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Electrical transport has been investigated in amorphous Y0.19Si0.81, from 30 mK to room temperature.
Below 2 K, the conductance G exhibits Efros-Shklovskii behavior G ∼ exp[−(T0/T )1/2] at zero electric field,
where conduction is expected to occur along a very sinuous path (isotropic percolation). The non-linear
I-V characteristics are systematically studied up to very high fields, for which the conductance no longer
depends on T and for which the current paths are expected to be almost straight (directed percolation). We
show that the contributions of electronic and sample heating to those non-linearities are negligible. Then,
we show that the conductance dependence as a function of low electric fields (F/T < 5000 V m−1 K−1) is
given by G(F, T ) = G(0, T )× exp(−eFL/kBT ). The order of magnitude (5-10 nm) and the T dependence
(∼ T−1/2) of L agrees with theoretical predictions. From the T0 value and the length characterizing the
intermediate field regime, we extract an estimate of the dielectric constant of our system. The very high
electric field data do not agree with the prediction I(F ) ∼ exp[−(F0/F )γ′] with γ′ = 1/2 : we find a F
dependence of γ′ which could be partly due to tunneling across the mobility edge. In the intermediate
electric field domain, we claim that our data evidence both the enhancement of the hopping probability
with the field and the influence of the straightening of the paths. The latter effect is due to the gradual
transition from isotropic to directed percolation and depends essentially on the statistical properties of the
“returns” i.e. of the segments of the paths where the current flows against the electrical force. The critical
exponent of this returns contribution which, up to now was unknown both theoretically and experimentally,
is found to be β = 1.15 ± 0.10. An estimation of the returns length is also given.

1

http://arxiv.org/abs/cond-mat/9911433v1


I. INTRODUCTION

The electrical transport in disordered insulators such as doped semiconductors or amorphous systems,
has been widely investigated for several decades as a convenient way to probe the properties of Anderson
insulators [1]. At finite temperature T , the conduction results a priori from all the electronic hops between
any localized states i and j separated by a distance rij and a difference in energy Eij . Starting from
the probability of such a hop pij ∝ exp−(rij/ξ + Eij/kBT ) (with ξ the localization length and kB the
Boltzmann constant), Mott [2] introduced the key concept of variable-range hopping (VRH) stating that
transport is dominated by the most probable hops whose characteristic length rm ∝ T−1/(d+1) and energy
Em ∝ T d/(d+1) depend on T . As a result, the conductance G is predicted to follow

G = G0 exp
[

−

(T0

T

)γ ]

(1)

where G0 and T0 are material dependent constants, and γ = 1/(d + 1) depends on the dimensionality d
of the sample. Later, the percolation theory has been used to derive more rigorously Eq. (1) [3] [4]. In
addition Efros and Shklovskii [5] found that electron interactions result in a “soft” Coulomb gap at the
Fermi level, leading to γ = 1/2. It is currently admitted now [6] that Mott and Efros-Shklovskii laws
are limiting cases of VRH. Both of them were observed experimentally as their relevance depends on the
relative magnitudes of the hopping energy and Coulomb gap.

A. Electric field effects in hopping transport

The case of very high fields F , eFξ/(kBT ) ≫ 1 (e = electron charge) was studied through differ-
ent theoretical approaches [7]-[12] which all predict that the current I should no longer depend on the
temperature (activationless hopping) and behaves according to

I = I0 exp
[

−

(F0

F

)γ′ ]

(2)

where I0 and F0 are constants and γ′ = γ (see Eq. (1)). In spite of their similarity, Eqs. (1) and (2)
correspond to completely different current path topologies. Eq. (2) is obtained by considering the shortest
hops along which the electrostatic energy gain overcomes the energy fluctuations due to disorder [13], [7].
Thus in the very high field case, the hops occur in the direction of the field (directed percolation). On the
contrary, for F → 0, the current flows through a network of random impedances along very sinuous paths
whose returns and meanders are such that any hop more resistive than the VRH prediction is forbidden.
A quantitative description of these paths can be obtained by using the isotropic percolation theory [14]
[15].

The intermediate field case eFξ/(kBT ) < 1, where neither T nor F can be neglected is the most difficult
one to handle theoretically, and the various models lead to different predictions that we summarize in the
general equation giving the current

I(F, T ) = I1 exp
{

−

(T0

T

)γ [

1 − A
(eFξ)α

(kBT )α′
+ B

( eFξ

kBT

)β ]}

(3)

where A, B, α, α′ and β are parameters, A and B being positive. The first term A(eFξ)α/(kBT )α′

expresses the enhancement of the hopping probability when F grows. Depending on the authors, α and
α′ range from α = α′ = 1/(ν + 1) [10] (where ν ≃ 0.88 for d = 3 is the critical index of the correlation
radius) to α = α′ = 1 [9], [13], and even α = 2 and α′ = 9/4 for d = 3 [8], [12]. The discrepancies between
these results come from the fact that the net current Iij between two sites may increase exponentially
with F or be insensitive to F , depending on the relative positions of the site energies. The second term
B(eFξ/(kBT ))β was predicted only by Böttger, Bryksin et al. [16]-[18] who addressed the additional
problem of the “returns” , i.e. of the segments of the paths where the current flows against the electrical
force. Their model states that the length of these returns decreases gradually when F increases. We
show in this paper that our data evidence the existence of both terms of Eq. (3) with α = α′ = 1 and
β = 1.15 ± 0.10.
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B. Theories of hopping transport at intermediate fields

We recall here some theoretical points which are important for the interpretation of our data. The
very sinuous current paths at F → 0 can be pictured by using the “nodes-links-blobs” concept [14] [15],
derived from the isotropic percolation theory : at small scales the current path consists of a fractal-like
network of connected conductances up to the “blob” scale Lp, and the blobs are the links of a homogeneous
network. In the linear regime, the conductances inside a blob are much larger than the key conductances
Gkey ∼ exp− (T0/T )

γ
lying at the end of each blob. Gkey sets the overall sample conductivity since at

scales larger than Lp the system is homogeneous. For the intermediate field case, where neither T nor F
can be neglected, three main effects have to be considered :

(i) for a site i belonging to the percolation path, the density of sites j yielding a non negligible con-
ductance Gij is modified by F ;

(ii) a field-induced rearrangement of the charge along the current paths can take place : the local
chemical potential µi can fluctuate widely around the mean value given by eFri;

(iii) the lengths of the “returns”, i.e. the segments where the current has to go against the electrical
force, decrease when F increases.

