magnetic field lines. For realistic geometries and target SOL 

plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths 

for |VRF| are found smaller than IC antenna parallel extension. Oscillating sheath 

voltages at IC antenna side limiters are therefore mainly sensitive to E// emission by 

active or passive conducting elements near these limiters,as suggested byrecent 

experimental observations. Parallel proximity effects could also explain why sheath 

oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-

symmetry of the radiated field map. They could finally justify current attempts at 

reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in 

their vicinity. 

  



   

11 January 2017 L. COLAS et al. 3/42 

1. CONTEXTAND MOTIVATIONS 

In magnetic fusion devices, non-linear wave-plasma interactions in the Scrape-Off 

Layer (SOL) often set operational limits for Radio-Frequency (RF) heating systems via 

impurity production or excessive heat loads[Noterdaeme1993]. Peripheral Ion Cyclotron (IC) 

power losses are generally attributed to RF sheath rectification. How this non-linear process 

depends on thegeometry and electrical settings of the IC wave launchers remains largely 

unknown, despite crucialtechnological implications. In low-frequency small capacitive 

plasma discharges, sheath rectification has been successfully modelled in analogy with a 

double Langmuir probe driven by an oscillating voltageṼ[Chabert2011]. In the absence of 

more elaborate theory in realistic tokamak geometry over large scale lengths, this simple 

formalism was also widely applied near IC antennas, without strong justification (e.g. in 

[Perkins1989]). Along this line of thought,the RF fieldparallel to the confinement magnetic 

field B0, integrated along isolated open magnetic field lines, Ṽ=|∫E//.dl|,hasoften been used asa 

quantitative indicator oflocal RF sheath intensity in the vicinity of IC antennas, e.g. in 

[D’Ippolito1998],[Colas2005], [Mendes2010], [Garrett2012], [Milanesio2013], [Qin2013], 

[Campergue2014]. In this exercise one often usesE//fields from full-wave linear 

electromagnetic simulations where the plasma is in direct contact with metallic walls(i.e. 

without sheaths) [Milanesio2009][Jacquot2015].  

In tokamak experiments, qualitative correlation was noticed between the evolution of 

Ṽ=|∫E//.dl| and that of heat load intensity [Colas2009],[Campergue2014] or plasma radiation 

[Qin2013] [Colas2009]. Yet recent tokamakmeasurements challenge the relevance of Ṽas an 

indicator of RF sheath intensity. For examplethe line integralis expected to vanish in presence 

of a RF field map anti-symmetric along the parallel direction. This is nearly the case with 

anti-symmetric toroidal phasing of the IC poloidal strap arrays. Although the wave-plasma 

peripheral interaction observed experimentally isweaker with two straps phased [0,] than 

with [0,0] phasing[Colas2009], [Bobkov2015], it is not suppressed. Similar experimental 

results were obtained with more straps [Lerche2009],[Jacquet2011], [Jacquet2013], 

[Wukitch2013]. The magnetic field pitch with respect to the toroidal direction is ofteninvoked 

to interpret the persistence of RF sheaths, together withantenna boxes breaking the anti-

symmetry [Colas2005]. On ASDEX-Upgrade, closing the boxcorners with metallic triangles 

did not suppress the local impurity production[Bobkov2010]. To mitigate the effect of 

magnetic field pitch, a field-aligned antenna was designedfor ALCATOR C-mod. In 

comparison with a toroidally-aligned antenna, it was predicted to reduce |Ṽ| on open flux 
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tubes with large toroidal extension on either sides of the IC wave launcher(“long field lines”) 

[Garrett2012]. The expected reduction was significant with [0000] phasing of the 4-strap 

array. Experimental comparisons on ALCATOR C-mod revealed a reduced Molybdenum 

contamination when using the field-aligned antenna [Wukitch2013]. But the plasma 

potentialmeasured on magnetic field lines connected to the antenna hardly varied, andthe 

wave-SOL interaction was not suppressed with [0000] strap phasing. 

At CEA, a prototype Faraday Screen (FS) was designed to reduce |Ṽ| over “long field 

lines”, by interrupting all parallel RF current paths on its front face [Mendes2010]. When 

compared to an antenna equipped with standard FS on Tore Supra (TS), the new FS exhibited 

similar heat load spatial distribution, but the measured RF wave-SOL interaction was more 

intense and more extended radially [Colas2013]. In a series of TS experiments, the left-right 

ratio ofstrap voltage amplitudes was varied. Over this scan, the antenna side limiter near the 

strap with higher voltage heated up, while the remote limiter cooled down. A similar toroidal 

unbalanceon ASDEX Upgradeproduced opposite variations of RF currents 

amplitudesmeasured at the surface of two opposite antenna limiters [Bobkov2015]. In this 

experiment with [0,] phasing, in order to minimize the collected RF current, the RF voltage 

imposed on the remote strap was approximately twice higher than the voltage on the strap 

near the side limiter. Thesetrendscan hardly be explained using a single physical parameter 

simultaneously relevant at both extremities of the same openmagnetic field line, Ṽ or any 

other one. Besides, in Ṽ, all the points along the integration path play the same role. 

Theexperimental observationsrather suggest that the toroidal distance between radiating 

elements andthe observed walls might play a role in the RF-sheath excitation.From this 

paradigm,minimizing the local RF electric field amplitudes near the antenna limiters, still 

evaluated in the absence of RF sheaths, was proposed to mitigate RF-sheath generation on 

new ASDEX-Upgrade antennas[Bobkov2015]. This alternative heuristic procedure also 

deserves justification from first principles. 

The “double probe” analogyimplicitly assumes that each open magnetic field line 

behaves as electrically isolated from its neighbors. This is questionable in highly conductive 

plasmas, although the conductivity is far larger along B0 than transverse to it. Collected RF 

currents on ASDEX Upgrade also challenge this picture. Early attempts at improving the 

“double-probe” models suggest that the exchange ofcurrents between neighboring flux tubes 

decouplesthe sheaths at the two extremities of the same open field 

line[Rozhansky1998],[NGadjeu2011], [Faudot2013], [Jacquot2011]. The self-consistent 

spatio-temporal description of RF electric fields and RF currents, i.e. electrodynamics, has 
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been long developed in the context of IC antennas radiating in magnetized plasmas, but in the 

absence of sheaths[Milanesio2009],[Jacquot2015],[Lu2016a]. The RF plasma conductivity is 

then incorporated in a time-dispersive dielectric tensor [Stix1992]. Unlike capacitive RF 

discharges, tokamak field mapsfeature spatially inhomogeneous RF electric fields in the 

quasi-neutral plasma surrounding the wave launchers[Colas2005], [Mendes2010], 

[Bobkov2010], [Garret2012]. The distances between radiating elements and observation 

points, parallel and transverse to B0, can then play a role via the propagation of RF waves. 

