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Onset of the nonlinear dielectric response of glasses in the two-level system model.

J. Le Cochec and F. Ladieu∗

DSM/DRECAM/LPS, C.E.Saclay, 91191 Gif sur Yvette Cedex, France
(Dated: February 1, 2008)

We have calculated the real part χ′ of the nonlinear dielectric susceptibility of amorphous in-
sulators in the kHz range, by using the two-level system model and a nonperturbative numerical
quantum approach. At low temperature T , it is first shown that the standard two-level model
should lead to a decrease of χ′ when the measuring field E is raised, since raising E increases the
population of the upper level and induces Rabi oscillations cancelling the ones induced from the
ground level. This predicted E-induced decrease of χ′ is at odds with experiments. However, a
good agreement with low-frequency experimental nonlinear data is achieved if, in our fully quantum
simulations, interactions between defects are taken into account by a new relaxation rate whose
efficiency increases as

√
E, as was proposed recently by Burin et al. (Phys. Rev. Lett. 86, 5616

(2001)). In this approach, the behavior of χ′ at low T is mainly explained by the efficiency of this
new relaxation channel. This new relaxation rate could be further tested since it is shown that it
should lead: i) to a completely new nonlinear behavior for samples whose thickness is ≃ 10 nm;
ii) to a decrease of nonequilibrium effects when E is increased.

PACS numbers: 61.43.Fs,77.22.Ch,72.20.Ht

Amorphous materials exhibit universal anomalous properties at low temperature. In 1971, Zeller and Pohl [1]
discovered below 1 K a quasilinear behavior of the specific heat in a number of glasses contrasting with the Debye
law of crystalline materials. Anderson, Halperin, Varma [2] and Phillips [3] proposed an explaination based upon the
existence of localized two-level systems (TLS). Their origin may be due to the tunneling of atoms or groups of atoms
between two equilibrium positions separated by a narrow energy barrier featuring asymmetric two-well potentials.
They are assumed randomly distributed in energy splittings and tunneling barriers as a consequence of the structural
disorder of these materials. This model has proven to be successful to understand most salient experimental features.

The standard TLS model assumes defects do not interact with one another. However, defects are strongly coupled
to their environment and can emit or absorb phonons. It leads to an indirect interaction between nearest neighbors
via the phonon field [4]. Certain recent failures to explain nonequilibrium data (at a few kHz) [5] underscore the likely
involvement of these interactions below 100 mK. However, these nonequilibrium effects are small corrections of the
kHz stationnary response, and, up to recently, examples of stationnary susceptibilities strongly affected by interactions
were very rare : in the kHz regime, it was argued that the ultra-low-T (T ≃ 1 mK) plateau of the dielectric constant
in the linear regime, strongly different from the expected logarithmic increase, resulted from interactions [6]. Very
recently, such a conclusion was drawn from internal friction experiments [7].

In this work, we show that including interactions in the TLS model with a recently proposed mechanism [8] strongly
affects the nonlinear stationnary dielectric susceptibility χ′ of amorphous insulators at a few kHz. A very complete
set of such data was published a few years ago by Rogge et al. [9], twenty years after the pioneering work of Frossati
et al. [10]. In the linear regime, χ′ decreases when T decreases, reaches its minimum at Trev and then increases
below Trev (before reaching the above-mentioned ultra-low-T plateau χ′

plat). According to the standard TLS model,

the χ′ decrease above Trev is due to the progressive freezing of the diagonal (or relaxational) part of the response,
while the χ′ increase below Trev comes from the induced off-diagonal (or resonant) part of the susceptibility : this
effect enlarges as T decreases as do all quantum effects. However, due to the quantum nature of χ′ below Trev, one
expects χ′ to be strongly depressed by a strong measuring electric field E at a given T . This can be guessed from the
quantum saturation phenomenon which is very general in two level systems [27]. Indeed, increasing E decreases the
population difference between the two energy levels : as the Rabi oscillations produced by E on the upper level are
in phase opposition with respect to the ones produced on the ground level, the quantum response, once averaged on
many independent TLS’s, tends to zero when E is increased. Strikingly, Rogge et al. experiments show the opposite
trend : χ′(T < Trev) increases when E is increased.

