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Iterative residual-based vector methods to accelerate
fixed point iterations

Isabelle Ramière∗, Thomas Helfer
CEA, DEN, DEC, SESC, F-13108 Saint-Paul Lez Durance, France

Abstract

Fixed point iterations are still the most common approach to dealing with a

variety of numerical problems such as coupled problems (multi-physics, domain

decomposition,...) or nonlinear problems (electronic structure, heat transfer,

nonlinear mechanics, ...). Methods to accelerate fixed point iteration conver-

gence or more generally sequence convergence have been extensively studied

since the 1960’s. For scalar sequences, the most popular and efficient accelera-

tion method remains the ∆2 of Aitken. Various vector acceleration algorithms

are available in the literature, which often aim at being multi-dimensional gen-

eralizations of the ∆2 method.

In this paper, we propose and analyze a generic residual-based formulation for

accelerating vector sequences. The question of the dynamic use of this residual-

based transformation during the fixed point iterations for obtaining a new ac-

celerated fixed point method is then raised. We show that two main classes of

such iterative algorithms can be derived and that this approach is generic in

that various existing acceleration algorithms for vector sequences are thereby

recovered.

In order to illustrate the interest of such algorithms, we apply them in the field of

nonlinear mechanics on a simplified "point-wise" solver used to perform mechan-

ical behaviour unit testings. The proposed test cases clearly demonstrate that
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accelerated fixed point iterations based on the elastic operator (quasi-Newton

method) are very useful when the mechanical behaviour does not provide the

so-called consistent tangent operator. Moreover, such accelerated algorithms

also prove to be competitive with respect to the standard Newton-Raphson

algorithm when available.

Keywords: Fixed point method, Acceleration iterative technique, Vector

sequences, Residual-based method, Nonlinear mechanics, Mechanical

behaviours

1. Introduction

Fixed point iterations (also called Picart iterations) are used in many ap-

plications to deal with nonlinear equations. In fact, it is well-known that any

nonlinear system of equations F (X) = 0 with F : RN → RN is equivalent to a

fixed point problem G(X) = X with G : RN → RN . The fixed point iterations5

method is therefore the simplest way to obtain nonlinear solutions without any

a priori knowledge about F , its derivative in particular is not required. On

the other hand, fixed point iterations converge generally only linearly and very

slowly. This is the reason why acceleration algorithms are required. As the fixed

point iterations method generates a sequence, classical sequence acceleration10

methods can be applied. Many of such acceleration or extrapolation algorithms

for vector sequences were proposed in the 20th century [1], especially in the

1960’s (e.g. [2, 3, 4, 5]) and in the 1990’s (e.g. [6, 7, 8, 9]). Most of them are

generalizations of the powerful Aitken’s ∆2 scalar acceleration algorithm [10].

Applications of such vector acceleration techniques for the fixed point iterations15

method are various and diverse. For example, fixed point acceleration methods

have recently enjoyed a renewed interest in the development of advanced nu-

merical methods (domain decomposition [11, 12], multigrid [13, 14],...) and of

multiphysics coupling in a black-box context (fluid-structure interaction [15, 16],

thermomechanics [17, 18], ...).20
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The aim of this article is to propose a common framework to build new

vector acceleration methods. This formalism is build as a generalization of the

nonlinear hybrid acceleration procedure [9] but can also be viewed as an exten-

sion of both the reduced rank extrapolation method [19] and the Anderson’s25

method [4]. By the way, some of the most popular and efficient extrapolation

methods can be recovered using this generic approach.

As no function derivative is involved in the proposed approach, this unified for-

malism can be applied on various type of problems as for example black box

solver systems. Moreover, by construction, high-dimensionality problems can30

also be treated within this formalism.

The paper is organized as follows. We first propose in Section 2 a survey

of most popular vector acceleration methods in a common fixed point sequence

framework. In particular, we present them as iterative methods that consist in35

dynamically generating a new accelerated fixed point sequence with the trans-

formed iterates. Then, we introduce in Section 3 an extension of the nonlinear

hybrid acceleration procedure [9] in order to deal with linear combinations of

fixed point iteration residuals. We show in Section 4 that two main classes

of iterative (or dynamic) vector acceleration methods can be derived from this40

generic residual-based formulation. Various already known acceleration meth-

ods are retrieved within these two classes. Finally, Section 5 is dedicated to

some performance comparisons between acceleration methods stem from these

two formulations. The application concerns a simplified "point-wise" solver, de-

veloped within the PLEIADES platform [20] as part of the MFront software [21],45

which is mainly used to perform mechanical behaviour unit testings. This solver

allows us, among other things, to compare our accelerated algorithms to the

standard Newton-Raphson algorithm used by default in most mechanical finite

element solvers.
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2. Survey of iterative vector acceleration methods50

The aim of this section is to briefly describe most of the existing vector

sequence acceleration methods. As it is pointed out in the literature (see for

example [4, 6]), static sequence transformations from an existing sequence are

less efficient than dynamic or cycling sequence transformations that consist in

considering the accelerated iterate as the new iterate of the sequence. There-55

fore, we shall only present here the iterative version of the vector acceleration

methods.

Moreover, for the sake of clarity, we shall focus on fixed point iteration sequences

as they are the most common sequences dealt with in an engineering context

(even the Newton’s method generates a fixed point sequence). Within this fixed60

point iteration framework, expressions of existing vector sequence acceleration

approaches can be more easily compared.

As a universal acceleration method for all types of sequences cannot exist (see

for example [6]), in this paper we shall only consider transformations that have

been designed to accelerate first order (or linearly converging) sequences. Only65

few authors proposed some approaches to accelerate sequences of order greater

than one, the interested reader is referred to [22, 9].

2.1. Scalar sequences

Let us begin this survey be the scalar case, which is the basis of most of the

vector acceleration methods. Considering a scalar nonlinear fixed point equation70

x = g(x), x ∈ R, g : R→ R, (1)

the most popular and powerful acceleration method of the basic fixed point

substitution iteration

xn+1 = g(xn) (2)

remains the ∆2 of Aitken [10] and its recursive application by the Steffensen

algorithm which lead to a second-order method (e.g. [23, 24]):75

xn+1 = xn −
(g(xn)− xn)2

g(g(xn))− 2g(xn) + xn
= xn −

(∆xn)2

∆2xn
(3)
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with ∆ the difference operator, ∆xn = g(xn)− xn, ∆g(xn) = g(g(xn))− g(xn)

and ∆2xn = ∆g(xn)−∆xn.

Various equivalent formulations exist, including for example

xn+1 = g(xn)− ∆xn∆g(xn)

∆2xn
(4)

or

xn+1 = g(g(xn))− (∆g(xn))2

∆2xn
. (5)

Whatever the expression, each Steffensen iteration requires two new basic fixed80

point iterations (or function evaluations) to be applied. The secant method

(see [23] for example) can also be viewed as a ∆2 transformation requiring only

one new fixed point iteration

xn+1 = xn −
(xn − xn−1)(g(xn)− xn)

(g(xn)− xn)− (g(xn−1)− xn−1)
= xn −

(xn − xn−1)∆xn
∆xn −∆xn−1

(6)

or equivalently

xn+1 = g(xn)− (g(xn)− g(xn−1))∆xn
∆xn −∆xn−1

. (7)

The secant method reduces to the Steffensen method by applying the accelera-85

tion only at every other step of the basic fixed point iteration.