These experimental and theoretical considerations motivated several models coupling 

RF wave propagation and Direct Current (DC) SOL biasing via RF and DC sheath boundary 

conditions applied at the plasma-wall interfaces [D’Ippolito2006], [Myra2008], 

[D’Ippolito2009], [D’Ippolito2010],[Myra2010], [Kohno2012], [Kohno2012a], [Colas2012], 

[Jacquot2014], [Jenkins2015], [Kohno2015]. Within this general framework, the double probe 

analogy was assessed and spatial proximity effects were investigated. Simple situations were 

exhibited where sheath oscillations exist on open magnetic field lines for which Ṽ=0 

[D’Ippolito2006].Other situations were studied for which Ṽover-estimates the sheath 

voltage[D’Ippolito2009].In presence of a localized source of evanescent E//, situated half-way 

between the two field line extremities, it was noticed that the sheath excitation was reduced 

when the connection length exceeded the ion skin depth [Myra2010]. Inthese simple 

situationsthe two extremities of the same open magnetic field lines generally behaved 

similarly, for symmetry reasons. Realistic RF-sheath simulations of the Tore Supra antenna 

environment, limited to the Slow Wave (SW),explored toroidally asymmetric RF field maps 

and reproduced qualitatively the observed left-right asymmetric heat loads and other 

experimental measurements[Jacquot2014]. Similar efforts are underway to interpret the 

ASDEX-Upgrade phenomenology[Křivská2015] [Jacquot2015].In simulations of the ITER 

antenna, parallel proximity effects were evidenced numerically, but not 

interpreted[Colas2014]. 

This paper reformulates one of the above-mentioned models of coupled RF wave 

propagation and DC SOL biasing, called Self-consistent Sheath and Waves for Ion Cyclotron 

Heating – Slow Wave (SSWICH-SW)[Colas2012] [Jacquot2014].Within restrictive 

assumptions on simulation domain shape, radial profiles, wave amplitude and polarization, 

weexplain andquantify spatial proximity effects and left-rightsheath asymmetries.Calculus is 

easier in a “wide sheath” regime, for which the SW propagation and subsequent excitation of 

sheath RF oscillations becomes a linear problem. Within this asymptotic limit, valid for 

intense DC biasing, the amplitude of the sheath oscillating voltages can be re-expressed as a 



   

11 January 2017 L. COLAS et al. 6/42 

weighted integral of E//. This offers an alternative to Ṽ for assessing RF-sheath excitation, 

with stronger theoretical justification. In the integral, proximity effects arise from the spatial 

dependence of the weight function (a Green’s function for the linear problem).The SW 

evanescence between its emission point and the sheath spatial location appears to strongly 

affect this spatial dependence. Other parametric dependences are also evidenced. After briefly 

recalling the SSWICH-SWmodel, the paper investigates the Green’s functions in two and 

three dimensions for a parallelepiped simulation domain filled with homogeneous plasma and 

B0 normal to the lateral walls.The geometricalproperties of the Green’s functions are 

quantified using characteristic scale-lengths of the problem. In light of thisre-formulated 

model we finally re-interpret the experimental observations summarized above. Concrete 

implications of the results arediscussed, as well as some limitations of the approach. 

2. COUPLING SLOW WAVE PROPAGATION AND DC PLASMA BIASING BY 

RADIO-FREQUENCY (RF) SHEATHS 

2.1 Outline of SSWICH-SW model 

Our minimal model of coupled RF wave propagation and DC plasma 

biasing,SSWICH-SW,was detailed in references [Colas2012],[Jacquot2014]and is briefly 

summarized here. The simulation domain, sketchedon Figure 1,features a collection of 

straight open magnetic flux tubes in a slab idealization of a tokamak SOL plasma. Two 

versions of the geometry will be used: a three dimensional (3D) model with boundaries 

parallel to the poloidal direction (y); as well as a 2D cut into the above 3D model along the 

radial direction (x) and parallel to the confinement magnetic field B0 (direction z). Both 

simulation domains are filled with cold magnetized plasma homogeneous along direction y, 

with possibly radial variation. Inner and outer boundaries of the domain are normal to x, while 

material boundaries of the fusion device are either parallel or normal to B0. Thisallows 

versatile geometries with radial profiles of the plasma parameters and private SOLs, sketched 

as gray levels, as well as protruding material objects, e.g. IC antenna side limiters(see 

[Jacquot2014]), intercepting the magnetic field lines and developing sheaths. 
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FIGURE 1: 2D (radial/parallel) cut 

intoSSWICH general 3D simulation domain (not 

to scale). Main equations and notations used in 

the paper. The gray levels are indicative of the 

local plasma density. Light gray rectangles on 

boundaries normal to B0 feature the presence of 

sheaths, treated as boundary conditions in our 

formalism. 

 

In this domain, the simulation process couples 3 steps self-consistently. 

Step 1: Slow Wave propagation. The physical system is excited by a 2D (toroidal, 

poloidal) map of the complex parallel RF electric field E//ap(r0), radiated by an IC antenna and 

prescribed at an aperture in the outer radial boundary of the simulation domain.The input RF 

field map presently needs to be computed a-priori, generally without sheaths, by an external 

antenna code. No restriction is imposed a-priori on the spatial distribution E//ap(r0) that carries 

the information about antenna geometry and its electrical settings. For our particular purpose 

in this paper it is necessary to compare several peaked distribution of fields with the same 

∫E//ap.dlbut different parallel locations of the field maximum, at fixed connection length L//. 

We would also like to assess how far the RF field at a given poloidal position affects the 

sheaths at other poloidal positions.We would finally like to investigate RF field maps that are 

asymmetric with respect to the middle of the open magnetic field lines. These classes of field 

maps were scarcely considered in earlier literature [D’Ippolito2006], [Myra2010]. 

From the aperture, a time-harmonic coldSlow magneto-sonic Wave (SW) with 

pulsation 0 propagates across the whole simulation domain according to equation [Stix1992] 

0////

2

0////////   EkEE   (1) 

With=zz
2
 the parallel Laplace operator, k0=0/c the vacuum wavenumber, and 

(//,) the diagonal elements of the local cold plasma dielectric tensor [Stix1992]. 

In 3D =xx
2
+yy

2
, while in 2D=xx

2
-ky

2
, wherekyis a wavevector in the ignorable 

(poloidal) direction y. These transverse derivatives couple adjacent magnetic field lines, 

unlike the simplest “double probe” models. Equation (1) is subject to radiating conditions at 

the inner radial boundary,metallic conditions E//=0 on material boundaries parallel to B0, and 

RF sheath boundary conditions (RF SBCs) at the parallel boundaries (see Figure 1). RF SBCs, 

first proposed in reference [D’Ippolito2006], will be further discussed. 
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Step 2: RF oscillations of the sheath voltage. When reaching the extremities of the 

open magnetic field lines, the SW fields E//generate oscillations VRFof the sheath voltage at 

the RF pulsation 0. VRF is a complex quantity incorporating amplitude and phase 

information. The definition E=VRF at the sheath/plasma interface, combined with the 

relation.(E)=0 valid all over the plasma, using rotE=0 for the SW, yield a diffusion 

equation for the sheath oscillating voltages VRF along the boundaries normal to B0, including a 

source term due to the SW[Colas2012],  

   

  sextremitieboundaryat0,,

,,,, //////





wallRF

wallwallRF

zyxV

zyxEzyxV  
 (2) 

Since the quantity VRF is only meaningful at sheaths, equation (2) applies only at the 

domain boundaries normal toB0 (see figure(1)). 