As it is carefully explained in Ref. [9], this behavior does not result from heating of the sample by E. To give
a supplementary argument with respect to Ref. [9], let us note that if Elin is the upper field below which the
dielectric susceptibility is measured as being field independent, one expects that the heating of the sample, for a given
E >∼ Elin, is more important when T decreases. A heating effect is thus expected to strech the χ′(T ) curve of an
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amount increasing as T decreases, i.e. one expects
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to hold at low T , i.e. mainly at T ≤ Trev.. As can be seen, e.g. on the Fig. 3 of Ref. [9], the trend of the data is
exactly the opposite of Eq. (1). Finally, since heating effects can be ruled out, the fact that below Trev, χ′(E >∼ Elin)
does not behave as expected from the quantum saturation phenomenon seems extremely intriguing in the framework
of the standard TLS model.

However, this was not pointed out since the non linear effects in the TLS model were, up to now, only calculated
by using the adiabatic approximation [11]. Such an approximation states that TLS’s are at every moment at thermal
equilibrium, i.e., it disregards any coherence effects. It predicts an increase of χ′ with E, i.e. it qualitatively accounts
for the experimental behavior. However, in the specific case of the real part of the susceptibility, the consistency of
the adiabatic approximation is questionnable [12]. Indeed, as it is very clearly stated in Ref. [11], this approximation
does not hold for TLS’s whose Tunneling energy ∆0 is too small, and yet it finds that the nonlinear part of χ′ is
dominated by the smallest ∆0 values (see after Eq. (3.30) in Ref. [11]). More precisely [11], with p0 ≃ 1 D the TLS
dipole, even for the lowest electric fields E ≃ 1 kV/m of frequency ω ≃ 1 kHz, the adiabatic approximation fails when
∆0

<∼
√

h̄ωp0E ≃ 3 µK, while it is well known, from instationnarity experiments [5], that smaller Tunneling energies
exist in glasses. Besides, the second puzzling point is that, according to the authors themselves [11], the reason of
the increase of χ′ with E in the adiabatic approximation is physically obscure, which leaves unsolved the question of
the expected ”quantum saturation effect” above mentionned. Finally, several predictions of Ref. [11] are somehow
contradicted by experiments [9] : instead of the predicted Trev ∝ Eγ with γ > 1, the measured data yield γ <∼ 1/2;
below Trev, at a given E, the predicted peaked behavior of ∂χ′/∂T is not observed; at very low T , the observed E
dependence of χ′

plat contradicts the predictions.
This work goes beyond the adiabatic approximation, even though, due to the few simplifying assumptions that

we have made (see Eq. (2)), we do not intend to yield a fully ”from first principle calculation”. The key point is
that phase coherence is not discarded here since non linear effects are treated by a fully quantum non perturbative
method. In the first part, we show that the standard TLS model cannot explain the low-frequency experimental data
below 100 mK since it yields, at low T , the above-mentioned quantum saturation phenomenon. In a second part,
interactions between defects are added by using an interaction mechanism proposed very recently by Burin et al. [8],
and a successful agreement is obtained with experiments. Finally, we briefly discuss experimental predictions implied
by Burin et al.’s interaction mechanism.

I. STANDARD TWO-LEVEL SYSTEM MODEL

A. Bloch equations of TLS

1. Dynamics of a unique isolated TLS

Consider a TLS that is sitting in a double-well potential and assume this defect has a dipole moment p0. Its energy
splitting ǫ is related [15] to the asymmetry energy ∆ and to the tunneling matrix element ∆0, describing transitions

between the wells, by ǫ =
√

∆2 + ∆2
0. Due to finite ∆0, the eigen states extend over both sides of the TLS, and the

position operator r is no longer diagonal in this eigen basis. As a result, when an external electric field E is applied
to p0, the coupling Hamiltonian qE.r is not diagonal in the eigen basis [5] (upon which all the operators of this work
are expressed), yielding a total Hamiltonian :

H =
1

2

(

ǫ 0
0 −ǫ

)

+

(

∆
ǫ

∆0

ǫ
∆0

ǫ −∆
ǫ

)

p0.E cosωt,

or H = −s.Ω, with s = h̄
2Σ where Σ are the three Pauli matrices and Ω is an external effective field (Ω components

are given below, note Ωy = 0), which shows an effective spin operator s is associated to the TLS. The systematic
use of ”spin” language comes from the fact that the three Pauli matrices, combined with the identity matrix, form a
general basis for TLS’s. Whatever its physical nature, any operator can be expressed as a linear combination of these
four matrices, e.g., the density operator ρ can be written : ρ = (1/2)I + (1/h̄)S.Σ, where S is the quantum mean
value of the spin operator s . This shows that Sx and Sy describe the coherence effects contained in the off-diagonal
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terms of ρ, while Sz is proportional to the population difference between the levels (the occupation probabilities are
given by the diagonal terms of ρ).