The secant method converges with the order 1+
√

5
2 (see for example [23]), but as

it requires only one new basic fixed point iterate (or one new function evaluation

per iteration), its efficiency index defined as r1/s with r the order of the method

and s the number of function evaluations per iteration required by the method,90

is little better ( 1+
√

5
2 ' 1.618) than the Steffensen’s one (

√
2 ' 1.414).

Another famous acceleration algorithm is the relaxation method (see [25] for

example), sometimes called mixing algorithm [26, 27]:

xn+1 = ωg(xn) + (1− ω)xn. (8)

The determination of the optimal relaxation parameter ωopt is the main draw-

back of this algorithm because it depends on the derivative of g which is a95

priori unknown. Hence empiric static values are often set in practice (most
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often ω ≡ 0.5, see for example [28]). Using the equivalent formulation

xn+1 = xn + ω(g(xn)− xn) (9)

it is obvious that the secant and the Steffensen methods are particular relax-

ation methods with a varying relaxation parameter. Hence, in the literature the

secant method is also called Aitken relaxation or dynamic relaxation [4, 15, 17].100

Many other scalar acceleration techniques, also called extrapolation techniques,

have been proposed since Aitken, but these methods often aim to be generaliza-

tions of the Aitken’s process, see [6] for a detailed description of some of these

algorithms. In particular, let us mention the ε-algorithm [29]

εn−1 = 0, εn0 = xn, εn+1
0 = g(xn)

εnk+1 = εn+1
k−1 +

1

εn+1
k − εnk

,
(10)

whose ε2 version, i.e. xn+1 = εn2 , is equivalent to the Steffensen method. An105

interesting generalization of several acceleration methods is proposed by the

E-algorithm [6].

2.2. Vector sequences

Practical problems deal most often with many unknowns and systems of

nonlinear equations. So let us now consider the vector fixed point equation110

X = G(X), X ∈ RN , G : RN → RN , N ∈ N?, N > 1, (11)

leading to the basic vector fixed point sequence

Xn+1 = G(Xn). (12)

Vector sequence acceleration methods have been extensively studied in the liter-

ature [4, 5, 3, 30, 7, 8, 9, 27]. Most of them are extensions of scalar acceleration

methods with the following definition of the inverse of a real vector

X−1 =
X

‖X‖2
. (13)
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The norm involved in the preceding definition is often chosen to be the Euclidean115

norm even if other choices can be made, see [4] for example. More generally,

the inverse of a vector can be defined via the inner product (denoted here by · )

with another vector

X−1 =
Y

Y ·X
, ∀Y ∈ RN . (14)

As the ∆2-Steffensen method can be expressed in different equivalent manners

in the scalar case (see for example Eqs (3)- (5)), many vector formulations based120

on the definition (13) and (14) are available. For example the method proposed

by Irons and Tuck in [5] is obtained from Eq. (5) with the definition (13) of the

inverse of a vector:

Xn+1 = G(G(Xn))− ∆G(Xn) ·∆2Xn

‖∆2Xn‖2
∆G(Xn) (15)

where as previously ∆Xn = G(Xn)−Xn, ∆G(Xn) = G(G(Xn))−G(Xn) and

∆2Xn = ∆G(Xn)−∆Xn.125

Sometimes in the literature, the following expression is also attributed to Irons

and Tuck (see for example [6, 8]) but it seems in fact to be the approach of

Lemaréchal [31]

Xn+1 = Xn −
∆Xn ·∆2Xn

‖∆2Xn‖2
∆Xn. (16)

This method can be directly obtained from the combination of definition (13)

and the Steffensen’s scalar equation (3).130

The following methods are based on the second definition of the inverse of a

vector (14). Starting from the scalar equation (4), the approach of Graves-

Morris [7] gives

Xn+1 = G(Xn)− ‖∆Xn‖2

∆Xn ·∆2Xn
∆G(Xn), (17)

while the first step of the vector A-algorithm of Sedogbo [8] can be expressed

as135

Xn+1 = G(Xn)− ‖∆G(Xn)‖2

∆G(Xn) ·∆2Xn
∆Xn. (18)

Starting from the scalar Equation (5), the method of Jennings [32] writes

Xn+1 = G(G(Xn))− ∆Xn ·∆G(Xn)

∆Xn ·∆2Xn
∆G(Xn), (19)
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as Zienkiewicz and Lohner [33] proposed the following vector acceleration method

Xn+1 = G(G(Xn))− ‖∆G(Xn)‖2

∆G(Xn) ·∆2Xn
∆G(Xn). (20)

The vector ε-algorithm of Wynn [3] is also a direct extension of the scalar ε-

algorithm (see [29] and Eq. (10)) with the definition (13) of the inverse of a140

vector. Hence the vector ε2-algorithm writes

Xn+1 = G(Xn) +
∆G(Xn)‖∆Xn‖2 −∆Xn‖∆G(Xn)‖2

‖∆2Xn‖2
. (21)

In his article, Macleod [34] compared 9 multi-dimensional ∆2 methods that

reduce in one dimension to the Steffensen method. Some of them are listed

previously but others were also introduced. In particular, the application of

the scalar Steffensen algorithm on each component of the vector was tested.145

However the results presented in [34], in accordance with [6], show that vector

extrapolation algorithms (based on projection approaches) are more interesting

than the scalar ones on each component. In these test cases, the Irons and

Tuck [5] approach was the more efficient.

Many variants of the multi-dimensional secant method [4, 15, 27] can be formally150

obtained in the same manner from the scalar equations (6) and (7).

Other vector extensions of scalar extrapolation methods are detailed in [6, 9].

These methods can be viewed as multi-step generalizations of iterative vector

∆2 approaches, in the sense that they require more basic fixed point iterations.

The nonlinear hybrid approach proposed in [9] introduces the vector ∆k method:155

Xn+1 = Xn −
∆Xn ·∆k+1Xn

‖∆k+1Xn‖2
∆kXn (22)

where



∆kXn = ∆k−1G(Xn)−∆k−1(Xn)

∆kGl(Xn) = ∆k−1Gl+1(Xn)−∆k−1Gl(Xn)

∆0 = Id

Gl(Xn) = G(G(...G︸ ︷︷ ︸
l times

(Xn)))

G0 = Id

.

For k = 1, the Lemaréchal’s method is recovered, see Eq. (16) . This general-
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ization for k > 1 seems suitable to deal with bifurcation problems (see [35] for

example).160

Another interesting generalization of multi-dimensional secant approaches has

been originally proposed by Anderson [4]. This method has been directly built

for vector sequences and is based, like the nonlinear hybrid approach [9], on

a minimization process. This approach is a one-step method as it is applied

every fixed point iteration. As it has been pointed out in some recent arti-165

cles [26, 27, 36], this method seems to be efficient in many situations. In the

following sections, we shall see that the reduced rank extrapolation method of

Eddy [19] can be viewed as a multi-step Anderson’s method.

3. A generic residual-based acceleration approach170

Let (Xn)n be a sequence of vectors of RN converging to an unknown limit

X, M an integer such that M ≤ N and (Zi
n)n, i = 1, ..,M arbitrary vec-

tor sequences of RN converging to zero. We define the transformation Y that

transforms the sequence (Xn)n into a new sequence (Yn)n

Yn = Xn −
M∑
i=1

λinZ
i
n (23)

with λin, i = 1, ..,M , some scalars.175

When M = 1, expression (23) reduces to the nonlinear hybrid procedure of

Brezinski and Chehab [9]. Obviously if the λin are constant parameters inde-

pendent of n : λin ≡ λi, ∀n, the sequence (Yn)n converges to X and hence the

transformation Y is regular. As in practice the λin vary with n, the regularity

of Y can not be ensured for all convergent sequences. This drawback is quite180

widespread in the existing extrapolation methods, it is the case for example of

the Aitken’s ∆2 process (e.g. [6]).