Step 3: Rectification of the sheath oscillations. Due to the non-linear I-V 

characteristics of the sheath,the RF oscillations of the sheath voltage are rectified into 

enhanced DC biasing of the SOL plasma. Several DC biasing models exist in the 

literature[D’Ippolito2006], [Myra2015]. These will not be detailed here, but the DC plasma 

potential VDC is an increasing function of the RF voltage amplitudes |VRF|. The DC voltage 

drop across the sheaths affects their width viathe Child Langmuir law, and consequently their 

RF admittance and the RF SBCs applied for E//[D’Ippolito2006]. Therefore all stepsdefined 

above generally need to be iterated till convergence is reached[Jacquot2014]. However for 

sheaths wider than a characteristic value, the RF SBCs were foundnearly independent of the 

sheath widths[Colas2012][Kohno2012]. For B0 normal to the wall the asymptotic RF SBCs 

simplify intoE//=0. This wide sheath limit was used as a first guess to start the iterative 

resolution of the model. In realistic Tore Supra simulations with self-consistent sheath widths, 

the near RF fields were intense enough to approach this “wide sheath” asymptotic 

regime[Jacquot2014]. 

2.2 Green’s function reformulation of RF-sheath excitation with prescribed sheath 

widths 

Step 3 is intrinsically non-linear, making the whole model non-linear when steps 1-3 

are coupled self-consistently, as e.g. in[Myra2008], [Myra2010], [D’Ippolito2008], 

[D’Ippolito2009], [D’ippolito2010], [Jacquot2014]. However when sheath widths are 

prescribed in a non-self-consistent way in every point, steps 1-3 can be run successively. In 

particular this exercise can be done using the self-consistent spatial distribution of sheath 
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widths once it is known. Equations (1) and (2) arelinear, together with their BCs. This 

property can be exploited to evidence and quantify spatial proximity effects in the RF sheath 

excitation.The superposition principle indeed allows re-expressing VRF(r) evaluated at any 

sheath boundary point ras the linear combination of contributions by every emitting point at 

position r0in the input RF field map. 

      aperture
apRF EGV 000 drrrrr //,  (3) 

Relation (3) formally looks like the integral Ṽ=∫E//.dl used in the “double probe” 

model, with major differences however. 1°) VRF(r) relates to one sheath, whereas Ṽ was 

applied between two electrodes. Depending on the parallel symmetry of the input RF field 

map, the two extremities of the same open field line can now oscillate differently. 2°) Rather 

than along each open field line, integration is now performed over the aperture, either in 1D 

or 2D depending on the considered geometry. Neighboring open field lines can therefore be 

coupled. 3°) A weighting factor G(r,r0)is applied to E//ap(r0), depending on the parallel and 

transverse distances from the field emission point r0to the observation point rat the sheath 

walls. 

G(r,r0) is the solution of equations (1) and (2) with elementary excitationE//ap(r)=(r-

r0), i.e. a Green’s function of the linear problem with one point source switched on in the 

input field map.G(r,r0) only carries information on the geometry of the simulation domain 

and on the SOL plasma parameters, while the input field map E//ap(r0) accounts for the 

antenna properties. VRF(r) combines the two characteristics. In a rectangular box filled with 

homogeneous plasma, the Dirac source term can be decomposed into eigenmodes of wave 

propagation in the box with sinusoidal variation in the parallel and poloidal directions. This 

can be done either in the wide-sheath limit [Colas2012] or when sheath widths are assumed 

uniform all over the box [Myra2010]. In these simple casesa formal Fourier correspondence 

exists between the Green’s function approach and these earlier spectral methods. 

The formal simplicity of relation (3) hides two main difficulties. 

-The initial non-linear problem is apparently turned into a linear relation. But 

computing the self-consistent sheath widths requires solving the fully coupled problem that is 

non-linear. Howeverin the wide sheaths limit the RF electric fields can be computed without 

knowing a-priori the sheath widths spatial distribution[Colas2012]. Below we will work 

within this limit. This imposes restrictions on the wave amplitude, but not on its spatial 

distribution, the main topic of this paper. Unlike [Myra2010] we will therefore not attempt at 
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self-consistency: the resulting VRF is the one obtained after only one turn around our iterative 

simulation loop. 

-While the VRF re-formulation applies for complex geometries, in presence of radial 

density gradients and any spatial distribution of the prescribed sheath widths, the Green’s 

functions are hard to obtain in these very general cases. Consequently this approach is 

generally less efficient than alternative ways to calculate oscillating voltages, e.g. spectral 

methods [Myra2010], [Colas2012] or finite elements [Kohno2012] [Jacquot2014]. Its main 

merit is to characterize explicitly the relation of VRF(r) to the spatial structure of the SW field, 

our particular purpose. In order to get insight into these properties we treat below simple cases 

in parallelepiped geometry that are tractable semi-analytically. 

3. PROXIMITY EFFECTSON THE EXCITATION OF SHEATH RFVOLTAGES 

BY EVANESCENT SLOW WAVES IN 2D 

We restrict firstour initial geometry to a 2-dimensional (2D) rectangular domain of 

dimensions (L//, Lin the (parallel, radial) directions, filled with cold magnetized plasma 

homogeneous in all directions.In the ignorable direction y, spatial oscillations as exp(ikyy) are 

assumed for RF quantities. The geometry is summarized in figure 2. The simulation domain is 

representative of the private SOL in front of an ICRF wave launcher, with L the radial 

protrusion of (simplified !) antenna side limiters and L// the parallel distance between their 

internal faces. E// is prescribed at antenna aperture plane x=0. Radiating boundary conditions 

for E// are enforced at the inner boundary x=L, andasymptotic RF sheath BCs at parallel 

extremities z=L///2. This simplified geometry shares some similarity with the situation 

treated in [Myra2010]. However in this earlier publication ky=0 was assumed and the 

simulated domain was unbounded in the radial direction (L→). In their detailed 

calculations only one particular class of input field maps was considered: Gaussian peaks 

whose top was always located half-way between the two sheath walls. For symmetry reasons, 

with this class of field maps the sheaths at both open field line extremities could be 

characterized by one single voltage. Focus was put on obtaining self-consistent sheath 

voltages, under the following assumptions: 

-Self-consistent sheath widths were assumed the same at the two extremities of the 

same open magnetic field line 

-Sheath widths (and hence DC plasma potentials) did no vary in the radial direction. 

-On average over many RF periods, sheaths were assumed to float in every point. 
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In our simplified problem relation (3) becomes 

     
2/

2/
0020////

//

//

,,2/,
L

L
yDapRF dzzkxGzELzxV   (4) 

 

FIGURE 2: Generic 2D simulation domain (not 

to scale). Main equations and notations used in 

parts3 and 4. x=0 at aperture. Light gray 

rectangles on boundaries normal to B0 feature 

the presence of sheath boundary conditions. 

Green’s function G2D(x,z0) is non-dimensional and can be obtained fromequations(1) 

and (2) at the left boundary with excitation E//(x=0,z)=E//ap(z)=(z-z0) (see Figure 2). The 

sheath properties at the right boundary can be deduced by changing appropriate signs in 

(4).VRFfrom relation (4) have the same magnitude at the two extremities of the same open 

magnetic field line only if the input field map is symmetric or anti-symmetric along B0. 

