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In 3D Anderson insulators, each electronic state is localized over a characteristic distance s = I/tc, the localization length, as a result of interferences induced by disorder [1]. Numerical [2] and theoretical [START_REF] Pichard | Quantum Coherence in Mesoscopic Systems[END_REF] studies of the Anderson transition have demonstrated that the values of the inverse of the localization length ~have a Gaussian distribution centered around (~) = I/(g), deep in the insulating regime. As the metal-insulator (MI) transition is approached, the width of the distribution var[t~j becomes comparable to its mean (t~). In this Letter, we demonstrate the experimental relevance of the distribution of localization lengths at the MI transition.

At zero temperature, ac conduction in an Anderson insulator can take place through the polarization current associated with the displacement of localized states. As the transition is approched, this "intrinsic polarizability" e;", diverges [4,5]. At finite temperature, there is an additional contribution to the ac response, because charges can hop from one state to another by phonon assisted tunneling (Mott hopping). An occupied state, localized on a length scale s = I/tc, can make a few "optimal" hops to neighboring empty sites. These hops can be represented by bonds with a conductance work: deviations are seen only at the lowest temperature on the sample closest to the transition. At finite frequency, this network must be modified, since the electric field mod- ulates the occupation n; (and hence the charge en;) of states (i) close to the Fermi level. This introduces a capac- itance [8] C; = e tin;/ciV; = e /4ekttT cosh (E,/2kttT) between each node and ground as shown in the inset of Fig. 1 (e is the dielectric constant averaged over the locali- zation length and F, is the energy of the state i measured from the Fermi level). The typical value of C for states with inverse-localization length ~, 10 -10 0 1 2 0.5 2.5

1.5 = gp exp( -2~8ivt, «), (1) dependent on ~through kttTp(~) = 18~/n(eF) These.

bonds form a Miller-Abrahams resistor network [6]. When the bond conductances are distributed over a sufficiently broad scale, the overall conductance is dominated by the few bonds with inverse localization length K"which estab- lish the sample-spanning cluster [7] over the network. The overall conductance is of the order of g(tc, ), yielding the well-known Mott hopping law [Eq. (1)]. This amorphous material is known to be a good An- derson insulator with strong spin-orbit scattering due to the yttrium [9,10]. In particular, the large electronic density at the Fermi level [n(eF) = 7 X 104s J 'm at the critical concentration x, = 0.18] partially screens electron-electron interactions on distances short compared to s. Finally, the typical values of the localization length, 3 ( ( ( 40 nm, are much larger than all microscopic length scales and can easily exceed the magnetic length accessible in our laboratory. The frequency dependent capacitance and conductance are measured using a three terminal capacitance bridge as in earlier studies [11 -13] in a dilution refrigerator. The three curves taken at 0.59, 0.4, and 0.33 K differ only by the characteristic frequency cu, at which the capacitance drops, and can be overlapped by a simple translation on the logarithmic frequency axis, implying a universal fre quency dependence of the ac response. This is illustrated in Fig. 2(b), where nine data sets for the capacitance and conductance taken at different temperatures and magnetic fields have been overlayed after rescaling the frequency axis by the characteristic frequencies.

This frequency scaling involves a single parameter (iu, ) instead of two as observed in glasses [START_REF] Dixon | [END_REF].

Such behavior can be accounted for [8] by applying an effective medium approximation to the impedance network shown in Fig. 2(b). The total admittance of all the bonds leaving site 0 is replaced by a local effective admittance Y(cu). If the network is locally homogeneous, its admittance seen from the neighboring sites i is also equal to Y(ru). Y(cu) can therefore be determined self- consistently.

The equivalent admittance of all the bonds connected to site 0 leaves its admittance Y(m) invariant: 

Y(Kp, M) g(Kp) Y(Kp, Cd) + Cr(Kp) dC (3) 
where z is the effective number of bonds and the brackets represent an average over local disorder. This approach can be justified in a percolation picture, where all the bonds of conductance g ( g(~, ) are removed and the bonds of conductance g ) g(~, ) are replaced by a conductance g(i~, ), effectively making the network homogeneous. In this case, there is only one characteristic A characteristic frequency can be identified as the inHection point. At 30 mK, the capacitance is frequency independent: Mott's polarizability is quenched leaving only the "intrinsic" one. (b) Scaling plot of the capacitance and conductance for the same sample as a function of scaled frequency for nine different temperatures and magnetic fields.
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where g and C are defined in Eqs. (1) and (2). At finite frequency, the current flows from site 0 through the capacitor Co and in parallel through the network represented by the admittance Y(ir, cu). At frequencies small compared to ~" the network current can only fiow through the critical conductances [Y(x."cu) = g, ].

When cu exceeds ~" the capacitors allow the current to be shunted to ground, effectively breaking the sample in subcritical clusters which are divided further as the frequency increases. The overall frequency dependence of the local admittance is conveniently represented by the scaled admittance y(ru) = [Y(tp) + iCcu] jY(0), which depends only on the scaled frequency 0 = ru/tu, . The self-consistent solution of (3) has been shown [8] to be equivalent to ylny =iA as long as Intel «(To/T)'t . For insulating samples far from the transition, the percolating bonds dominate the impedance network and the sample conductance is proportional to y(rr"or). At low frequency (static limit), y = exp(iA), the capacitance and the conductance of the network are constant. At high frequencies (II » 1), y = iA/In(iA), yielding a sample conductance Re(g) Re(y) = (~/2)A/[InA]2 increasing sublinearly with fre- quency and a capacitance C ~Im(y)/0 = I/InfI de- creasing logarithmically with ~, in excellent agreement with the data shown in Fig. 2(b). At the lowest tem- perature [30 mK, Fig. 2(a)], the capacitance reaches a frequency independent limit, indicating that the intrinsic polarizability takes over Mott s contribution.