However, under the usual assumption (see for example [10, 6, 37]) that consists

in setting the same coefficients in the expressions of Yn and Yn+1, an estimation

of X can be obtained by minimizing δYn = Yn+1 − Yn with respect to these185
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coefficients. In our case, we can write

Yn+1 = Xn+1 −
M∑
i=1

λinZ
i
n+1, (24)

and hence

δYn = δXn −
M∑
i=1

λinδZ
i
n (25)

where the forward difference operator δ acts on the lower index: δSn = Sn+1 −

Sn.

By construction, the optimal parameters λin, i = 1, ..,M lead to190

‖δYn‖ ≤ ‖δXn‖ (26)

for the chosen norm. The vector sequence (Yn)n therefore converges faster than

(Xn)n.

For the Euclidean norm, an expression of the λin can be obtained using the

normal equation solution1. Defining the following N ×M matrices

Zn = (Z1
n . . . Z

M
n ), δZn = (δZ1

n . . . δZ
M
n )

the least-square minimization gives

λn =


λ1
n

...

λMn

 = (δZT
n δZn)−1δZT

n δXn. (27)

In practice, if a vector δZi
n is collinear to another vector δZj

n, j 6= i, the matrix195

(δZT
n δZn) becomes singular and then its inversion is impossible. In this case,

the corresponding λin is set to zero and the system is reduced.

1In practice, other minimization strategies are often used such as the Gram-Schmidt or-

thogonalization algorithm or the QR decomposition. This latter method seems in this case to

be the most efficient [16, 36].
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The expression (27) of λn is then used to define two sequence transformations

which will lead to extrapolation methods (see Section 4):200

Yn = Xn − Zn(δZT
n δZn)−1δZT

n δXn (28)

or

Yn+1 = Xn+1 − Zn+1(δZT
n δZn)−1δZT

n δXn. (29)

The generic formulation (28) in the end is very close to the polynomial extrap-

olation method formalism as described in [37]. The reduced rank extrapolation

method [19] is recovered for Zi
n = δXn+i−1 which reduces for M = 1 to the

Lemaréchal’s method [31] (see Eq. (16)).205

The choice Zi
n = δXn−i enables us to deal with a linear combination of the

previous sequences residuals. In this case, expression (28) leads for M = 1 to a

vector extension of the Steffensen’s method of Eq. (4) whereas a generalization

of the Irons and Tuck method (see [5] or Eq. (15)) is obtained with expres-

sion (29). Moreover, the basic idea of Anderson [4] is also recovered with this210

approach. For this choice, the kernel of the transformation Y is the same as the

Shanks [2] transformation:

k∑
i=0

ai(Xn−i −X) = 0 (30)

with
k∑

i=0

ai 6= 0 and a0.ak 6= 0.

Many other residuals Zi
n could be chosen, for example Zi

n = δkXn−i, k > 1 as

proposed in [9] for the ∆k method (see Eq. (22)).215

4. Two classes of iterative residual-based acceleration methods

This section is devoted to the application of the residual-based transforma-

tions described in Section 3 to accelerate the fixed point iteration method (see

Eq. (12)). As mentioned in the introduction of Section 2, we are only inter-220

ested in iterative acceleration methods. Moreover, we want to obtain one-step
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iterative methods (i.e. only one new fixed point evaluation between each new

accelerate iterate) as opposed to multi-step iterative methods such as the Irons

and Tuck method [5] (see Eq. (15)), the vector ε-algorithm [3] (see Eq. (21)) or

the polynomial extrapolation algorithms performed in [37]. Considering that the225

iterative acceleration process applied to the fixed point iteration generates two

sequences (Xn)n and (G(Xn))n (see [4] for example), two main formalisms of it-

erative methods are available. They differ in the way the two coupled sequences

are taken into account in the definition of Yn and Yn+1 in Equation (23)-(24).

To illustrate our point, for each formalism we shall decline the iterative method230

obtained for the most common choice Zi
n = δXn−i in the transformation (29)

of Section 3. Methods derived from other choices of Zi
n can be easily deduced

from this example.

As it is not guaranteed that the transformations Y defined in Section 3 are

regular with respect to the fixed point limit X, the convergence criterion must235

still focus on the standard fixed point iteration residual ∆Xn = G(Xn)−Xn to

obtain the desired solution.

4.1. First class : crossed sequences method

The first formalism focuses on the basic fixed point sequence (G(Xn))n

Yn = G(Xn−1)−
M∑
i=1

λinZ
i
n (31)

Yn+1 = G(Xn)−
M∑
i=1

λinZ
i
n+1, (32)

and takes into account the accelerated sequence (Xn)n in the definition of the240

vanishing sequences (Zi
n)n, i = 1, ..M . Indeed, Zi

n depends in this case on the

fixed point iteration residual r(Xn)

∆Xn = G(Xn)−Xn. (33)

For example, the case Zi
n = δXn−i in the generic approach of Section 3 becomes

for the iterative crossed sequences method Zi
n = ∆Xn−i as Zi

n = δ2Xn−i−1 be-

comes Zi
n = ∆(Xn−i)−∆(Xn−i−1) = G(Xn−i)−Xn−i−G(Xn−i−1) +Xn−i−1.245
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Example For the case Zi
n = ∆Xn−i, the crossed sequences method gives

δYn = (G(Xn)−G(Xn−1))−
M∑
i=1

λin(∆Xn−i+1 −∆Xn−i). (34)

Using the notation

Rn = (∆Xn−1 · · · · · ·∆Xn−M )

δRn = ((∆Xn −∆Xn−1) · · · · · · (∆Xn+1−M −∆Xn−M )),

we obtain

Xn+1 = Yn+1

= G(Xn)−Rn+1(δRT
n δRn)−1δRT

n (G(Xn)−G(Xn−1)).
(35)

For M = 1, the standard vector secant acceleration or dynamic relaxation

method is recovered (e.g. [4, 15, 17]). This method corresponds formally to250

the vector extension of the scalar secant method (7) with the definition (13) of

the inverse of the vector:

Xn+1 = G(Xn)− (G(Xn)−G(Xn−1)) · (∆Xn −∆Xn−1)

‖∆Xn −∆Xn−1‖2
∆Xn. (36)

In a manner similar to the scalar case, if this acceleration method is applied al-

ternately with a basic fixed point iteration step, the Irons and Tuck method (15)

is recovered. 4255

4.2. Second class: alternate sequences method

In this case, Yn is concerned by the sequence (Xn)n as Yn+1 is concerned by

the sequence (G(Xn))n:

Yn = Xn −
M∑
i=1

λinZ
i
n (37)

Yn+1 = G(Xn)−
M∑
i=1

λinZ
i
n+1, (38)

where Zi
n is a function of Xn−i, i = 0, ..M whereas Zi

n+1 depends only on

G(Xn−i), i = 0, ..M .260
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Wemay have for example

 Zi
n = δXn−i = Xn−i+1 −Xn−i

Zi
n+1 = δG(Xn−i) = G(Xn−i+1)−G(Xn−i)

or

 Zi
n = δ2Xn−i−1 = Xn−i+1 − 2Xn−i +Xn−i−1

Zi
n+1 = δ2G(Xn−i−1) = G(Xn−i+1)− 2G(Xn−i) +G(Xn−i−1)

.