Most authors disregarded (iii) and focused upon (i) and (ii), yielding predictions summarized by Eq.
(3) with B ≡ 0. However, they gave diverging predictions depending on the relative influence given to (i)
and (ii). For example, Pollak and Riess [9] find α = α′ = 1 and A = 3/32 in a model where (i) plays the
central role, and the correlations between nearest neighbors conductances are taken into account. They
find that (ii) is quite negligible (δµi ≤ kBT ). This contradicts Shklovskii model [10] (A ≃ 1 and α = α′ =
1/(1 + ν) ≃ 0.53 for d = 3) which emphasizes (ii) (δµi ≫ kBT ) by concentrating almost all the electrical
potential drops existing at the blob scale Lp upon the key conductance. The disagreement between these
predictions was never completely explained [19] even if numerical simulations by Levin and Shklovskii [20]
suggested that the Pollak and Riess result holds in usual experimental conditions (T0/T )1/(d+1) ≤ 70 while
Shklovskii result would hold in the opposite case, i.e. at exceedingly low temperatures. Two other groups
found different results : Apsley et al. [8] and Van der Meer [12] obtained α = 2, α′ = 9/4, but their
methods were criticized since the former did not take into account the directed percolation requirement,
while the latter uses dimensional “invariants” which were shown later to be F dependent [21].

Taking (iii) into account[16][21][22] prevents the current from increasing too fast : the corresponding
second term B(eFξ/kBT )β in Eq. (3) reduces the exponential increase of I due to −A(eFξ)α/(kBT )α′.
The physical reason is that the returns act as “bottlenecks” for the current. The problem being exceedingly
complicated, the precise values of α, β, A, B were found to depend on the various methods used by Böttger,
Bryksin et al. The last and more accurate results were obtained numerically [22][17] [18] : α = α′ = 1,
A = 1/6 , B ≃ 0.02, 1/β ≃ 1.1 (this latter parameter is the critical exponent of the returns length Λ, see
below Eq. (12)). The theoretical value of β is given within an error of 50% due to numerical uncertainties.
Yet, the precise value of β is of major importance since for β < α, the differential conductivity σ = ∂I/∂V
decreases at low fields to reach an absolute minimum at a finite F . On the contrary, in the case β > α, σ
increases at low fields and has no absolute minimum at finite field.

The above mentioned theories disregard the possible F -dependence of the carrier density due to trapping
in dead ends of paths, as well as the possible F -dependence of the localization length ξ. Fortunately, both
effects should be negligible in our case. Indeed, statistically as many holes as electrons become trapped
when F increases, as in our case the density of states is symmetric around the Fermi level (parabolic
Coulomb gap)[23]. The ξ(F ) dependence should be negligible [24] as long as EF ≫ eFξ where EF is the
kinetic energy at the Fermi level: this is the case in our sample[25].

C. The experimental situation

On the experimental side, I-V non linearities were investigated both in amorphous materials [26]-[34]
and in doped crystalline semiconductors [35]-[47]. In most of these works, the authors focussed either on
very high fields or on intermediate fields. For intermediate fields, the data [28] [29] [31] [35]-[42] [45] were
analyzed using the electric field dependence predicted by Hill [13], Pollak and Riess [9], and Shklovskii [10]

ln
(

G(F, T )
)

= ln
(

G(0, T )
)

+
eFL

kBT
= ln (G0) −

(T0

T

)γ

+
eFL

kBT
(4)
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where L is a length related to the hopping distance rm = (ξ/2)(T0/T )γ. Hill[13] and Pollak and Riess[9]
predict L = C.(ξ/2)(T0/T )γ with C = 0.75 or 0.18, while Shklovskii predicts L ∝ T−(1+ν)γ [10] with
ν = 0.88. Eq. (4) results from Eq. (3) by neglecting the returns term (B = 0) and by assuming that
the F and T dependences of G and I are close to each other. The experimental values of L and their T
dependence often disagree with the theoretical predictions [31] [36]-[38][40]. The claim by Wang et al. [44]
that the non-linearities in Ge:Ga were due to carriers heating [64] rather than to the preferential hopping
along the electric field which leads to Eqs. (3) or (4) triggered hot-electron analyses of the data [47]-[53].
They show that the relative contribution of carriers heating and electric field effects has to be considered
at very low temperature. In very high electric fields, the expected activationless conduction (see Eq. (2))
has been observed by several authors [30]-[32] [42] [43] [46]. The equality of the VRH and activationless
exponents (γ and γ′ in Eqs. (1) and (2)) has been checked for γ = 1/2 in several systems [32] [43], but
γ′ = 1/4 and γ = 1/2 has been found in amorphous GeCu[31].

In this work we systematically investigate the whole set of non linearities ranging from the linear VRH
regime at F → 0, to the activationless conduction at very high fields : in our low temperature domain
(0.03 K ≤ T ≤ 1.3 K), F/T varies from 1.5 × 102 Vm−1 K−1 to 1.4 × 106 Vm−1 K−1. Our samples
are made of amorphous Y0.19Si0.81. In comparison to most of the experimental works performed in this
low temperature range ( < 1 K) [37] [43]-[47], we go to higher values of F and F/T , thus allowing an
investigation of both the intermediate and the very high field regimes. At very low temperatures, this has
been done by Rosenbaum et al. on Si:P [37], however the authors found an abnormally large value of L.
At higher temperatures, these two regimes were investigated for a-GeCu at 1.6 K < T < 110 K [31] and
ZnSe at 1.6 K < T < 4.2 K [42]. The first paper raised the question of unexpected exponents values (in
the L vs. T and ln(G) vs. F dependences) while the second one found a puzzling decrease of L when F
increases. Clearly, new data are needed. In this work, we test the validity of Eqs. (1)-(4) and show that
they are in good agreement with our data for intermediate fields. In particular we find L ≃ C.rm [13][9].
We also check that the contribution of heating effects to the non-linearities is negligible. Our main result
is that Eq. (3) with α = α′ is more suitable than Eq. (4) to fit the data : this allows us to estimate the
size of the returns and the value of the related critical exponent β[16]-[18]. Finally, we show that in the
activationless region, the I vs F dependence is more intricate than the law given by Eq. (2).