3.1 Characteristic scale-lengths 

Introducing characteristic squared lengths 

     






  //; //

212

0//

221

//

2

0

22

xyzyx LkkLkkL  (5) 

equation(1) can be recast into a standard formin the normalized space coordinates 

X=x/|Lx| and Z=z/|Lz|  

0////

2

//

2  EssEsEs zxZZzXXx  (6) 

Where sx (resp. sz) are the signs of Lx
2
 (resp. Lz

2
). Four cases need to be distinguished, 

corresponding to the four combinations of signs. If both signs are the same, equation(6) is 

elliptic and describes propagative (negative signs) or evanescent waves (positive signs) 

qualitatively similar to those in ordinary dielectric materials (i.e. the anisotropy of the 

magnetized plasma is a matter of length stretching). If signs are opposite equation(6)becomes 

hyperbolic and describes propagating waves with resonant cone properties comparable to 

Lower Hybrid waves in tokamaks[Stix1992]. In practice, sx<0 corresponds to unrealistically 

low densities for IC waves in the SOL of tokamaks, for which sheaths have limitedoperational 

consequences. For sx>0, szis the sign of  and could possibly change over the SOL:sz<0 

prevails in a tenuous plasma that might exist in an IC antenna box..sz>0 corresponds to typical 
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plasma parameters measured in the SOL surrounding IC antennas on Tore Supra 

[Jacquot2014] and ASDEX-Upgrade[Křivská2015]. Below we study specifically this latter 

case and treat Lx and Lzas real positive quantities.=0 corresponds to the Lower Hybrid 

resonance and is associated to very large Lz. Equation (1) implicitly assumes a scale 

separation between the SW and the Fast Wave. Close to the Lower Hybrid resonance this 

separation needs to be revisited to allow a possible mode conversion between the two wave 

polarizations. This is however outside the scope of the present paper. 

Lateral boundaries at finite distance from the emission points also introduceL// as a 

characteristic length of the wave propagation model. Excitation finally deserves normalization 

E//ap(z)=(z-z0)=Lz
-1(Z-Z0) (7) 

A similar dimensional analysis can be made for equation(2)at the left boundary, using 

the normalized coordinates from(5) 

//2

22

2

2 ELGLkG zZDxyDXX   (8) 

where from (7)LzE// is non-dimensional.Equation(8) introduces the extra scale-length 

ky
-1

 into the problem, via the dimension-less parameter ky
2
Lx

2
=[1-k0

2///ky
2
]

-1
. Besides, the 

boundary conditions involve L. 

In principle, all the geometrical properties of G2D(x,ky,z0) can be expressed in terms of 

(x, z0) and the characteristic lengths. Throughout the paper typical examples will illustrate our 

calculations with realistic geometrical, plasma and RF parameters used for ASDEX-Upgrade 

simulations in[Křivská2015]. Dielectric propertiescorrespond to a standard D[H] minority 

heating scheme at frequency f0=30MHz, with local magnetic field B0=1.44T and L-mode SOL 

density ne=8.3×10
17

m
-3

in the antenna region. Geometry refers to ASDEX-Upgrade 2-strap 

antennas. Simulation parameters are //=-74659, =-24.31, k0=0.63m
-1

,L//=0.66m, 

L=12mm.For this particular caseLx=5.8248mm while Lz=0.3228mfor ky=0. For this realistic 

example, the parallel evanescence length is thus half the parallel extension of the antenna, 

while the transverse evanescence length is a small fraction of the poloidal height for the 

antenna. 

3.2 2D electric field maps 

The solution toequation (6)can be built from well-known results for the 2D Helmholtz 

equation in isotropic cylindrical geometry using modified Bessel functionsof the second kind 

Kj (j integer [Angot1972]). The method of images [MF1953]is then applied to account for the 
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parallel boundary conditions at finite distance from the emitting point. Using the normalized 

coordinates (X,Z)=(x/Lx,z/Lz) the field map writes 

         z

n

n

n

nD

n

zD LznLZZZXFLzzxE /1;,1,, 0//2

1

02  





 (9) 

Where  

    222

12 ;K, ZXRR
R

X
ZXF D 


 (10) 

Here argument R is the (normalized) distance to the emitting source. F2Ddescribes the 

SW evanescence from a boundary point source in (X,Z)=(0,0), in absence of parallel 

boundaries. For a fixed X and Z>>X>1, F2D decays as ~exp(-Z) along the parallel direction. 

F2D is null in X=0, except in Z=0 where the source term creates a singularity. 

At the left boundary the RF sheath voltage excitationin(2) depends onthe parallel 

derivative zE(x,z=-L///2,z0), with 

     

   RK
R

XZ
ZXF

ZZXFLzzxE

DZ

n

nDZ

n

zDz

222

2

2

02

,

,1,,




 






 (11) 

z0=+L///2corresponds to a source point near the right parallel boundary of the 

simulation domain. When z0=+L///2 and z=-L///2, Z2p=Z2p+1, for all p integer in summation(9) 

whence 

  02/,2/, ////2  LLxE Dz
 (12) 

When the source point gets very close to the left sheath wall it is convenient to 

introduce Z0=(z0+L///2)/Lz, the normalized parallel distance from the source point z=z0 to the 

left boundary z=-L///2 (see figure 2). For sufficiently small Z0, n=0 and n=-1 become the 

dominant terms in the summation (9) 

     0222

0

0
02

2

0//2

2
,2,2/, RK

LR

ZX
ZXFLzLzxE

z

DZzDz



  

 (13) 

Formula (13) shows that zE2D(x,z=-L///2,z0) tends to 0, except perhaps in x=0, where 

R0 vanishes. In the limit R<<1, K2(R)~2/R
2
[Angot1972] and 

 
 22

0

22

0
0//2

4
,2/,

ZXL

ZX
zLzxE

z

Dz






  (14) 
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To shed light into the limit behavior Z0→0, X→0 let us integrate with respect to X  

 
 2

0

22

0
0//2

2
,2/,

ZXL

Z
dXzLzxE

z
X

Dz









 (15) 

Integrating once again yields 

  2

0

0

20 2

0

22

0 1
arctan

22
0

z

Z

z

X

z LZ

X

L
Xd

ZXL

Z
 










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









wheteverX (16) 

Whence in the limit z0→0, x→0 

     xX
L

zLzxE xX

z

Dz δ2δ
2

,2/,
//

20//2  




 (17) 

The limit Z0>>1, Z1>>Z0is accessible if L//>>Lz. Z1>>Z0 implies that n=0 and n=-1 are 

still the dominant terms in the summation (9), so that formula (15) applies. In the limit of 

large arguments K2(R)~[/2R]
1/2

exp(-R) [Angot1972], so that 

  
 

  2/12

0

2

2/52

0

22

0
0//2 exp

2
,2/, ZX
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ZX
zLzxE

z

Dz 








 (18) 

IfZ0>>X>1, then zE2D(x,z=-L///2,z0) decreases as ~exp(-z0/Lz) as the source point 

moves away from the sheath wall. The characteristic length L// does not appear explicitly in 

expression(18). Indeed this length is related to the boundary conditions.  

3.3 Geometrical properties of 2D Green’s function for the sheath oscillating voltage. 

Inserting expression(9) into equation(2), one deduces G2D(x,ky,z0) as a convolution of 

zE2D(x,-L///2,z0) with a Green’s function for the diffusion equation [Colas2012]: 

   
    

 
xd

Lk

xLk

k

xk
zLxEzkxG
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DzyD

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






0

maxmin

0//2
//

02
sinh

sinhsinh
,2/, ,,





 (19) 

Where xmin=min(x,x’) and xmax=max(x,x’). 