For any choice of Zi
n = δkXn−i−k+1, k > 1, the expression of δYn = Yn+1 − Yn

is then a linear combination of fixed point residuals ∆Xn = G(Xn) −Xn, the

coefficients of which are identical to the sequence coefficients in the accelerated265

sequences equations (37) or (38). In this case, if the acceleration process is

chosen to be a two-step method (the acceleration is then applied every other

step of the basic fixed point iteration), the equation δYn to minimize becomes

the same in both formalisms. However, except for the case k = 1 and M = 1,

the expression of Xn+1 remains different between each formalism, and so the270

obtained acceleration methods differ.

Remark When a nonlinear equation F (X) = 0 is under consideration, the

residual F (Xn) is often used instead of G(Xn)−Xn, see for example [26, 27, 38].

275

Example For the case Zi
n = δXn−i / Zi

n+1 = δG(Xn−i), the alternate se-

quences method reads

δYn = (G(Xn)−Xn)−
M∑
i=1

λinδ(G(Xn−i)−Xn−i)

= ∆Xn −
M∑
i=1

λinδ∆Xn−i

= ∆Xn −
M∑
i=1

λin(∆Xn−i+1 −∆Xn−i). (39)

With the same definition of δRn as in the crossed sequence method and intro-

ducing

δGn = (δG(Xn−i) · · · δG(Xn−M )),

14



the accelerate iterate writes:

Xn+1 = Yn+1

= G(Xn)− δGn(δRT
n δRn)−1δRT

n∆Xn.
(40)

This extrapolation method was first introduced by Anderson in the 1960’s [4]

and has recently attracted more attention [26, 27, 36] 2. Moreover, this approach280

is similar to the so-called “interface quasi-Newton method” [16] or “reduced order

models” method used in [39].

For M = 1, this method reduces to another vector secant method

Xn+1 = G(Xn)− (∆Xn −∆Xn−1) ·∆Xn

‖∆Xn −∆Xn−1‖2
(G(Xn)−G(Xn−1)). (41)

Both vector secant methods of Eq. (36) and Eq. (41) can be obtained directly

from Eq. (7) with the definition of the inverse of a vector (13) but they differ285

from the numerator’s term involved in the inner product. Moreover, these two

secant methods reduce to the Irons and Tuck method if the acceleration method

is applied at every other step. 4

5. Application

5.1. MTest open-source tool290

To illustrate the performances of some of the residual-based acceleration

algorithms presented in this paper (see Section 4), we introduced them in an

open-source tool named MTest which is developed in the PLEIADES plate-

form [20] as part of the MFront project [21]. MFront is a code generator that

enables engineers and researchers in the field of structural mechanics to imple-295

ment various types of mechanical behaviour easily, reliably and efficiently.

MTest has been designed to test mechanical behaviours on a single material

point by imposing constraints on each component of the strains ε or the stresses

2In the original formulation, Anderson proposed to define Xn+1 as a relaxation between

Yn+1 and Yn. However, in practice the relaxation parameter was set to 1 and hence Xn+1 ≡

Yn+1.
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σ. Since ε and σ are rank-2 symmetric tensors, they will be described by two

vectors E and Σ. In 3D the number of components of E and Σ is equal to300

N = 6.

For the sake of clarity, in the sequel we shall only describe the case in which

all the stress components are imposed. Imposing strain components is accom-

plished by introducing Lagrange multipliers which increase the problem size.

Equilibrium equation. At each time step between t and t+∆ t, a strain increment305

X = E|t+∆ t − E|t which respects the mechanical equilibrium is sought. This

strain increment thus satisfies the following nonlinear equation :

R (X) = Σ|t+∆ t (X,∆ t, V |t)− Σ|imp
t+∆ t = 0, (42)

where Σ|t+∆ t is a generally nonlinear function computing the stresses as a result

of the mechanical behaviour integration, V is a set of internal state variables

known at the beginning of the time step and whose value at the end of the time310

step is also a result of the mechanical behaviour integration, and Σ|imp
t+∆ t are

the imposed stress values. In this paper, the mechanical behaviour integration

will be considered as a black box.

On the use of the Newton-Raphson algorithm. Problem (42) can be solved by

the Newton-Raphson algorithm if the behaviour provides the so-called consis-315

tent tangent operator
∂ Σ|t+∆ t

∂X
[40]. This strategy is considered to be the

default in most implicit finite element solvers dedicated to structural mechan-

ics [41, 42, 43, 44]. The Cast3M finite element solver is a noticeable exception

and its default algorithm paved the way to the method presented in this sec-

tion [45, 38].320

Providing consistent tangent operator is only feasible analytically in certain

cases when the behaviour integration is done using an implicit scheme [46].

Even in this case, its computation may require a tremendous amount of work.

It is also worth noting that quadratic convergence of the Newton-Raphson al-

gorithm strongly depends on the quality of this operator and can easily be lost325

due to implementation mistakes or, even worse, to a poor convergence criteria
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for the behaviour integration. This point is specifically outlined in the Abaqus

user guide [41].

In structural mechanics, the use of the consistent tangent operator may have

other drawbacks: this matrix may be unsymmetric and not definite positive330

(due to softening for example), which forbids the use of standard efficient linear

solvers.

Alternative algorithm. It is therefore worth considering algorithms not relying

on the consistent tangent operator to solve Equation (42). One interesting

characteristic of mechanical behaviour is that it usually introduces an elastic335

operator K which allows us to rewrite Equation (42) as a fixed point problem

using a quasi-Newton method:

X = G (X) with G (X) = X −K−1R (X) . (43)

In practice, for the great majority of mechanical behaviours, the elastic operator

K is "stiff enough" to guarantee that the spectral radius of the Jacobian matrix

of G is less than 1 and hence that the fixed point iterations method will converge.340

Solving Equation (43) with a standard fixed point iterations method thus has

the following advantages:

- K is easy to compute.

- K is symmetrical and definite positive.

- K can be factorized only once through the whole computation.345

In practice, if finite strains are considered or if the elastic properties evolve

with external parameters, such as temperature, it may be worth updating this

matrix from time to time.

However, as mentioned in the introduction of this paper, such a fixed point

iterations method leads to a very slow linear convergence. Therefore, use of350

acceleration procedures is mandatory to obtain an efficient method.

Stopping criterion and accuracy. Whatever the algorithm used, iterations are

stopped once the absolute maximum norm of the residual ∆Xn = G(Xn)−Xn
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is lower than a prescribed accuracy ε. This stopping criterion guarantees that

the obtained solution is the fixed point equation solution.355

MTest can be used to simulate simple mechanical tests. In this case, ε is usually

chosen equal to 10−6 or 10−8 to obtain satisfactory results. This corresponds

to a relative precision lower than 10−3 or 10−5 as the strains typically have a

magnitude ranging between 10−3 and 10−1.

A practical way of checking that the behaviour integration gives repeatable re-360

sults whatever compilers, compiler optimisation flags and/or operating systems

is to use a ε value smaller than the criterion values used within the behaviour

integration. Typically, a stringent value of 10−12, corresponding to a relative

precision of about 10−9, is used for ε (precision by default) while the behaviour

integration is performed with a criterion of 10−8.365

5.2. Test cases

In order to illustrate the performances of the various algorithms described

in this paper, we have chosen two test cases, called Chaboche and Polycrystals,

respectively and which shall now be briefly described.

5.2.1. Chaboche test case370

This test case describes an isotropic standard plastic behaviour with two

kinematic hardening rules derived from the works of J.L. Chaboche [47, 48].

Such a behaviour is commonly used to describe metal plasticity in engineering.