The paper is organized as follows. In section II we describe the experimental setup and method. The
conductance as a function of the temperature in the region F → 0 is presented in section III. In section IV,
we consider the very high field case. Having extracted the physics of the two extreme F regimes, we finally
turn in section V to the intermediate field case. Finally, we summarize our main results in section VI. In
appendix A we show that heating mechanisms cannot explain the I − V non-linearities, while appendix B
is devoted to the extraction of the localization length from the data.

II. EXPERIMENT

As shown in Fig. 1, each amorphous YxSi1−x sample studied (x ≃ 0.19) is deposited on a sapphire
substrate on which two interdigited gold electrodes were evaporated and etched. The spacing between the
electrodes is l = 128 µm. The YxSi1−x layers were obtained by Argon plasma sputtering on the sapphire
substrate (cooled at 77 K to prevent Y or Si aggregates formation), using a YxSi1−x source. The thickness
of the layers is 9 µm, much larger than any hopping length, hence electrical transport is three dimensional.
Previous studies of electrical transport in such YxSi1−x samples [54]-[59], have shown that a small variation
of x allows to cross the metal-insulator transition : above x ≃ 0.22 the samples are metallic; while for lower
values of x, the samples exhibit an insulating behavior, i.e. a divergence of the resistance for T → 0, in
agreement with the VRH predictions [55]-[58], except for the very weakly insulating samples at the lowest
temperatures [59]. In the present work x ≃ 0.19 and the samples are strongly insulating, exhibiting VRH
below T ≃ 2 K. Since the two samples we used behaved similarly, we report only the data of one of them.

As shown in Fig. 1, a great attention was paid to the thermalization of the sample because of a possible
heating interpretation of the I-V curves non-linearities. As explained in Appendix A, we measured the
thermal conductances involved in our sample and concluded that heating effects were irrelevant in our
sample: neither heating of the whole sample nor carrier heating can explain the I-V non linearities reported
here.
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Electrical contacts were made by ultrasonic soldering of two gold wires on the evaporated electrodes.
The data were obtained by setting a given voltage V = Fl on the sample, and by waiting for a time τ
before measuring the current I. We paid the greatest attention to choosing τ large enough to let the
current settle, e.g. we took τ(T < 800 mK) ≥ 100 s. The temperature was registered for each I(V ) point,
and its stability proved to be better than 1%. The coaxial cables used were previously tested alone (in
an open circuit, at all temperatures) to check that their leakage current was negligible. Let us note that
it is unlikely that the gold-YSi electrical contact resistance plays a role since the contact area is very
large and in previous similar works [58], it was shown to play no role. The fact that the temperature
dependence G(0, T ) we observe follows a VRH law (see next section) is an additional indication that the
contact resistance is negligible. Finally, the symmetry of the I-V curves with respect to current and voltage
reversing was checked.

III. BEHAVIOR AT F → 0

The I-V characteristics are shown in Fig. 2 where, for clarity, we report only the curves for 18 different
temperatures out of the 36 ones we measured. As shown in the inset, the resistance (R) - temperature law
is simply activated from room temperature to ≃ 10 K : we find R = R1exp(−T1/T ) with T1 = 40 ± 4 K
and R1 ≃ 88 ± 2 Ω. For T < 8 K the divergence of the resistance when T → 0 becomes weaker (see inset
of Fig. 2), which is a standard indication that VRH takes place at low temperature [5]. Let us note that
simple activation for T ≥ 10 K is usually interpreted as due to thermal excitation from the Fermi level EF

to the mobility edge EMob where electronic states are delocalized; thus kBT1 = EMob − EF .
To study the temperature dependence of the conductance at F → 0, we plotted our data in the

(F/T , ln (V/I)) plane (see Fig. 3). The G(F → 0) values were obtained from an extrapolation of the
curves towards low fields. To allow for a precise extrapolation, this procedure was restricted to the
0.4 K < T < 1.3 K cases. The extrapolated values were obtained from a linear fit of the first points in
each curve (lower F/T values). We checked that those values did not depend significantly on the number
of points selected in the fit. The expected VRH temperature-conductance law is given by Eq. (1) where
γ = 1/2 or γ = 1/4. Discriminating between these exponents is hardly achieved by looking for a straight
line in the ln(G(F → 0)) versus T−γ plot, as the lines always seem straight. The comparison between the
different exponents γ is improved by plotting a normalized value of T−γ , i.e. (T−γ −T−γ

Min)/(T−γ
Max−T−γ

Min)
where TMin and TMax are the two extreme values of T selected for the plot. In Fig. 4, we see that γ = 1/2
is favored in comparison with γ = 1/4. A fit of ln(R(F → 0)) vs. T using Eq. (1) in which G0 and T0

are free parameters yields a residue (measured minus fitted value) shown in the inset of Fig. 4 : clearly,
there is a correlation between the residue and T only for γ = 1/4. The normalized χ2 per point is 1.1 for
γ = 1/2, and 9.0 for γ = 1/4. If γ is a parameter of the fit, we find γ = 0.47± .02. We thus conclude that
γ = 1/2, and using this value in the fit, we get T0 = 257 ± 1.5 K and R0 = 1/G0 = 92 ± 5 Ω. Following
Efros and Shklovskii,

kBT0 =
2.9e2

4πǫ0ǫrξ
(5)

where ǫ0ǫr is the dielectric constant of the system. We shall see in Appendix B that the non-linearities
analysis together with Eq. (5) allow to extract an information on ξ and ǫr separately.