In these samples, a magnetic field can induce a large change in eM, «, which saturates at sufficiently high field (cf. Fig. 3). Since data taken in a field can be overlaid on the same universal plot [Fig. 2(b)], this dependence is purely dynamical and can be described by a magnetic field dependence of cu, . This dependence may be attributed to a magnetic field dependence of rr, (see below). Since ~, is here proportional to the static conductance, mag- netocapacitance and magnetoconductance are related to one another. In particnlar, the negative magnetoconductance of these samples [9] is entirely consistent with the decrease of ~, with magnetic field. At high tempera- ture or frequencies small compared to co" the response is static, and changes in characteristic frequencies have little effect on the capacitance [cf. Fig. 2(b)]. When or is comparable to ~"a change in cu, of approximatively one decade is sufficient to go from the low to the high fre- quency regime. This produces a purely dynamical capacitance drop of an order of magnitude. At low temperature or high frequency, changes in cu, have only logarithmic effects [cf. Fig. 2(b)] on the capacitance.

An important field scale, however, can be identified from Fig. 3. For all temperatures, one can define the characteristic field B, for which the capacitance change C(0) -C(B) is half of its total variation C(0) -C(~). The resulting plot of B, as a function of T, shown in the inset of Fig. 3 is a power law with an exponent close to 1/2. This means that the product B,SM."=B, --= 1.3 X 10 "Tm' = 0.33eo This relates directly to the observed magnetocapacitance to quantum-interference effects in an area limited by ZM, « [START_REF] Shklovskii | Hopping Transport in Solids[END_REF]. In insulators, this length plays the role of the phase-coherence length since the phonon absorbed in a Mott hop is an inelastic process [START_REF] Milliken | [END_REF].

Samples close to the MI transition have a different be- havior. Figure 4 shows the frequency dependence of the geneous, with an inverse localization length sc, the overall conductance is the average of I'(tc, co) over a relevant dis- tribution of inverse localization length 2 (tc). Hence, the frequency dependence of the normalized complex conduc- tance g(co)/g(0) is approximatively g(co)/g(0) = 2 (tr)y(tc, co) dtc. the temperature-dependent frequency stretching of the crossover region. After differentiating Eq. ( 4), the vari- ance in characteristic frequencies is var[in co, ] = i6[To((tc))/T]' var[tc]/(t~), (8) which spreads on a logarithmic scale as (To/T)'l . This is illustrated in Fig. 4, where two line segments stretched by the temperature ratios (0.806/0. 103)'t4 = 1.7 of two different conductance curves reproduce the stretching in the crossover region. Equations ( 5) and ( 7) define the solid line fits shown in Fig. 4 using the following fitting parameters: (a) the average localization length (g) = I/(tc) = 30 nm and the conductance prefactor go are determined by the temperature dependence of the conductance (cf. Fig. 1), (b) the dielectric constant e = 500 sets the overall frequency scale, and (c) the width var[tc] = 0.3(tc). No other parameters are necessary to reproduce the magnitude of the capacitance. The overall behavior is well reproduced, except for a slower drop of the capacitance in the high frequency regime. This is not surprising, considering (a) the limited validity of Eq. ( 5) close to the MI transition and (b) the role of the intrinsic polarizability which was left out of the analysis.

The overall frequency dependence in large magnetic fields (not shown) has the same shape as the dependence in zero field but at a lower temperature. For example, in a field of 7 T, the effective temperature drops roughly by a factor of 2. This is not only apparent in the smaller dc value of the conductance (negative magnetoconductance), but also in the additional stretching of frequency scales observed in the frequency dependent capacitance. Several interpretations may be considered. This "effective cooling" in the ac response can be mimicked either by a reduction of the average localization length [increasing (tc) = I/($), see Eq. ( 4)] or by an increase in the width of the distribution var[tc] [cf. Eq. ( 8)]. The observed "cool- ing" in a field of 7 T can be reproduced by a 20% to 30% change of (tc), or by a 15% to 20% increase of var[K].

Such significant changes (considering that they come in the exponent for most experimentally accessible quantities) are consistent with interference effects in Anderson insulators with strong spin-orbit scattering [10]. If the MI is driven only by disorder, a one-parameter scaling theory [1]is applicable and changes in var [tc] and (tc) are related and occur sirnultanously.

In conclusion, the ac response of Anderson insulators is sensitive not only to the zero-temperature displacement current, but also to an activated or "Mott" polarizability. The frequency dependence of the real and imaginary part of the conductivity probes the relevant length scales in the problem. Deep in the insulating regime, the localization length is the only relevant length scale observed. A temperature-dependent characteristic magnetic field can be identified, consistent with interference effects within the Mott hopping length. We relate the observed stretch- ing of the frequency scales close to the MI transition to the distribution of inverse localization lengths at the tran- sition. A magnetic field modifies this distribution, but it is at present not possible to distinguish between a shift or a broadening of the distribution.
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 2 Figure 2(a) shows the typical frequency dependence of the capacitance at different temperatures.
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 102 FIG. 2. (a) Frequency dependence of the capacitance of samples deep in the insulating regime. A characteristic

  , which, from the experimentally determined value of To and s (cf. Fig.1), is of the order of the flux quantum.
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 34 FIG. 3. Magnetic field dependence of the capacitance (mea- sured at fixed frequency) of samples deep in the insulating regime at four different temperatures.Inset: Temperature de- pendence of the characteristic field 8,.

  and its width var[tc], 2 (v) ~tc'exp(z(tc -(tc)) /var[t~]) is used to fit the experimental data. The width vat[tc] reproduces