A whole description of the behaviour can be found in the Code-Aster documen-

tation [49].375

The behaviour is time-independent, so the time scale is arbitrary. The test

case imposes two components of the stresses: σxx and σxy which monotonically

and linearly increase from 0 at the beginning of the test to 143.5 MPa at the

end of the test. The mechanical equilibrium imposes that the other components

of the stresses are null. This loading is described in 13 time steps. The results380

of the simulation are reported in Figure 1.
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Figure 1: Chaboche test case

The results exhibit two linear stages. At the very beginning, the behaviour

is elastic. The initial slope has a magnitude close to the Young modulus, which

is equal to 145.2 GPa (quasi vertical line on Figure 1). At the end of the test,

the stress is also almost a linear function of the strain: the effective slope is385

around 300 smaller than the initial one. This ratio gives an estimation of how

close the elastic operator is from the consistent tangent operator. Performances

of the standard fixed point iterations for solving the quasi-Newton problem (43)

are expected to decrease as this ratio increases.

Furthermore, the behaviour is integrated in this case with an implicit scheme390

that supplies the consistent tangent operator: we can thus compare the accel-

erated fixed point algorithms proposed in this paper to the standard Newton-

Raphson algorithm.

5.2.2. Polycrystals test case

The behaviour used in this second test case is the result of the Berveiller-395

Zaoui homogenization scheme to a FCC-polycristal made of 30 grains [50]. The

resulting behaviour is orthotropic. FCC crystals have 12 sliding systems, the
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plasticity in each grain is described by flow rules, no by sliding systems, derived

from dislocation dynamics (see the Code-Aster documentation for details [51]).

This behaviour introduces 1272 state variables, which is very large and unusual.400

The material is submitted to a uniaxial tensile test: the axial strain εzz mono-

tonically and linearly increases from 0 at the beginning of the test to 5 % at the

end of the test. The loading is described in 15 time steps. All stress components

are null, except the axial stress σzz. The result of this test case is reported in

Figure 2.405
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Figure 2: Polycrystals_dd_cfc test case

As for the Chaboche test case, Figure 2 shows two linear stages. The slope

ratio between those stages in this case is close to 70. The standard fixed point

iterations method is hence expected to converge faster than in the Chaboche

test case.410

Implicit schemes are not considered for the integration of this behaviour for two

main reasons:

1. the Jacobian matrix of the implicit system would be fairly complex to
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compute;

2. such an implicit scheme would require to solving a 1272 × 1272 dense415

system at each Newton-Raphson iteration.

The integration is thus performed using a standard Runge-Kutta algorithm. As

a consequence, the consistent tangent operator is not available, so the equilib-

rium Equation (42) cannot be solved using a Newton-Raphson algorithm.

The solver must then rely on standard fixed point iterations based on Equa-420

tion (43). Acceleration methods for fixed point iterations are thus extremely

appealing for this test case.

5.3. Results

5.3.1. Acceleration methods compared

In this section we shall compare different residual-based acceleration algo-425

rithms generated thanks to the two formalisms detailed in Section 4. As the

dimension of the involved problem is N = 6 (see Section 5.1), we will compare

acceleration methods involving only two or three iterations.

Concerning the methods involving the last two iterations, we study the perfor-

mances of the residual methods with M = 1 and Z1
n = δXn−1:430

• the crossed secant method or crossed 1-δ method (often called Aitken

relaxation or dynamic relaxation in the literature [4, 15])

Xn+1 = G(Xn)− (G(Xn)−G(Xn−1)) · (∆Xn −∆Xn−1)

‖∆Xn −∆Xn−1‖2
∆Xn; (44)

• the alternate secant method or alternate 1-δ method (also called Anderson

extrapolation method with M = 1 [4])

Xn+1 = G(Xn)− (∆Xn −∆Xn−1) ·∆Xn

‖∆Xn −∆Xn−1‖2
(G(Xn)−G(Xn−1)); (45)

• the well-known Irons and Tuck method [5] in which both preceding meth-435

ods reduce if applied alternately with a standard fixed point iteration

Xn = G(Xn−1)

Xn+1 = G(Xn)− ∆Xn ·∆2Xn−1

‖∆2Xn−1‖2
∆Xn.

(46)
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The residual methods with M = 1 and Z1
n = δ2Xn−i−1 as well as the residual

methods with M = 2 and Zi
n = δXn−i, i = 1, 2 are based on the last three

iterations and will also be compared:

• the crossed δ2 method440

Xn+1 = G(Xn)− (G(Xn)−G(Xn−1)) · (∆Xn − 2∆Xn−1 + ∆Xn−2)

‖∆Xn − 2∆Xn−1 + ∆Xn−2‖2
(∆Xn−∆Xn−1);

(47)

• the alternate δ2 method

Xn+1 = G(Xn)− (∆Xn − 2∆Xn−1 + ∆Xn−2) ·∆Xn

‖∆Xn − 2∆Xn−1 + ∆Xn−2‖2
(G(Xn)−2G(Xn−1)+G(Xn−2));

(48)

• the crossed 2-δ method

Xn+1 = G(Xn)− λ1
n∆Xn − λ2

n∆Xn−1,

with λ1
n, λ

2
n minimizing

δYn = (G(Xn)−G(Xn−1))− λ1
n(∆Xn −∆Xn−1)− λ2

n(∆Xn−1 −∆Xn−2);

(49)

• the alternate 2-δ method (equivalent to the Anderson extrapolation method

with M = 2 [4])

Xn+1 = G(Xn)− λ1
n(G(Xn)−G(Xn−1))− λ2

n(G(Xn−1)−G(Xn−2)),

with λ1
n, λ

2
n minimizing

δYn = ∆Xn − λ1
n(∆Xn −∆Xn−1)− λ2

n(∆Xn−1 −∆Xn−2).

(50)

It can be easily shown that the alternate 2-δ method remains the same if we

consider G(Xn)−G(Xn−2) instead of G(Xn−1)−G(Xn−2) in the expression of

Xn+1. The new coefficients λ̃1
n and λ̃2

n are hence linear combinations of λ1
n and

λ2
n :

λ̃1
n = λ1

n − λ2
n

λ̃2
n = λ2

n.

22



However, this is no longer true for the crossed 2-δ method. So we can also445

consider the following variant of the crossed 2-δ method

• crossed 2-δ bis method

Xn+1 = G(Xn)− λ1
n(G(Xn)−Xn)− λ2

n(G(Xn)−Xn−1),

with λ1
n, λ

2
n minimizing

δYn = (G(Xn)−G(Xn−1))− λ1
n(∆Xn −∆Xn−1)− λ2

n(G(Xn)−G(Xn−1)−Xn−1 +Xn−2).

(51)

In the following sections, we shall compare the acceleration performances of

each residual methods in terms of number of iterations required for the whole

loading (total number of iterations) or at each time step to reach the convergence450

criterion. We designate by number of iterations the number of evaluations of

the fixed point function G. As the behaviour integration (used to evaluate R,

see Section 5.1) is the most costly part of the computation per iteration, this

measure is relevant. Others situations are discussed in Section 5.3.4.

5.3.2. Two iteration residual methods comparison455

Chaboche test case. For the Chaboche test case, Table 1 presents the total

number of iterations (sum of all the time steps) required by the two iteration

residual methods introduced in Section 5.3.1 as well as by the standard fixed

point iterations method. As the consistent tangent operator is available for this

test case, we also report in the table the total number of iterations required by460

the standard second-order Newton method. Moreover, the numerical order of

convergence obtained for each method is also given.