IV. RESULTS AT VERY HIGH FIELDS

In the very high fields case, eFξ/(kBT ) ≫ 1, the theory [7] states that the current results from hops
between sites i and j, such that Eij = eFrij . For these activationless hops, Iij ∝ exp (−2rij/ξ), which,
using a maximization procedure leads to Eq. (2) with[7]

F0 = N2
kBT0

eξ
(6)

where N2 is a numerical constant which can be calculated within the directed percolation theory. For
Mott’s VRH (γ = 1/4) Pollak and Riess obtain N2 = 4.8. For the Efros-Shlovskii VRH (γ = 1/2), N2 has
not been calculated to our knowledge.
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Our lowest temperature data should belong to the very high field domain, as the two I-V curves
corresponding to T = 29 mK and T = 49 mK are identical. Indeed, we shall see that the low and
intermediate field data analysis lead to ξ ≈ 7 nm (see Appendix B), hence eFξ/(kBT ) ≥ 50 for T = 29 mK.
The 29 mK data can be rather well fitted by using Eq. (2) with γ′ = 1/2, I0 and F0 being free parameters.
It yields F0 = (3.8 ± .05) × 107 V/m, hence 4 ≤ N2 ≤ 11 by using the upper and lower values of ξ. The
normalized χ2 per point is however 290. Thus, in spite of the reasonable extracted F0 and N2 values, the
relevance of the fit must be questioned. Indeed, if we fit the whole I(F, 29 mK) data using Eq. (2), γ′
being a free parameter, we get γ′ = 0.65 ± 0.01 and a χ2 per point of 94.

To investigate the problem, we give in Fig. 5 the F dependence of the effective exponent γeff defined
by

γeff = −
∂ ln

(

∂ ln I
∂ lnF

)

∂ lnF
. (7)

If I(F ) is given by Eq. (2), then γeff = γ′ . For T > 200 mK, γeff is always negative, while for T < 200 mK,
γeff it is negative for the lower F values. This can be related to the fact that in the intermediate field
region, the I(F ) dependence should obey Eq. (3) for which the expected γeff is F -dependent. For the
lowest temperatures, γeff becomes positive when F increases, but there is no saturation at γeff = 0.5.
Instead, a maximum is reached at a value between 0.5 and 1, even if a convergence of γeff towards 1/2
might exist at fields larger than 4 × 104 V/m.

We suggest that these values of γeff between 0.5 and 1 are due to the fact that the very high field
conduction results from an interplay between activationless hopping (for which γeff = 1/2) and tunneling
across the mobility edge. Indeed, the latter process leads to the simple activated law [33], [60]

I ∼ exp
[

−(
4

3eF
)

√

2m(kBT1)3

~2

]

= exp
[

−
F1

F

]

(8)

where kBT1 is the energy difference between the Fermi level and the mobility edge. Since T1 ≃ 40 K (see
Sec. III), F1 = 1.4 × 106 V/m. The fit of the I(F, 29 mK) data for the interval F > 2.8 × 104 V/m where
γeff > 0.5, using I = I1 exp (−F1/F ), yields a normalized χ2 per point of 40 and F1 = (5.5±0.05) 105 V/m,
which is only a factor 2.5 below the calculated value. We cannot interpret the γeff (F ) curves more precisely
since, to our knowledge, there exists no theory taking into account both the disorder in the localized band
states and the tunneling through the Mobility Edge.

It is interesting to note that if activationless hopping was the only transport mechanism in the very
high field regime, the critical value (F/T )c at which the transition from Eq. (3) to Eq. (2) occurs
would be temperature independent : this can be readily seen by equating the rhs of Eqs. (2) and (3) at
F/T = (F/T )c and disregarding pre-exponential factors. If we define, for any given T the experimental
critical field value Fc by I(Fc, T ) = k I(Fc, 29 mK), with k = 1.1, we find that in our sample, (F/T )c is
clearly T-dependent: it increases by a factor 3.5 when the temperature decreases from 413 mK to 74 mK.

V. RESULTS AT INTERMEDIATE FIELDS

We can see on Fig. 3 that our experimental points line up in almost parallel curves in the (ln (R), F/T )
plane. Clearly, they are not really straight lines, hence Eq. (4) does not hold with precision. However, in
the spirit of the majority of previous works, we first use Eq.(4) and extract the length L(T ) defined by
ln [G(F )/G(F → 0)] = eFL(T )/(kBT ) for F just above the linear regime. We show in a second step that
Eq. (3) is much more relevant to account for our data.

A. Extraction of L(T ) using Eq. (4)

The slopes of the ln (R) vs. F/T curves for F → 0 were extracted for the different temperatures where
it was possible, i.e. 0.4 K < T < 1.3 K (see Fig. 3). A linear fit yielded a normalized χ2 per point close
to 1 only for F/T < 5000 Vm−1 K−1. We restricted the L extraction to this interval where the curves are
linear. The result is shown in Fig. 6. A fit of these points using the law L = L0 (T0/T )ζ where L0 and ζ
are free parameters gives ζ ≃ 0.65 with a normalized χ2 per point of 0.7. Constraining the fit with ζ = 0.5
leads to L0 = (0.52 ± 0.01) nm and a normalized χ2 per point of 1.1 : the resulting curve is shown in
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Fig. 6. As a consequence, we can state that the Shklovskii prediction [10] ζ = 2γ = 1 does not hold for
our system, while the predictions of Hill [13] and Pollak and Riess[9], L ∝ rm leading to ζ = γ = 1/2, are
in agreement with our results. It is interesting to note that the values of L(T ) remain roughly the same if
they are extracted from linear fits of the whole ln(R) vs. F/T curves, although these fits yield a normalized
χ2 per point varying between 3 and 250. The localization length ξ extracted from L0 = C.(ξ/2) with the
Pollak and Riess value C = 0.17 [9] yields ξ ≃ 6 nm. We shall come to this point more in detail later.

B. Extraction of the parameters of Eq. (3)

We turn to the main result of our study, namely the relevance of the Böttger et al. prediction [17]
concerning the “returns” and summarized in Eq. (3).