For the ASDEX-Upgrade parametersin [Křivská2015], Figures 3plot G2D versus x for 

two values of ky and various parallel distances z0between the emission point and the left wall. 

The boundary conditions in equation(2) impose   0,,0 02 zkG yD and   0,, 02  zkLG yD . 

Between these two radial extremities G2D at fixed z0 exhibits a radial maximum, whose 

position shifts radially inwards with increasing z0.  
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Figures3show that for fixed x G2D decreases with increasing z0. This is a first 

evidence of parallel proximity effects in realistic tokamak conditions. SW evanescence 

ensures that this result is quite general: indeed zE2D(x,z=-L///2,z0) is a decreasing function of 

z0. From (19) one deduces that this is also the case forG2D. When the source point moves 

towards the right wall formula(13)yields 

  02/,, //2 LkxG yD  (20) 

The lower curves on Figure 3reflectthis trend. When the source point gets close to the 

left wall the limit behavior is deduced from formula(17) 
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 (21) 

Expression (21) corresponds to the dashed lines on figures 3. 

a)  b)  

FIGURE 3. Green’s function G2D(x,ky,z0) versus radial coordinate x for increasing parallel distance 

z0=(L///2+z0) from wave emission point z=z0 to left parallel boundary z=-L///2. x is 0 at aperture and 

increases towards leading edge of antenna limiter at x=L=12mm.Simulation with ASDEX-Upgrade 

parameters used in [Křivská2015]and (a) ky=0, (b)ky=200m
-1

.Dashed lines: asymptotic expression (21). 

From the two limit expressions (20) and (21), we deduce that 0G2D(x,z0)sinh(ky(L//-

x))/sinh(kyL//)1: G2D is a real positive attenuation factor and    dzkzEkxV
L

L
yapyRF 






2/

2/
//

//

//

,, . 

The wayG2D decreases with z0depends on the input parameters. To quantify these 

parallel proximity effects, a first indicator is the e-fold parallel decay length z(x) of 

G2D(x,ky,z0) at z0=0. In a series of numerical simulationsz(x)was fitted numericallyfor 20 
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values of x from 0 to L. Figure 4plots z(x) averaged over x versus Lz, for various parametric 

scans, exhibiting two regimes. On the low-Lz branch of the curves, ifZ0>>XwhileZ1>Z0, 

equation (18)shows that zE2D(x,z=-L///2,z0) decreases as ~exp(-z0/Lz) for all x and so does 

G2D(x,ky,z0). A saturation of z is however observed as Lz gets of the order of L//. Over the 

scans of , the saturation level on this opposite branch is found proportional to L//. Indeed if 

L//<<Lz, Z0<<1 for all z0<L//, but all terms matter a priori in summation(9). However all the 

relevant contributions to this summation can be linearized.Expression (20)then ensures 

thatG2D(x,ky,z0) decreases linearly as(1-z0/L//) 
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 (22) 

Expression (22) shows that in the limit L//<<Lz the characteristic length Lz plays no role 

in the SSWICH-SW problem. From figure 6 and the above estimates, one concludes that 

z<min(Lz,L//). 

 

FIGURE 4. Parallel e-fold decay length z(x) of 

G2D(x,ky,z0) atz0=0 fitted numerically and 

averaged over 20 values of x, versusLz from eq. 

(5), for 6 scans of the main parameters in the 

asymptotic model, each identified by a marker 

type. Error bars: dispersion of z(x) over x. 

Another quantitative indicator of parallel proximity effects, the parallel gradient length 

of G2D at z0=0, is plotted on figure 5. Below we seek an upper bound on this gradient length. 

The parallel gradient of G2D is expressed as  
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 (23) 

Where 
2

zz0E(x,-L///2,z0) is built from 
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      RKZRRK
R

X
ZXF DZZ 3

2

232 , 


 (24) 

From (23) and the above analysis one deduces that for Lz<<L//, z0G2D scales as Lz
-1

 

when all other parameters are kept constant, while for Lz>>L// 

    zyDyDz LLLLzkxGzkxG  //////0202 ;/2/,,,,
0

 (25) 

From figure 3one also anticipates very steep gradients as x gets very small. Concretely, 

this means that minimizing |VRF| near x=0 gets equivalent to cancelling E//ap at the parallel 

extremities of the input RF field map, consistent with the optimization criterion proposed in 

[Bobkov2015]. One can show that an upper bound for G2D gradient length is given by 
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 (26) 

Figure 5illustrates numerically this upper bound over four orders of magnitude, for 

various scans of the main parameters in the SSWICH asymptotic model. 

 

FIGURE 5. Parallel gradient length of 

G2D(x,ky,z0) fitted numerically at z0=0, versus 

upper boundLzmax from eq. (26). For each 

simulation, 19 points are plotted, for x values 

located every 5% of L. Marker types indicate 

simulation series with one parameter scanned. 

3.3 Example: two-peak asymmetric input field map 

As a more concrete application, we consider a test case qualitatively similar to the 

symmetry-breaking experiments in [Colas2013], [Bobkov2015]. We compute VRFusing the 

ASDEX-Upgrade parameters and ky=0,for aninput field map composed of two Gaussian 

peaks:      zEzEzE ap 21//   with 
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 
 
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2

exp
z

zz
EzE

j

jj , j=1, 2 (27) 

The parallel half-widths at 1/e are chosen as z=2cmfor both peaks. The first peak is 

centered at z1=-0.2m close to the left boundary, while the second is at z2=+0.2m. Initially the 

field map is toroidally antisymmetric: the two peaks are of opposite signs and equal 

magnitude, so that ∫E//ap.dl=0. Namely V1=∫E1(z)dz=-230V and V2=∫E2(z)dz=+230V.This 

initial field map is then progressively unbalanced, by keeping the same shape for the peaks 

and adding the same voltage 0.5V to V1 and V2, such that ∫E//ap.dl=V.Figure 6 plots the 

resulting VRF at the left boundary versus x for several values of V.Figure 7 shows VRF at both 

field line extremitiesversusV for selected x. For this series of asymmetric field maps the 

amplitudes of sheath oscillating voltages are generally different at the two extremities of the 

same open magnetic field line. Consistent withequation (4), they become equal for V=0, i.e. 

for a toroidallyanti-symmetric input field map.As already noticed in [D’Ippolito2006], sheath 

oscillations exist despite ∫E//.dl being null on every open field line. The superposition 

principle implies thatVRFvaries linearly with V. The slope of this variation depends on x, and 

VRF evolves in opposite ways at both field line extremities over the same variation of ∫E//ap.dl. 

By choosing an appropriateV it is possible to cancel VRF at given x on the left boundary. For 

that the two peaks must be of opposite signs and the magnitude of the right peak should be 

roughly 10 to 20 times that of the left peak, consistent with a parallel proximity effect. The 

exact peak ratio depends on x, so it is not possible to cancel the sheath oscillations everywhere 

at the same time.For symmetry reasons one should use negative V to reduce VRF at the right 

boundary. Therefore, with the considered field maps, it is not possible to mitigate RF-sheath 

excitation simultaneously at both field line extremities. It is neither possible to cancel 

completely |VRF| at any place when complex Vis applied, i.e.when the two peaks are not in 

perfect phase opposition. 
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Figure 6: Sheath oscillating voltage at the 

left boundary versus radial distance to 

antenna aperture. Calculations performed 

with ASDEX-Upgrade parameters, ky=0 

and two-peak input field maps from 

equation (27). Five curves are showed, for 

several values of V=∫E//ap.dl over the 

input field map. 