The first conclusion to be drawn from Table 1 is that all the listed acceleration

methods converge to the fixed point solution in this case. We can also note

the very poor convergence of the fixed point iterations method. The residual-465

based methods greatly accelerate the fixed point convergence in the sense that

the number of iterations drastically decreases between the standard fixed point

iteration method and the residual-based acceleration methods. For this test
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crossed secant alternate secant Irons and Tuck Newton fixed point

ε=10−6 84 70 93 62 9565

ε=10−8 123 85 200 64 19725

ε=10−12 281 102 365 78 39363

Cvg order 1.6 1.6 - 2 1

Table 1: Total number of iterations and numerical convergence order for the Chaboche test

case - Two iteration residual methods

case, the alternate secant method seems the most powerful two iteration resid-

ual method to accelerate the fixed point convergence whatever the precision470

required. Moreover, the numbers of iterations involved by the alternate secant

method are quite close to those of the Newton’s method, which confirms the

efficiency and the performance of this method. Numerically, the convergence

order of both secant methods is around 1.6 which is in good agreement with the

theoretical order of convergence of the scalar secant approach (see Section 2.1).475

However the rate of convergence in this case is in favour of the alternate secant

method. For the Irons and Tuck approach, no numerical order of convergence

appears clearly during the simulations.

Figure 3 presents a detailed view of the number of iterations required per ac-

celeration method and per time step for a desired precision of ε = 10−8.480

This figure confirms that whatever the time step and hence the loading, the al-

ternate secant method is the more efficient two iteration residual-based method.

The behaviour of this acceleration method is furthermore very stable and sim-

ilar to the Newton’s one. From this figure, we can also remark that the Irons485

and Tuck method has some convergence difficulties in the final linear stage. If

we take a deep look at time step #10 for example, we can see in Figure 4 that

when the Irons and Tuck method is applied, the residual decreases slowly after

a precision of 10−7 (but still faster than for the fixed point iteration method).

This figure also shows the quite chaotic residual convergence of the crossed se-490
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Figure 3: Number of iterations per time step - ε = 10−8 - Chaboche test case - Two iteration

residual methods

cant method and the Newton’s method. For the Newton’s method, we get back

to the situation where the initial solution is far from the converged solution and

hence the convergence of the method isn’t monotone. In this case, the Newton’s

method may diverge and is then often combined with line-search methods for

example.495

Polycrystals test case. Table 2 recapitulates the total number of iterations re-

quired by every two iteration residual-based method for the Polycrystals test

case. The total number of iterations of the standard fixed point iteration method500

is also reported. This test case is not suitable to the evaluation of the numerical

order of convergence: in fact no method presents a regular order of convergence,

for the three approaches, it ranges from 0.5 to 3 according to the time step.

As for the Chaboche test case, all the listed acceleration methods converge to505
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Figure 4: Residuals for time step #10 - ε = 10−8 - Chaboche test case - Two iteration residual

methods

crossed secant alternate secant Irons and Tuck fixed point

ε=10−6 173 142 145 376

ε=10−8 265 313 267 887

ε=10−12 479 799 607 5302

Table 2: Total number of iterations for the Polycrystals test case - Two iteration residual

methods

the problem solution whatever the precision required. Moreover, the standard

fixed point iteration method converges definitely faster than in the Chaboche

case. This is in good agreement with the elastic operator properties in this case,

see Section 5.2.2. However, the proposed residual-based acceleration methods

still accelerate the fixed point iterations convergence.510

For this test case, the best acceleration method depends on the required preci-

sion. On the whole, the crossed secant method seems to be the most efficient,

especially for the most stringent precision. The Irons and Tuck approach is

also interesting in this case. On Figure 5, the number of iterations required

26



by each acceleration method is represented versus the time step for ε = 10−8
515

(Figure 5(a)) and ε = 10−12 (Figure 5(b)).
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Figure 5: Number of iterations per time step - Polycrystals test case - Two iteration residual

methods

As expected by the results reported in Table 2, the number of iterations per

time step obtained for ε = 10−8 by the crossed secant method and the Irons

and Tuck method are very close. The number of iterations required by the520

alternate secant method is always greater than or equal to those of these two

methods whatever the time step. An example of residuals decrease is given in

Figure 6(a).

Behaviours are quite similar for ε = 10−12, except on time step #1 where the

fixed point iterations method has great difficulties reaching the convergence:525

3371 iterations are required! This time step corresponds to the slope break

(elastic/plastic) in the material response, see Figure 2. In order to obtain a

truly precise solution in this kind of situation, acceleration methods are nec-

essary. In this case, for a very slow convergence of the fixed point iterations

method, the alternate secant is the most efficient (as for the Chaboche test530

case), as confirmed by Figure 6(b).
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Figure 6: Residuals for the Polycrystals test case - Two iteration residual methods

Conclusion. These two test cases enable us to conclude that both vector secant

methods are efficient in accelerating the fixed point iterations method conver-535

gence. According to the Chaboche test case, they also exhibit the same order of

convergence of 1.6, which is in good agreement with the theoretical scalar secant

convergence order. Finally, the best acceleration factor (or rate of convergence)

between both approaches seems to depend on the problem under consideration.

It appears that the more slowly the fixed point iteration method converges, the540

more the alternate secant method is efficient compared to the crossed secant

method.

5.3.3. Three iteration residual methods comparison

In this section, we present the performances obtained for the two test cases

with the five ’three iteration residual methods’ listed in section 5.3.1, Eqs. (47)-545

(51). For each method and for each time step, at iteration #2, the corresponding

secant method is first applied.

Chaboche test case. The total numbers of iterations required for the Chaboche

test case by the three iteration methods studied in this paper are reported in
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Table 3. The numerical orders of convergence are also reported in this table.550

crossed δ2 alternate δ2 crossed 2-δ alternate 2-δ crossed 2-δ bis

ε=10−6 9509 83 80 70 71

ε=10−8 19098 102 145 85 Not Cvg

ε=10−12 37357 122 687 102 Not Cvg

Cvg order 1 - 1.6 1.6 -

Table 3: Total number of iterations and numerical convergence order for the Chaboche test

case - Three iteration residual methods

The first conclusion to be drawn from this table is that all acceleration ap-

proaches except the crossed 2-δ bis method, converge to the fixed point solu-

tion. However, as shown in Figure 7, the accelerated sequence generated by the

crossed 2-δ bis method converges, but not towards the limit of the fixed point555

iteration method. This example clearly demonstrates the fact that in order

to guarantee that the solution obtained thanks to an acceleration algorithm is

truly the desired solution of the fixed point problem, the convergence criterion

must remain based on the fixed point residual ∆Xn = G(Xn) − Xn whatever

the acceleration algorithm performed.560

The second conclusion is that the crossed δ2 method is not a good acceleration

method, since the number of iterations and the order of convergence obtained

with this method are similar to those of the fixed point iterations method, see

Table 1. The other three iteration methods (alternate δ2 method, crossed 2-δ

and alternate 2-δ) are interesting, the alternate methods being the most ef-565

ficient, especially more powerful than the crossed secant method. No regular

order of convergence had been numerically obtained for the alternate δ2 method.