B.1. F/T is the unique relevant parameter
We define, so as to test Eq. (3),

Ψ(F, T ) =

√

T

T0
ln

(

I(F, T )

IE.S.(F, T )

)

, with IE.S.(F, T ) =
V

R0
exp [−(

T0

T
)1/2] (9)

where V = Fl, R0 = 92 Ω and T0 = 257 K (see Sec. III). It is easy to show that if Eq. (3) holds in what
concerns the G(T, F ) dependence (instead of I(T, F )), Ψ is just equal to A(eFξ)α/(kBT )α′−B(eFξ/kBT )β.
We have chosen to perform our analysis on G(T, F ) = I(T, F )/(Fl) rather than on I(T, F ) because all
the above depicted theories do not allow to recover a linear regime when F → 0 : in this case, Eq. (3)
gives I(F → 0) = I1 exp [−(T0/T )γ] which is not consistent with Eq. (1). Note that this difficulty has
been ignored in almost all experimental works dealing with the intermediate fields case, as they focus
upon G(F ) rather than on I(F ). Numerically, our choice is justified by the fact that the exponential I(F )
dependence in Eq. (3) is much faster than the contribution of the denominator of G(F ) ∼ I(F )/F (see
also [61]).

To perform our analysis of the intermediate field case, we suppressed the data points corresponding to
the very high field case (see Sec. IV). This was done by selecting 7164 I(F, T ) points among the whole set
of 8189 points, on the criterion I(F, T )/IV HF (F )− 1 ≥ 10%, where IV HF (F ) is the very high field current
defined by IV HF (F ) = I(F, T = 29 mK). The 10% criterion is rather arbitrary, but we checked that our
results do not depend on its precise value, provided it remains above 5%. Then, Ψ is calculated for each
of these 7164 points. As shown on Fig. 7, Ψ(F, T ) is a universal function of F/T over more than 3 orders
of magnitude, while the 7164 experimental points correspond to 36 different temperatures ranging from
49 mK to 1.29 K.

The fact that Ψ(F, T ) depends only on F/T implies α = α′, which definitely shows that both Apsley [8]
and Van der Meer [12] models are not relevant for our sample. Moreover, the log-log slope of Ψ(F/T ) at the
lowest F/T values is very close to 1 and clearly larger than 1/(ν + 1) ≃ 0.53 which means that Shklovskii
prediction [10] does not hold. This is not surprising since in our experiment (T0/T )1/2 ≤ 70 which is a
domain where the numerical work of Levin and Shklovskii [20] leads to α = 1. However our data are poorly
fitted by the Hill [13] and the Pollak and Riess[9] prediction Ψ ∼ F/T since the log-log slope of Ψ(F/T )
decreases as F/T increases. More generally, a fit of Ψ(F/T ) with a unique power law (F/T )α′′

gives a poor
agreement whatever α′′, especially because of the points in the region F/T ≥ 3×104 V K−1m−1. The only
remaining prediction is thus the one of Böttger et al. where α = 1 and β is unknown theoretically. In the
next section this prediction will be assumed and the best value of β will be sought. Quite interestingly,
the fit of Ψ we obtain in the next section is, by far, much better than all the “reasonably simple” fits we
tried: for example attempting a polynomial fit with Σm

i=1ai(F/T )i gives a poor agreement even if m is as
large as 5.

B.2. Extraction of the critical exponent β assuming α = 1.
We thus have to fit the Ψ(F/T ) points using the function

Γ
F

T
− ∆

(F

T

)β
(10)
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with Γ, ∆, β as free parameters. Since the Ψ(F/T ) values extends over several orders of magnitude, we
perform the fit on ln (Ψ), i.e. we request that a relative error E per point is minimal, with E defined by

E2 =
1

7164s2

∑

j=1,7164

(1 − x)
[

ln
( Ψ

(

(F/T )j

)

Γ(F/T )j − ∆(F/T )β
j

)]2

+x
[

ln
(Γ(F/T )j − Ψ

(

(F/T )j

)

∆(F/T )β
j

)]2

, (11)

where x is a weight to be chosen in the (0, 1) interval and s2 =
〈

(ln (Ψ)− < ln (Ψ) >)2
〉

≃ (0.08)2 is the
variance of ln(Ψ) drawn from the data. Note that the first term in the rhs of Eq. (11) is the relative error
per point on Ψ while the second one is the relative error per point on the “Böttger second term” of Eq.
(3), ∆(F/T )β. The minimization of those two terms has opposite effects on the optimal value of β. Indeed
keeping only the first one (i.e. setting x = 0) leads to β = 1.38±0.03 and yields a good agreement between
the Ψ((F/T )j) points and the fitted curve, but leads to a discrepancy between Γ(F/T )j −Ψ

(

(F/T )j

)

and

∆(F/T )β
j which becomes clearly too large when F/T < 5 × 104 V K−1 m−1. Conversely, setting x = 1

leads to β = 1.03± 0.03, with Γ(F/T )j −Ψ
(

(F/T )j

)

≃ ∆(F/T )β
j , but a discrepancy appears between the

Ψ
(

(F/T )j

)

points and the fitted curve, especially at high F/T values. Keeping x in the (0.05, 0.95) interval
leads to optimal values β(x) in the (1.05, 1.15) range, i.e. to an uncertainty on β not very much larger
than the one obtained for a given x. We finally keep the larger error bar on β and find : β = 1.15 ± 0.1,
Γ = (1.25 ± 0.5) × 10−5 K m/V and ∆ = 1.4 × 10−6(m K/V)

β
(∆1/β/Γ = 0.70 ± 0.07). The solid line on

Figs. 7 and 8 is the fit resulting from
(

β = 1.15; Γ = 1.25 × 10−5K mV−1; ∆ = 1.4 × 10−6(KmV−1)β
)

:
the agreement with the data is good (E(x = 0.5) = 0.72) and the only systematic deviation occurs at the
very few highest F/T values where the transition to the very high fields regime occurs.

The comparison of Eqs. (3) and (10) gives Γ = Aeξ/kB. From Γ = 1.25 × 10−5 m K/V we deduce
Aξ = 1.1 nm. Unfortunately, the precise value of A is not known in our case of Efros Shklovskii’s hopping
(γ = 1/2). As shown in Appendix B, using T0 = 257 K, Aξ = 1.1 nm as well as considerations about the
dielectric constant ǫr we conclude that ξ ≈ 7 nm. We cannot be more precise due to the various unknown
numerical factors involved in the predictions we used, but we note that these values of ξ compare favorably
to previous results obtained on YxSi1−x samples much closer to the metal-insulator transition [58], [59]
where larger values of ξ were found (a few tens of nm).