 

Figure 7: Sheath oscillating voltagesat 

selected radial positions 

xversusV=∫E//ap.dlover the two-peak input 

field map from equation (27). Solid 

lines:left boundary. Dashed lines:right 

boundary. Calculations performed with 

ASDEX-Upgrade parameters andky=0. 

4. EXTENSION TO 3 DIMENSIONS 

For more realistic description of the RF-sheath excitation, our geometry can be 

extended to 3D parallelepiped simulation domains. Throughout this part the parallel and radial 

dimensions L// and L are the same as in 2D, while the poloidal extent of the domain is 

infinite. The transverse Laplace operator is redefined as =xx
2
+yy

2
,while both E//and VRFare 

assumed to vanish fory→. Equation(3)now consists of a surface integral over a 2D input 

RF field map E//ap(y,z) 
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 
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000300//0//
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,,,2/,,
L

L
DapRF dzzyyxGzyEdyLzyxV   (28) 

The 3D Green’s function G3D(x,y,z0) has the dimension of a wavevector, and is 

obtained for the elementary excitation E//ap(y,z)=(y)(z-z0). The 3D model exhibits the same 

characteristic scale-lengths as the 2D model, except thatky=0 is assumed andpoloidal 

coordinate y will appear in the spatial dependences. 
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4.1 Green’s function in 3D 

The 3D RF field patternE3D(x,y,z,z0)is obtained using the same method as in 2D. It is 

most easily expressed using the normalized quantities X=x/Lx, Y=y/Lx and Z=z/Lz 
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with 
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F3D is null in X=0, except in Y=Z=0 where it exhibits a singularity.  Decay as exp(-R) 

is found for large R. 

  

zE3D(x,y,z,z0) is computed using 
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whence 
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With the 2D solution of equation (2) given by [Durand1966] p.265 
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Figures 8map G3D(x,y,z0) versus (x,y) as obtained numerically for the ASDEX-Upgrade 

simulation parameters and three values of z0.At given (x,z0) G3D is a decreasing function of 

the poloidal distance |y| from wave emission point to observation point. Over this scan VRF at 

a given altitude involves the E//ap values within less than 1.5cm from this altitude. Figures 

8also illustrate how G3D decreases in magnitude, expands inthe poloidal direction while its 

radial maximum moves away from the aperture with increasingparallel distance from wave-

emitting point to sheath wall. Let us now quantify these properties. 
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a)  b)  

c)  

FIGURE 8.3D Green’s function G3D(x,y,z0) 

versus transverse coordinates(x,y), as evaluated 

numerically using ASDEX-Upgrade 

simulationparameters in [Křivská2015]and 

parallel distances (a) z0=(L///2+z0)=2.5cm;(b) 

z0=10cm and (c)z0=33cm. Contour lines are 

located every 5% of the maximum value over the 

map. 

 

4.2 Evolution with z0 

SW evanescence ensures that G3D decreases with z0 at fixed (x,y). Since 
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From our 2D analysisin part 3, one deduces thatG3D is null for z0=+L///2. In the 

opposite limitz0→-L///2, one gets from relation(21)([Gradshteyn1980] p.504) 
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And if Lz>>L// while Y
2
<<1, one anticipates a linear decay with parallel distance z0. 
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Figure 9illustrates the limit expression of G3D(x,y,-L///2) in (34). No wave evanescence 

is involved: Lx and Lz disappear from the problem, all coordinates can be normalized by the 

only remaining characteristic length L.Since the emission point is infinitely close to the left  

wall, G3D exhibits a singularity in (x,y)=(0,0). Concretely this means that minimizing |VRF| 

near x=0 is equivalent to cancelling the local E//ap near the sheath observation point in the 

input field map.  

 

FIGURE 9.2D (radial,poloidal) map 

ofLG3D(x,y,-L///2) from formula (35) in 

logarithmic scale, versus normalized coordinates 

(x/L, y/L). Contour lines: between two 

consecutive curves the function decreases by a 

factor 10
1/4
1.78. Solid lines correspond to 

LG3D>1, dashed lines to LG3D<1. 

 

Poloidal integration of G3D yields 

   
0203 ,0,,, zkxGdyzyxG yDD 




 (37) 

From the 2D analysis, one deduces that for z0/Lz>>(x
2
+y

2
)
1/2

/Lxand L///2-z0>>Lz
2
, the 

poloidal integral of G3D decays as exp(-z0/Lz) for large z0. The upper bound Lzmax from 

expression (26) is also valid. 

4.3 Poloidal decay lengths, relevance of 2D simulations 

Surface integral (28) can be seen as a weighted sum of line integrals over several open 

magnetic flux tubes instead of one in the previous approaches. It is worth estimating how 

many of these open magnetic field lines do really matter in expression(28). A related issue is 

the validity of 2D SSWICH-SW simulations in part 3in comparison with the more accurate, 

but more computationally demanding 3D simulations in part 4.This amounts to evaluating the 

poloidal extent of G3D at fixed (x,z0). 

For z0=0 formula(35) features a minimal poloidal extent of G3Din the absence of SW 

evanescence. The half-width at 1/e can be evaluated analytically as 
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Expression(38) shows that y<0.7L over the whole radial range of the simulation 

domain. 

  

As the wave emission point moves away from the sheath wall, SW evanescence 

broadens G3Din the poloidal direction. Formula(32) presents G3D(x,y,z0) as the convolution of 

zE3D(x’,y,z=-L///2,z0)with H(x,x’,y). zE3Dscales as ~R
-5

 for small R and as ~exp(-R) for large 

R. An upper bound for its poloidal extent is therefore 

 

























 





















 













22

0

22

0
0max 21,7.0min,

xz

x

xz

xE
L

x

L

z
L

L

x

L

z
LzxL


   

 (39) 

The poloidal half-width of Hcan be expressed explicitly as 
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LH is an increasing function of |x-x’|/L. The source term for G3Dat point x is present 

from x’=0 to x’=min(x+Lx, L) (pessimistic estimate). One can then put an upper bound on the 

half-poloidal with for G3D 

y<max[LH(x,0),LH(x, min(x+Lx, L)), LEmax(min(x+Lx, L), z0)] (41) 

The above estimates areassessed numerically on figure 10.In this exercise 2D (radial, 

poloidal) maps of G3Dat constant z0were simulated numerically over several scans of the main 

simulation parameters. From each map y was fitted at several radial positions. Over the 

tested parametric domain inequality (41) iswell verified, and the upper bound is sometimes 

pessimistic by a factor 2 or 3. 
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FIGURE 10.Half poloidal width yat 1/e, fitted 

numerically from simulated 2D (radial,poloidal) 

maps for G3D. For each simulation y was fitted 

at 9 radial positions ranging from x/L=0.1 to 0.9 

and plotted versus max(LHmax, LEmax) from 

formula (41). Each series of points refers to a 

scan of one simulation parameter indicated in the 

legend. 