It varies from 0.5 to 2.5 according to the time step. It is worth noting that the

2-δ methods recover the order of convergence of the corresponding secant (or

1-δ) methods. Moreover, in this case the alternate 2-δ method also has the570

same number of iterations as the alternate secant method (see Table 1) even if
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Figure 7: Residuals of the crossed 2-δ bis method for ε = 10−8 for time step #6 - Chaboche

test case

the different residual vectors involved in the minimization of Eq. (50) are not

always collinear. For this test case, these two latter methods (which reduce to

the Anderson’s method with M = 1 and M = 2) are the most efficient among

all the proposed methods.575

Polycrystals test case. For the polycrystals test case, the five ’three iteration

residual methods’ have also been performed. The total number of iterations

required by each method is reported in Table 4. Again, no numerical order of

convergence can be clearly drawn from this test case.

crossed δ2 alternate δ2 crossed 2-δ alternate 2-δ crossed 2-δ bis

ε=10−6 431 287 326 129 Not Cvg

ε=10−8 940 678 579 204 Not Cvg

ε=10−12 Not Cvg 1691 1613 476 Not Cvg

Table 4: Total number of iterations involved for the Polycrystals test case - Three iteration

residual methods

As for the Chaboche test case, the crossed 2-δ bis method does not converge to580
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the fixed point solution, even if the accelerated sequence converges. For this test

case, the crossed δ2 approach is worse in term of number of iterations than the

standard fixed point iteration method (see Table 2). Moreover for ε = 10−12,

this method has not yet reached the convergence criterion at time step #1 after

10.000 iterations!585

As opposed to the Chaboche test case, here the crossed 2-δ method is on the

whole little more efficient than the alternate δ2 method but less interesting

than the crossed secant method (see Table 2). Here again, it is the alternate

2-δ method that proves to be the most reliable acceleration method involving

the last three iterations. This method is in particular more efficient than the590

crossed secant, which was the most powerful two iterations method for this test

case. These conclusions are clearly summarized by Figure 8.
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Figure 8: Number of iterations per time step for ε = 10−8 - Polycrystals test case - Three

iteration residual methods

Figure 9 confirms that crossed extrapolation methods have a more chaotic con-

vergence behaviour per time step than the alternate methods and the fixed point

iteration method. Moreover, the efficiency of the alternate 2-δ method as well as595
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the convergence improvement brought by taking into account a third iteration

in the alternate formalism also clearly appear in this figure.
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Figure 9: Residuals for the time step #5 and ε = 10−8 - Polycrystals test case -Three iteration

residual methods

Conclusion. For the test cases under consideration here, the acceleration meth-

ods based on the δ2 residual do not seem relevant whatever the formalism.600

Secondly, for both test cases, the alternate 2-δ, already known as the Anderson

extrapolation method withM = 2 in literature, is the best outlined iterative ac-

celeration method. It reduces at least to the most efficient vector secant method

and even may improve it. This last conclusion is in good agreement with the

experiments of Anderson [4] in which the alternate δ methods were successfully605

applied on a special class of nonlinear equations.

5.3.4. Discussion

In this paragraph we shall discuss some points related to the application

of the proposed acceleration methods to problems with a large number N of
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degrees of freedom.610

It is worth noting that the cost specifically attached to the acceleration methods

proposed is generally negligible in comparison to the cost of the evaluation of the

fixed point function. For example, in the case of the crossed secant method (44),

we must compute two scalar products and update a vector. The cost of those

operations grows linearly withN and can be easily parallelized by highly scalable615

implementations (such as BLAS routines, for example). This remark still holds

true in distributed memory.

Moreover, the conclusion that the Newton-Raphson method, when available,

appears as the best nonlinear resolution method is difficult to generalize as N

grows. Indeed, in this case, due to the cost of Jacobian matrix factorization620

(which is negligible in our test cases), the number of iterations is no longer a

reliable indicator of the efficiency of this method.

Concerning the memory space, the conclusions drawn from previous numer-

ical examples encourage us to consider alternate M-δ methods with M being

greater than 2. However it is worth underlining that in this case, M + 1 iterates625

must be stored and this may limit the performances of the approach for high

dimensional problems. In those cases, a balance would have to be found between

acceleration factor and memory space.

6. Conclusions and perspectives

In this paper, we have proposed and analyzed a generic residual-based accel-630

eration approach to construct sequence acceleration processes. This approach

can be viewed as a generalization of various existing vector acceleration meth-

ods (also called extrapolation methods). Then, this generic formalism has been

derived in two main classes of methods to accelerate fixed point iterations con-

vergence: the crossed and the alternate sequences approaches.635

We proposed to test the performances of the obtained acceleration algorithms

on the first order fixed point iterations method obtained from the simulation of

mechanical behaviour unit testings when the consistent tangent coherent oper-
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ator is unknown or difficult to obtain. A set of iterative residual methods based

on the two or three last iterates has been compared. It follows that some of640

the proposed acceleration methods, especially those derived from the alternate

approach, are really efficient methods: they are able for example to compete

against the second-order Newton-Raphson method.

In the future, it would be worthwhile to confirm the performances of such strate-

gies on structural mechanics solvers involving large numbers of degrees of free-645

dom.

Finally, as the proposed iterative residual-based approach is really generic and

independent of the application context, the proposed formalism and the derived

algorithms can be useful for many other applications.

Acknowledgements650

This work was accomplished within the framework of the PLEIADES project,

financially supported by the CEA (Commissariat à l’Énergie Atomique et aux

Énergies Alternatives), EDF (Électricité de France) and AREVA.

The test cases used in Section 5 were implemented by Jean-Michel Proix.

Authors are grateful to P. Verpeaux and the whole Cast3M development team655

for fruitful discussions on their use of acceleration methods in the context of

structural mechanics.

References

[1] C. Brezinski, Convergence acceleration during the 20th century, Journal of

Comput. Appl. Math. 122 (2000) 1–21.660

[2] D. Shanks, Non linear transformations of divergent and slowly convergent

sequences, Journal of Mathematical Physics 34 (1955) 1–42.

[3] P. Wynn, Acceleration techniques for iterated vector and matrix problems,

Math. Comput. 16 (1962) 301–322.

34



[4] D. G. Anderson, Iterative Procedures for Nonlinear Integral Equations,665

Journal of the Association for Computing Machinery 12 (4) (1965) 547–

560.

[5] B. M. Irons, R. Tuck, A version of the Aitken accelerator for computer it-

eration, International journal of numerical methods in engineering 1 (1969)

275–277.670

[6] C. Brezinski, M. Redivo Zaglia, Extrapolation Methods: Theory and Prac-

tice, North Holland, 1991.

[7] P. R. Graves-Morris, Extrapolation method for vector sequences, Numerical

Math. 61 (1992) 475–487.

[8] G. A. Sedogbo, Some convergence acceleration processes for a class of vector675

sequences, Applicationes Mathematicae 24 (3) (1997) 299–306.

[9] C. Brezinski, J.-P. Chehab, Nonlinear hybrid procedures and fixed point

iterations, Numerical Functional Analysis and Optimization 19 (5-6) (1998)

465–487.

[10] A. C. Aitken, On Bernouilli’s numerical solution of algebraic equations,680

Proc. Roy. Soc. Edinburgh 46 (1926) 289–305.

[11] L. D. Marini, A. Quarteroni, A relaxation procedure for domain decompo-

sition methods using finite elements, Numerische Mathematik 55 (5) (1989)

575–598.

[12] M. Garbey, Acceleration of the Schwarz method for elliptic problems, SIAM685

J. Sci. Comput. 26 (2005) 1871–1893.

[13] T. Washio, C. W. Oosterlee, Krylov subspace acceleration for nonlinear

multigrid schemes, Electron. Trans. Numer. Anal. 6 (1997) 271–290.