We compare now the analysis performed just above with the one carried out using Eq. (4) which
yielded L = L0 (T0/T )1/2 with L0 = 0.52 nm, and ξ ≃ 6 nm, using L0 = C (ξ/2) and C = 0.18 (see Sec.
B.). Neglecting the weak difference between the G(T, F ) and the I(T, F ) dependences, the comparison of
Eqs. (3) and (4) leads to L0 = Aξ if the additional term B(eFξ/(kBT ))β in Eq. (3) is assumed not to
change L0. Clearly, we have a discrepancy by a factor 2 between L0 and Aξ = 1.1 nm : this was checked
to come from the B(eFξ/(kBT ))β term in Eq. (3). Surprisingly both analysis yield roughly the same
ξ ≈ 6 − 7 nm for A = 1/6 and C = 0.18.

B.3. Extraction of the return length Λ.
We now turn to the analysis of the “returns” size. As explained above, β and ∆ give an information

about the typical length Λ of the returns which decreases gradually as F increases. Indeed, according to
Böttger et al. [22], if ρ = ln [I(F, T )/I1] (ρ is the argument of the exponential in Eq. (3)), Λ is given by

Λ(ρ) ≃ 2δrm

( ρc

ρ − ρc

)
1

β
(ρm − ρ

ρc

)µ

(12)

where µ = 1.0 ± 0.3 and δ ≃ 0.25 are numerical constants [22], ρm is the directed percolation threshold,
and ρc = (T0/T )γ. In the linear regime it is found that ρ(F → 0) ≃ ρc + 1 [14], yielding a finite value of
Λ(F → 0). Increasing F up to the intermediate field region leads to a ρ increase, thus to a Λ decrease.
Increasing F further, ρ reaches ρm and Λ vanishes indicating that the current paths are directed. The
maximum length Λmax of the returns is thus obtained just at the onset of the non linear regime, where we
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can put in Eq. (12) ρ = (T0/T )γ + 1 and (ρm − ρ)/ρc ≃ (ρc − ρm)/ρc = N4 with N4 ≃ 0.07 as predicted
in [22]. Hence we get

Λmax = ξδNµ
4

(

T0

T

)γ(1+ 1

β
)

= ∆
1

β
kB

e

(

T0

T

)γ(1+ 1

β
)

(13)

where the second equality is obtained by using the Böttger et al. prediction ∆ = (Nµ
4 δeξ/kB)β [22]. Using

Eq. (15), we can compare Λmax to the blob length Lp = ξ(T0/T )γ(1+ν) [14] :

Λmax

Lp
=

∆
1

β kB

eξ

(

T0

T

)γ( 1

β
−ν)

≃
∆

1

β kB

eξ
(14)

where the second equality comes from the fact that in our case, due to the experimental value of β, Λmax

and Lp have critical exponents very close to each other since 1/β − ν is in the (-0.08, 0.07) interval. We
thus find that Λmax(T )/Lp(T ) does not depend on the temperature. By inserting kB/(eξ) = A/Γ in Eq.

(15), we find Λmax(T )/Lp(T ) = A∆
1

β /Γ = (0.70 ± 0.07)A , using our fit result ∆
1

β /Γ = 0.70 ± 0.07.
Hence, Λmax(T )/Lp(T ) is not much smaller than 1 which is the highest possible theoretical value. We
thus conclude that in our sample the importance of the returns is strong.

This importance of the returns must also play a role on the onset of the non linear behavior which
occurs at a field Flim(T ). Indeed, according to Böttger et al. Flim/T = kB/eΛmax [22]. According to
Pollak et al., Flim/T = kB/erm with rm = (ξ/2)(T0/T )γ the hopping length. In our case, this latter
prediction amounts to Flim/T ≥ 1000 V K m−1 for T ≥ 500 mK (for lower temperatures we cannot go to
F → 0 because of too low currents). We clearly see on Figs. 7 and 8 that the non linear fit obtained above
extends down to F/T ≃ 150 V K−1 m−1. This is one order of magnitude smaller than the Pollak et al.
prediction and in quite good agreement with the Böttger et al. result. We thus conclude that the Flim

behavior we find is consistent with the above derived results on the importance of returns.

VI. CONCLUSION

Our study of the electric field effects in variable-range hopping transport for amorphous Y0.19Si0.81

below 2 K exhibits several important features. First, we find that the length L characterizing the interme-
diate field regime has the order of magnitude and T dependence (≃ T−γ, with γ = 1/2) which is expected
in the VRH models of Hill [13] or Pollak and Riess [9] stating that L ≃ rm. Even analyzing our data in the
framework of the Böttger, Bryksin et al. predictions (Eq. (3)) this result remains true, as the addition of
the B(eFξ/(kBT ))β term in Eq. (3) does not change the order of magnitude of this characteristic length.
Second, our most important result is that Eq. (3) is much more relevant than Eq. (4) to analyze our
data, and this shows the importance of the “returns” in the percolation paths of VRH. Furthermore, we
were able to extract an information on the length of these returns from our experimental results. Indeed,
our data indicate that the critical exponent of the returns contribution 1/β is very close to the one of the
blob length : the returns represent an appreciable T -independent fraction of the whole percolation paths
lengths at intermediate fields. Third, our very high field data do not follow the expected activationless law
given by Eq. (2). This could be due to the onset of tunneling across the mobility edge whose interplay
with activationless hopping has not been theoretically studied yet.
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APPENDIX A: IRRELEVANCE OF THE SAMPLE OR CARRIERS HEATING
MECHANISM

In this Appendix, we first describe the experimental setup allowing thermal conductances measurements
and then show that heating is irrelevant to account for our I-V non linearities.