For poloidal structures larger thanmax(LHmax, LEmax) in the input field map, G3D can be 

considerably simplified using (34). 

     yzkxGzyxG yDD δ,0,,, 0203   (42) 

Surface integral (28)then reduces to a weighted integral along one single field line, 

located at the same altitude as the observation point. Consequently above a critical length, the 

poloidal structures of VRF reflect those of E//ap near the parallel extremities of the input field 

map. Smaller scales below the critical length in the input RF field map are smoothed and 

contribute less to VRF. 

5. DISCUSSION AND CONCLUSION 

5.1 Practical implications 

Within theexisting asymptotic SSWICH-SW model recalled in part 2, RF oscillations 

VRFof the sheath voltage at any open field line extremity can be re-expressed as a sum of 

individual contributions by each emitting point in the parallelRF electric field map E//ap(r0) 

radiated by an IC antenna. This re-formulation offers a simple alternative to the “double 

probe” criterionṼ=|∫E//.dl| for assessing sheath RF voltages closer to the first principlesin the 

“wide-sheath” limit.For practical VRF computations with realistic input field maps, this 

alternative method is generally less efficient numerically than the Fourier technique in 

[Myra2010], [Colas2012]or the Finite Element Method in [Kohno2012], [Jacquot2014]. 

Itallows however to reveal and quantify spatial proximity effects in the excitation of 

oscillating sheath voltages. Indeed, for the first time to our knowledge,proposed 

formula(3)consists of a weighted integral of E//ap: Slow Wave (SW)evanescence causes point-

source contributions (or Green’s functions for VRF) to decrease with increasing parallel and 

poloidal distances from wave emission point to sheath walls. As a test case in a parallelepiped 
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box filled with homogeneous cold magnetized plasma, 2D and 3D Green’s functions were 

determined explicitly in the limit of an emission point very close to the sheath walls, and their 

spatial variations were quantified numerically as a function of characteristic lengths in our 

model.  

Poloidal decay lengths for VRFinvolve the radial protrusion Lof antenna side limiters, 

as well as the transverse SW evanescence length Lx, with extra broadening due to the parallel 

evanescence. In realistic situations, these poloidal decay lengths are much lower than the 

typical vertical extent of ICRF antennas, e.g. less than 1.5cm for our ASDEX-Upgrade 

example. This is qualitatively consistent with experimental observations that RF-induced SOL 

modifications are mainly observed on magnetic field lines passing in front of the antenna 

box,while they are absent on field lines connecting above or below the box aperture 

[Jacquot2014], [Cziegler2012], [Kubič2013]. If poloidal structures in the input field map are 

larger than the decay length, independent 2DSSWICH-SW simulations at each altitude fairly 

approximate the full 3D models, while the 2D input RF field map retains 3D information 

about the global antenna geometry. 

The parallel decay lengths for VRFmainly involve the minimum between the connection 

length L//and the parallel SW evanescence length Lz. This result is not specific of SSWICH-

SW: the role of Lzis probably generic of any model featuring SW evanescence.Within the 

“wide sheath limit”, this generalizes to any parallel distribution of E//ap the role of the ion skin 

depth pointed out in[Myra2010]. Lzis related to the transverse coupling of adjacent open 

magnetic field lines viain equation 1. Such transverse couplingwas absent in the simplest 

“double probe” model. In SW propagation, decoupling is only obtained at the LH resonance 

(=0) and leads to infinite Lz. This paper also evidenced other parametric dependences of the 

parallel decay lengths, e.g. with the radial distance to the aperture and the radial extension of 

the lateral walls. Typicalparallel decay lengths are always smaller than typical antenna 

parallel extensions. Consequently,when the radiated E//ap map exhibits parallel anti-symmetry, 

anattenuation factorprevents the cancellation of the relevant integral forVRFin equation(4). 

Sheath oscillationstherefore persist, while the previous formula predicts that ∫E//.dl=0.Similar 

cases were already evidenced in [D’Ippolito2006]. Besides, the sheaths at the two ends of the 

same open field line can oscillate differently, depending on the parallel symmetry of E//ap 

map. VRF at an IC antenna side limiter appears mainly sensitive to E//ap emission by active or 

passive conducting elements near this limiter, as experimental observationssuggest in 

[Colas2013][Bobkov2015]. For the realistic simulations of ASDEX-Upgrade 
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in[Křivská2015], a correlation was found between VRF at antenna side limiters and RF field 

amplitudes at the same altitude, averaged over ~10cm from the side limiters along the parallel 

direction, whereas the antenna toroidal extension was 66cm. This correlation was independent 

of the altitude, of the antenna type and of the electrical settings, and mainly depended on the 

plasma parameters. Toroidal proximity effects couldtherefore justify current attempts at 

reducing the local RF fields induced near antenna boxes to attenuate the sheathoscillations in 

their vicinity[Bobkov2015][Bobkov2016].The proposed heuristic procedure does fully 

coincide with ourVRF-cancellation rule only for very small radial distances x to the input field 

map. In both cases the optimal setting requires higher RF voltage on the remote straps than on 

the close onesphased [0,]. Since one cannot cancel VRFeverywhere on the antenna structure, 

one should carefully choose the spatial locations where to optimize RF-sheaths.Experiments 

in [Colas2013] and [Bobkov2015]and figure 7 in this paper showed that with two straps (two 

peaks in our test case), improving the situation at one parallel side of the antenna box likely 

degrades the situation on the opposite side. Using a 3-strap antenna somehowremoves this 

constraint [Bobkov2016]. 

In addition to the antenna geometry and its electrical settings, theVRF-cancellation rule 

also involvesthe local plasma near the antennas:  both Lx and Lz decrease with increasing local 

density near the antenna, through the dielectric constants // and .Therefore replacing the 

plasma by a vacuum layer thicker than Lx in the radial direction could modify the optimal 

settings. This sensitivity,observed numerically in[Colas2005][Milanesio2013][Colas2014] 

[Lu2016a] [Jacquot2015], is a challenge for quantitative RF-sheath evaluations. RF-sheath 

optimization may be sensitive to intermittent local density fluctuations naturally present in the 

tokamak SOL. 

Although the above conclusions were reached in aparallelepiped boxfilled with 

homogeneous plasma in the “wide sheath” limit, we believe that they persist qualitatively 

with more complex geometry,density gradients and finite sheath widths.Although Green’s 

functions are harder to determine in these more realistic situations, they still exist in any 

geometry and in presence of prescribed sheath widths, as long as the physics model remains 

linear. Therefore Green’s functions could be defined for other models in the existing literature 

on RF sheaths.For Tore Supra,the fully-coupled simulation results with self-consistent sheath 

widths in[Jacquot2014] were found close in magnitude and spatial structure to the asymptotic 

first guess provided by the wide sheath approximation.Beyond the “wide-sheath 

approximation”some parallel proximity effects seem topersist in self-consistent calculations 

using symmetric Gaussian field maps [Myra2010]. 
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5.2 Physical limitations and prospects 

The SSWICH-SW model predicts that the direct excitation of sheath oscillations by the 

evanescent SW is only intense in the ICantenna near RF field [Jacquot2014][Colas2014]and 

loses efficiencybeyond a parallel distance smaller thanLzfrom the radiating elements. The 

experiments in the introduction involved private limiters in this near field. However, RF-

induced SOL modifications haveoften been observedexperimentally at parallel distances far 

larger than Lz[Colas2013], [Bobkov2015], [Cziegler2012], [Klepper2013], [Kubič2013], 

[Lau2013], [Ochoukov2013].To interpret these measurements, extraphysical mechanisms not 

discussed in the present paper need to be considered. 