[14] A. Jemcov, J. P. Maruszewski, H. Jasak, Acceleration and Stabilization of

Algebraic Multigrid Solver Applied to Incompressible Flow Problems, in:690

18th AIAA Computational Fluid Dynamics Conference, 2007.

35



[15] U. Küttler, W. A. Wall, Fixed-point fluid-structure interaction solvers with

dynamic relaxation, Computational Mechanics 43 (2008) 61–72.

[16] J. Degroote, K.-J. Bathe, . Vierendeels, Performance of a new partitioned

procedure versus a monolithic procedure in fluid-structure interaction,695

Computers and Structures 87 (2009) 793–801.

[17] P. Erbts, A. Düster, Accelerated staggered coupling schemes for problems

of thermoelasticity at finite strains, Computers and Mathematics with Ap-

plications 64 (2012) 2408–2430.

[18] B. Michel, C. Nonon, J. Sercombe, F. Michel, V. Marelle, Simulation of700

pellet-cladding interaction with the PLEIADES fuel performance software

environment, Nuclear Technology 182.

[19] R. P. Eddy, Extrapolation to the limit of a vector sequence, P.C.C. Wang

(Ed.), Information Linkage Between Applied Mathematics and Industry,

Academic Press, New York (1979) 387–396.705

[20] D. Plancq, G. Thouvenin, J.-M. Ricaud, C. Struzik, T. Helfer, F. Bentejac,

P. Thévenin, R. Masson, PLEIADES : a unified environment for multi-

dimensional fuel performance modeling, in: International meeting on LWR

fuel performance, Florida, 2004.

[21] CEA, EDF, MFront Web Site, URL http://www.tfel.sourceforge.710

net/, 2014.

[22] B. Jones, Extrapolation for higher orders of convergence, Jounral Inst.

Maths Applics 17 (1976) 27–36.

[23] P. Henrici, Elements of Numerical Analysis, John Wiley, New York, 1964.

[24] Y. Nievergelt, Aitken’s and Steffensen’s accelerations in several variables,715

Numerische Mathematik 59 (1) (1991) 295–310.

[25] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2007.

36

http://www.tfel.sourceforge.net/
http://www.tfel.sourceforge.net/
http://www.tfel.sourceforge.net/


[26] V. Eyert, A Comparative Study on Methods for Convergence Acceleration

of Iterative Vector Sequences, Journal of Computational Physics 124 (1996)

271–285.720

[27] H. Fang, Y. Saad, Two classes of multisecant methods for nonlinear accel-

eration, Numerical Linear Algebra with Applications 16 (2009) 197–221.

[28] P. Erbts, S. Hartmann, A. Düster, A partitioned solution approach for

electro-thermo-mechanical problems, Archive of Applied Mechanics (2014)

1–27.725

[29] P. Wynn, On a device for computing the em(Sn) transformation, MTAC

10 (1956) 91–96.

[30] D. A. Smith, W. F. . Ford, A. Sidi, Extrapolation methods for vector

sequences, SIAM Rev 29 (1987) 199–233.

[31] C. Lemaréchal, Une méthode de résolution de certains systèmes non730

linéaires bien posés, C. R. Académie des Sciences de Paris (1971) 605–

607(in French).

[32] A. Jennings, Accelerating the convergence of matrix iterative processes,

Journal of Inst. Maths Applics 8 (1971) 99–110.

[33] O. C. Zienkiewicz, R. Lohner, Accelerated relaxation or direct solution.735

Future prospects for FEM, International Journal of Numerical Methods in

Engineering 21 (1985) 1–11.

[34] A. J. Macleod, Acceleration of vector sequences by multi-dimensional ∆2

methods, Communications in Applied Numerical Methods 2 (1986) 385–

392.740

[35] B. Marder, H. Weitzner, A bifurcation problem in E-layer equilibria,

Plasma Physics 12 (1970) 435–445.

[36] H. F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM

Journal of Numerical Analysis 49 (4) (2011) 1715–1735.

37



[37] K. Jbilou, H. Sadok, Vector extrapolation methods. Applications and nu-745

merical comparison, Journal of Computational and Applied Mathematics

122 (2000) 149–165.

[38] P. Verpeaux, Algorithmes et méthodes du code éléments finis Cast3M, URL

http://www-cast3m.cea.fr/index.php?xml=supportcours, in French,

2014.750

[39] J. Vierendeels, L. Lanoye, J. Degroote, P. Verdonck, Implicit coupling of

partitioned flui-structure interaction problems with reduced order models,

Computers and Structures 85 (2007) 970–976.

[40] J. C. Simo, R. L. Taylor, Consistent tangent operators for rate-independent

elastoplasticity, Computer Methods in Applied Mechanics and Engineering755

48 (1) (1985) 101–118, ISSN 0045-7825.

[41] Abaqus, Abaqus Analysis User’s Manual, Tech. Rep., Dassault Systèmes,

2015.

[42] ANSYS, USER material subroutine USERMAT, Tech. Rep., ANSYS, Inc.,

URL http://ansys.net/ansys/papers/nonlinear/usermat.pdf, 1999.760

[43] EDF, Algorithm for nonlinear quasi-static analysis (operator

STAT_NON_LINE), Code-Aster reference guide R5.03.01 révision :

10290, EDF-R&D/AMA, URL http://www.code-aster.org, 2015.

[44] I. Northwest Numerics and Modeling, ZeBuLoN, URL http://www.

zset-software.com/products/zebulon/, 2015.765

[45] CEA, Cast3M Web Site, URL http://www-cast3m.cea.fr, 2015.

[46] J. Besson, D. Desmorat, Numerical implementation of constitutive models,

in: J. Besson (Ed.), Local approach to fracture, Ecole des Mines de Paris

- les presses, 2004.

38

http://www-cast3m.cea.fr/index.php?xml=supportcours
http://ansys.net/ansys/papers/nonlinear/usermat.pdf
http://www.code-aster.org
http://www.zset-software.com/products/zebulon/
http://www.zset-software.com/products/zebulon/
http://www.zset-software.com/products/zebulon/
http://www-cast3m.cea.fr


[47] J. L. Chaboche, Constitutive equations for cyclic plasticity and cyclic vis-770

coplasticity, International Journal of Plasticity 5 (3) (1989) 247–302, ISSN

0749-6419.

[48] J. L. Chaboche, Cyclic viscoplastic constitutive equations, Journal of Ap-

plied Mechanics 60. (1993) 813–828.

[49] EDF, Elasto-visco-plastic Chaboche constitutive law, Code-Aster reference775

guide R5.03.04, EDF-R&D/AMA, URL http://www.code-aster.org,

2015.

[50] M. Berveiller, A. Zaoui, An extension of the self-consistent scheme to

plastically-flowing polycrystals, Journal of the Mechanics and Physics of

Solids 26 (5–6) (1978) 325–344, ISSN 0022-5096.780

[51] EDF, Mono and polycrystalline elastoviscoplastic constitutive laws, Code-

Aster reference guide R5.03.11 révision : 10623, EDF-R&D/AMA, URL

http://www.code-aster.org, 2015.

39

http://www.code-aster.org
http://www.code-aster.org

	Introduction
	Survey of iterative vector acceleration methods
	Scalar sequences
	Vector sequences

	A generic residual-based acceleration approach
	Two classes of iterative residual-based acceleration methods
	First class : crossed sequences method
	Second class: alternate sequences method

	Application
	MTest open-source tool
	Test cases
	Chaboche test case
	Polycrystals test case

	Results
	Acceleration methods compared
	Two iteration residual methods comparison
	Three iteration residual methods comparison
	Discussion


	Conclusions and perspectives