The sapphire substrate was hold between four sapphire balls which represent a negligible thermal
conductance. The thermalization was realised by ultrasonically bonding 43 gold wires (50 µm in diameter,
a few millimeters long) between the cryostat (“Heat sink” on Fig. 1) and a 7 mm2 gold pad schematized
on the left of the substrate on Fig. 1. The resulting calculated thermal resistance between the gold
pad and the cryostat is smaller than 104 K/W at T = 50 mK and 103 K/W at T = 500 mK, leading to
a temperature difference lower than 0.5 mK between those two points in our experiments. To measure
the thermal resistance between the cryostat and the sapphire substrate or the sample, we used the 1 MΩ
heating resistor chip shown on the right up corner of Fig. 1. This 0.01 mm3 device is held only by two
Al wires (25 µm in diameter, 5 mm long) which are superconducting below ≃ 1 K. At low temperature,
their thermal conductance is thus negligible and the electrical power dissipated in the resistor flows to the
substrate through the unique gold wire (25 µm in diameter, 3 mm long) ultrasonically bonded between
the resistor and the gold pad evaporated on the sapphire substrate (on the right in Fig. 1). By measuring
the temperature of the sample when a given power is injected in the resistor, this system gives an over-
estimation of the thermal resistance between the sapphire substrate and the cryostat. It has the advantage
of being reversible in comparison with a resistor deposited on the sapphire substrate, as the gold wire can
be easily removed.

We show now that heating phenomena are irrelevant to account for the I-V non linearities. We first
focus on the possible heating of the whole sample together with its sapphire substrate, and then turn to
“electronic heating”.

A. Heating of the whole sample and substrate

The measurement of the thermal resistance Rth between the cryostat on one hand and the sample
with the sapphire substrate on the other hand was carried out as follows. A constant voltage V = Fl
was applied to the YxSi1−x sample, leading to a current I(F, T ) depending on the cryostat temperature
T . A given electrical power 1 nW ≤ P ≤ 100 nW was then dissipated in the small 1 MΩ resistor. This
power flowed to the heat sink through the substrate whose temperature was then increased by δT , leading
to an increase δI of the current. We checked that δI was proportional to P . Assuming for a while that
the I-V non linearities do not result from sample heating, we extracted, from the data of Fig. 2, δT
from δI and deduced Rth = δT/P . Fig. 9 gives the resulting Rth as a function of T . From it, we get
Rth(74 mK) ≃ 10 mK/nW, while we can see on Fig. 2 that the I(F, 74 mK) and I(F, 124 mK) curves begin
to merge for IV ≃ 0.04 nW which corresponds to δT ≃ 0.4 mK much lower than the 50 mK separating
these two I(F ) characteristics. This confirms the above assumption of irrelevance of sample heating; and
it can be easily shown to be true at any temperature. Let us note that Rth exhibits a Rth ∼ T−3 behavior
which characterizes the Kapitza thermal resistance at the boundary between two materials. In our case,
they are the sapphire substrate and the gold pad thermally connected to the cryostat.

B. Electronic heating

In this section, we show that the non-linearities of our I-V curves cannot be ascribed to a heating effect
as found by Wang et al. for NTD sensors [44]. Assuming the validity of such a model for our sample, the
power P = IV = IF l injected in the YSi “electron bath” would increase its temperature to a value Te

larger than the cryostat temperature T , leading to a YSi electrical resistance

R(T, F ) = R0 exp ((T0/Te)
γ) , (A1)

with Te given by

P + Pp = IV = g(T η
e − T η) (A2)
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where g and η are parameters characterizing the thermal conductance between the electron bath and the
cryostat, and Pp is the parasitic power injected in the sample due to the limited rf shielding etc. As we have
excluded a possible heating effect of the sapphire substrate (see previous section), the thermal resistance to
consider is either the Kapitza one at the boundary between the YSi sample and the sapphire, or the thermal
resistance due to electron-phonon coupling in the YSi itself. In the first case η = 4[63], while in the second
one, η = 5 to 6 [44][47]-[53][64]. We investigated the experimental values of dP/dTe, which would be equal
to gηT η−1

e , hence would not depend on T and Pp. Within the heating model, Te can be extracted for each
(I,V) point using Eq. (A1). Fig. 10 shows dP/dTe as a function of Te. The fact that most of the curves
depend on T is a strong argument against the heating model. However, we can see a trend towards a T
independence for low T values. As indicated by the straight lines corresponding to power laws, these low T
curves are not compatible with the heating model because they correspond to η values which depend on Te

and may be much larger than 4 to 6. Finally, we note that in materials close to a-YSi, the electron-phonon
coupling parameter g was found experimentally to be of the order of 103 W K−6cm−3 (in NbSi, with η = 6)
[52] or 200 W K−5cm−3 (in AuGe, with η = 5) [64]. As a consequence, for our 7.2 × 10−5 cm3 sample,
we expect dP/dTe ≃ 0.4 T5

e W/K or dP/dTe ≃ 0.07 T 4
e W/K which is several orders of magnitude larger

than what we find (see Fig. 10). If we assume that the possible heating effect is due to the YSi-sapphire
Kapitza resistance, we can use the experimental g ≃ (1−10)×10−3 W K−3cm−2 values for sapphire-metal
interfaces[51], which lead to dP/dTe values of the order of 10−3 T 3

e W/K, again several orders of magnitude
larger than our experimental values. Yet, those very large discrepancies guarantee that the heating effects
are negligible. In comparison to data from authors who see heating effects, this can be explained by : i)
our very resistive sample, ii) the low electron-phonon and Kapitza resistances due to the geometry of the
sample.
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APPENDIX B: ESTIMATION OF ξ AND ǫr FROM T0 AND Γ.

The detailed calculations of A, B, α, α′ and β were performed by Böttger et al. assuming Mott VRH
(γ = 1/(d + 1)) while we have γ = 1/2. Thus our fit result Aξ = 1.1 nm cannot be used straightforwardly
to get ξ. In this appendix, we first try to estimate in which interval A must lie in the case of γ = 1/2 and
then we use the value of T0 as an additional experimental constraint on ξ.