In very tenuous SOLs below the lower hybrid resonance, the SW becomes propagative 

[Lu2016a]and can possibly excite RF sheaths at large parallel distances [Myra2008]. 

Propagative SW can be handled using the Green’s function formalism introduced in this 

paper. However instead of decreasing monotonically with parallel and poloidal distances, the 

Green’s functions may ratheroscillate in a complex way. 

At higher densities, the Fast Wave(FW) becomes propagative. It can excite so-called 

“far-field RF-sheaths” if B0 is not strictly normal to the walls[D’Ippolito2008] 

[Kohno2015].The FW can also be incorporated into a generalized Green’s function formalism 

in the “wide sheaths” asymptotic limit. For that purpose the asymptotic RF-sheath boundary 

conditions need to be extended to account for all RF field polarizations[D’Ippolito2006]. In 

addition to E//ap, the input RF field map should also include the radiated poloidal electric field. 

Each RF field component is expected to generate a specific Green’s function.Evanescent FW 

likely exhibit proximity effects. But eachpolarization will feature specific characteristic decay 

lengths. FW and SWwill likely be coupled upon reflection onto tilted 

walls[D’Ippolito2008][Kohno2015]. Extension of the SSWICH code to full-wave RF electric 

fields and shaped sheath walls in 2D is ongoing [Lu2016b].  

While this paper discussed the sheath oscillating voltagesVRF, the deleterious effects in 

tokamaks ultimately arise from a local DC biasing of the SOL. The sheath rectification in step 

3 of SSWICH is intrinsically non-linear and cannot be described with Green’s functions. A 

transport of DC current is able to couple one sheath with its neighbors and the one at the 

opposite extremity of the same open field line. In the absence of propagating RF waves, 

Jacquot’s paper[Jacquot2014]showed thatDC current transport can still spread a DC bias to 

remote areas from the near-field regions where SW direct sheath excitation is 

efficient.Therefore, in order to significantly reduce the rectified DC plasma potential on a 
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given open field line, one should reduce |VRF| at its two extremities as well as on the 

neighboring field lines. Reducing |VRF| at only one extremity likely drives the circulation of 

DC current from the high-|VRF| sheath to the low-|VRF| sheath, with limited effects on the DC 

plasma potential[Jacquot2011].DC currents have been reported in the SOL in variousself-

biasing experiments by sheath rectification near active IC antennas [VanNieuwenhove1992], 

[Gunn2008], [Bobkov2010]. 

The non-linearity in step 3 further introduces extra propertiesto the fully coupled 

problem that are absent in the “wide sheath approximation”, e.g. the existence of multiple 

solutions or sheath/plasma resonances [Myra2008], [Myra2010], [D’Ippolito2008]. The role 

of these extra phenomena in tokamak experiments is still unclear. 

A European project, outlined in [Colas2014], is ongoing to include all these extra 

physical mechanisms intomore realistic models of coupled RF wave propagation and DC 

plasma biasing. Comparison with plasma measurements [Jacquot2014], 

[Křivská2015]provedessential for codeassessment. The test of a new 3-strap antenna on 

ASDEX upgrade[Bobkov2016], the restart of the ITER-like antenna on JET[Durodié2012], 

the commissioning of new antennas on WEST[Hillairet2015], as well as dedicated test 

beds[Faudot2015] [Crombé2015]will provide new opportunities to assess the SSWICH model 

over a large diversity of antenna types and plasma regimes, before it can be used to predict the 

behavior of future antennas. 
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Figures 

 

 

FIGURE 1: 2D (radial/parallel) cut intoSSWICH general 3D simulation domain (not 

to scale). Main equations and notations used in the paper. The gray levels are indicative of the 

local plasma density. Light gray rectangles on boundaries normal to B0 feature the presence of 

sheaths, treated as boundary conditions in our formalism. 
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FIGURE 2: Generic 2D simulation domain (not to scale). Main equations and 

notations used in parts 3 and 4. x=0 at aperture. Light gray rectangles on boundaries normal to 

B0 feature the presence of sheath boundary conditions. 
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FIGURE 3.Green’s function G2D(x,ky,z0) versus radial coordinate x for increasing 

parallel distance z0=(L///2+z0) from wave emission point z=z0 to left parallel boundary z=-

L///2. x is 0 at aperture and increases towards leading edge of antenna limiter at x=L=12mm. 

Simulation with ASDEX-Upgrade parameters used in [Křivská2015] and (a) ky=0, 

(b)ky=200m
-1

.Dashed lines: asymptotic expression (21). 
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FIGURE 4.Parallel e-fold decay length z(x) of G2D(x,ky,z0) at z0=0 fitted numerically 

and averaged over 20 values of x, versusLz from eq. (5), for 6 scans of the main parameters in 

the asymptotic model, each identified by a marker type. Error bars: dispersion of z(x) over x. 
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FIGURE 5. Parallel gradient length of G2D(x,ky,z0) fitted numerically at z0=0, versus 

upper boundLzmax from eq. (26). For each simulation, 19 points are plotted, for x values 

located every 5% of L. Marker types indicate simulation series with one parameter scanned. 
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Figure 6: Sheath oscillating voltage at the left boundary versus radial distance to antenna 

aperture. Calculations performed with ASDEX-Upgrade parameters, ky=0 and two-peak input 

field maps from equation (27). Five curves are showed, for several values of V=∫E//ap.dl over 

the input field map. 
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Figure 7: Sheath oscillating voltages at selected radial positions xversusV=∫E//ap.dlover the 

two-peak input field map from equation (27). Solid lines: left boundary. Dashed lines: right 

boundary. Calculations performed with ASDEX-Upgrade parameters and ky=0. 
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a)  

b)  

 



   

11 January 2017 L. COLAS et al. 40/42 

c)

  

FIGURE 8.3D Green’s function G3D(x,y,z0) versus transverse coordinates(x,y), as 

evaluated numerically using ASDEX-Upgrade simulationparameters in [Křivská2015] and 

parallel distances (a) z0=(L///2+z0)=2.5cm; (b) z0=10cm and (c)z0=33cm. Contour lines are 

located every 5% of the maximum value over the map. 
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FIGURE 9.2D (radial, poloidal) map ofLG3D(x,y,-L///2) from formula (35) in 

logarithmic scale, versus normalized coordinates (x/L, y/L). Contour lines: between two 

consecutive curves the function decreases by a factor 10
1/4
1.78. Solid lines correspond to 

LG3D>1, dashed lines to LG3D<1. 
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FIGURE 10.Half poloidal width y at 1/e, fitted numerically from simulated 2D 

(radial,poloidal) maps for G3D. For each simulation y was fitted at 9 radial positions ranging 

from x/L=0.1 to 0.9 and plotted versus max(LHmax, LEmax) from formula (41). Each series of 

points refers to a scan of one simulation parameter indicated in the legend. 