It appears that the exponents α, α′ and β should remain unchanged when going from γ = 1/(d + 1) to
γ = 1/2. This can be readily seen for α = α′ = 1 in the framework of Pollak’s calculations [9]. Moreover,
the fact that α = 1 for γ = 1/2 is confirmed by many analyses of experimental results using Eq. (4) [29]
[31] [35] [38] [40] [41] [42] [45]; while, in what concerns α′ the experimental situation is unclear (see Sec.
I). However, the prefactors A and B are likely to be changed by the presence of a Coulomb gap. In this
case, we can state at least A ≤ 1/2, since A = 1/2 comes from the replacement of Em/(kBT ) ≃ 1

2 (T0/T )γ

by Em/(kBT ) − eFrm/(kBT ) in Eq. (1). Such a substitution obviously overestimates I in the presence
of an electric field since it neglects both the influence of returns and the insensitivity of a large number of
pair currents with respect to F . From A ≤ 1/2 we deduce ξ ≥ 2.2 nm. Using the Böttger, Bryksin et al.
value [22] [17] [18] A = 1/6, we find ξ = 6.6 nm which, using Eq. (5) gives ǫr = 29, while ξ ≥ 2.2 nm leads
to ǫr ≤ 86.

According to Imry et al. [62], one expects ǫr = N1(ξ/λT.F.)
2 where λT.F. is the Thomas Fermi screening

length and N1 = 1 according to Abrahams and Lee [65]. Thus, using Eq. (5), λT.F. ≃ 0.08A−3/2 nm which
leads to λT.F. = 1.2 nm for A = 1/6 and λT.F. ≥ 0.23 nm for A ≤ 1/2. In crystalline metals with a
concentration n of one electron per atom we have typically λT.F. ≃ 0.06 nm. Here we expect n to be of
the order of 0.1 and since the standard screening theory yields λT.F. ∝ n−1/6, the value of 0.23 nm for our
sample is plausible. However, we cannot exclude that the upper value of 1.2 nm is plausible too. Indeed, it
was theoretically found [66] that close to the transition, electronic diffusion is considerably lowered, which
should reflect in a lowering of screening, i.e. in an (unknown) increase of λT.F.. Moreover, if as recently
suggested [67], many body effects come into play in Efros-Shklovskii VRH, one expect both a reduction of
the 2.9 factor in Eq. (5) and a change of the A value. Finally, considering all these unknown effects, Aξ
is found to have the correct order of magnitude and we estimate that ξ ≈ 7 nm.

The determination of the dielectric constant ǫr of the system is a very interesting working direction
for the future due to the fundamental interest of ǫr in localization and MIT studies. This is also a strong
argument in favor of a precise theoretical determination of the numerical parameters in Eq. (3). Even
if those parameters are not completely known, the relative evolutions of ǫr as a function of the dopant
concentration, magnetic field, etc. should be reachable with the ǫr extraction method we used.
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Figure Captions

FIG. 1. Experimental setup: the 9 µm thick Y0.19Si0.81 layer is deposited onto a sapphire substrate
with two interdigited gold electrodes. Thermalization of the sample was ensured by 43 gold wires (4
represented) bonded on the left gold pad. Upper right corner : small 1 MΩ chip heater allowing thermal
resistance measurements at low temperature (see Appendix A).

FIG. 2. Current as a function of electric field at various temperatures below 1.3 K : for clarity only 18
out of the 36 different curves were represented. Inset: R(F → 0) vs. 1/T (dots), for temperatures above
4 K. The dashed line corresponds to an activated law with a characteristic temperature of 40 K.

FIG. 3. Logarithm of the resistance as a function the electric field to temperature ratio, for 14 tem-
peratures among the 28 measured ones.

FIG. 4. Normalized value of T−γ for 3 values of γ as a function of the logarithm of the resistance at
zero electric field. The normalized T−γ is (T−γ − T−γ

Min)/(T−γ
Max − T−γ

Min) where TMin and TMax are the
two extreme values of the temperature T selected for the plot. Inset : residue (i.e. measured minus fitted
value) of the linear fit of ln[R(F → 0)] as a function of T−γ , for γ = 1/4 (open circles) and γ = 1/4 (closed
circles).

FIG. 5. Effective exponent of the current vs electric field law, as a function of the electric field, for 6
temperatures.

FIG. 6. The length L extracted from the slopes of the ln(V/I) vs F/T lines at F → 0 using Eq. (4)
(dots), and the fitted L = L0 (T0/T )1/2 law (continuous line).

FIG. 7. The Ψ(F, T ) function (given by (T/T0)
1/2 ln(I/IE.S.), with IE.S. = (V/R0) exp[−(T0/T )1/2])

as a function of F/T for all the data except the very high field points. Ψ increases more slowly than F/T
(the dashed line corresponds to Ψ ∝ F/T ) and its evolution can be fitted (solid line) using the Böttger
et al. prediction Ψ = Γ(F/T ) − ∆(F/T )β with β = 1.15 ± 0.1, Γ = (1.25 ± 0.5) × 10−5 K mV−1 and
∆1/β/Γ = 0.70 ± 0.07. Inset : same Ψ vs. F/T dependence with linear scales showing that the ∆(F/T )β

term plays a role at low F/T values; the dashed line corresponding to Ψ ∝ F/T .
FIG. 8. F/T dependence of Γ(F/T )− Ψ(F, T ) , with Γ = 1.25 × 10−5KmV−1, for all the data points

except the very high field ones. The dashed line corresponds to a ∆(F/T )β dependence with β = 1, and
shows that β > 1. Solid line : fit with β = 1.15 and ∆ = 1.4 × 10−6(Km/V)β . Inset : same data with
linear scales, the dashed line corresponding to a ∼ F/T dependence.

FIG. 9. Thermal resistance Rth(T ) measured by dissipating a controlled power in the small 1 MΩ chip
(see Fig. 1). Dashed line : fit of the data with a T−3 law.

FIG. 10. Derivative of the power dissipated in the YSi sample with respect to the effective electron
temperature Te, as a function of Te. For each (I, V ) point, Te is calculated using Eq. (A1). The points line
up in curves corresponding to different cryostat temperatures among which 5 are indicated in the figure.

For comparison, the three straight lines correspond to 3 power laws dP/dTe ∝ T
(γ−1)
e with γ − 1 = 3, 5

and 9.
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