The movement of p0 and thereafter the dielectric response of the material stem from the dynamics of S. For a
perfectly isolated TLS (note that this implies that T = 0) the evolution of S in the external field Ω is only a precession
around the external field Ω, as can be seen from the Schrödinger equation which leads [5] to ∂S/∂t = S × Ω.

2. Dynamics of an ensemble of non-isolated TLS’s

At finite T , the dynamics of the TLS must include the relaxation toward its equilibrium value since each TLS
interacts with its environment (phonons or neighboring defects). Since these interactions occur randomly for a given
TLS, the dynamical equation must deal with ensemble averaged properties S̄, i.e. with quantities averaged over many
similar TLS’s. This evolution is given by the Bloch equations, namely

∂S̄

∂t
= S̄ × Ω +

S̄− < S̄ >relax

τrelax
, (2)

where the last term states that the relaxation of S̄ toward the environement equilibrium values < S̄ >relax must
be added to the quantum dynamics (see Appendix A). In Eq. (2) it is assumed that the relaxation of a given S̄
component, say S̄x, occurs with a well defined time constant, say τx. In the important case of short time scales, one
needs to go beyond this approximation since echo signals do not generally decay as a simple exponential ([13], [14]).
This subtle effect is irrelevant here since, as already stated e.g. in Ref. [5], we are only interested in the long time
range solution of Eq. (2), namely χ′(1kHz), i.e. we focus on the particular case ωτ2 ≪ 1 (see below). Similarly the
relaxation term of Eq. (2) might become more complicated in the case of very strong fields [36], leading, e.g., to a
S̄y/τx,y term in the relaxation of S̄x (see Appendix B). However this should not be the case here since we only focus
on the onset of the non linear regime (p0E will not much exceed kBT ). As a result, the relaxation terms can be
derived quite simply, as we show now.

i) Phonon induced relaxation.
Let us first focus on phonon field relaxation. The occupation probabilities are altered by the emission or the

absorption of phonons, yielding [15] a relaxation of S̄z, with the relaxation time τ1 = κ1/(ǫ∆2
0) tanh ǫ

2kBT , where κ1

is a sample-dependent constant. Since phonon processes occur randomly and independently for various TLS’s, they
break the phase coherence of the ensemble of (noninteracting) TLS’s, yielding a relaxation time 2τ1 for S̄x and S̄y.
What are the thermodynamic values < S̄x,y,z > to which S̄x,y,z relax ? By second order expansion of dynamical
correlation functions, it was shown [16] that this relaxation occurs towards the so-called ”instantaneous equilibrium
values”, namely, < S̄x,y,z(t) >= Tr(< ρ (t) > S̄x,y,z) where < ρ(t) >= exp(−H(t)/(kBT ))/T r(exp(−H(t)/(kBT )) is
the ”instantaneous” thermodynamical density operator and kB is Boltzmann’s constant. For this result to be valid,
several conditions must be fullfilled, among which the most stringent one is, by far : |p0.E| τc ≤ h̄ where τc is the
correlation time of the random electrical field acting on a given TLS due to its small interactions with its neighbors
(see next paragraph ii) ). Finally, these phonon processes yield in the Bloch equations a term (S̄z(t)− < S̄z(t) >)/τ1

for the population relaxation, and (S̄x,y(t)− < S̄x,y(t) >)/(2τ1) for the relaxation of the coherence terms.
Does τ1 depend on time ? On one hand, under the above stated assumption |p0.E| τc ≤ h̄, it was argued [16] that

τ1 does not depend on time (see also Ref. [17]). On the other hand, one may argue [11] that, since the applied electric
field modulates the asymetry energy ∆, one should use τ1(t) = κ1/(ǫeff∆2

0) tanh
ǫeff

2kBT , where ∆eff = ∆ + p0E cosωt

and ǫeff =
√

∆2
eff + ∆2

0 arise from the diagonalisation of the total t dependent Hamiltonian H . The use of τ1(t) is

natural within the frame of the adiabatic approximation [11] where the system is assumed to be at thermal equilibrium
at every instant. In our fully quantum approach, the question is much more difficult. In the particular case of the
low frequency real part of the susceptibility, however, one can easily explain why using either τ1 or τ1(t) lead to very
similar results. Indeed, τ1(t) and τ1 mainly differ only for the TLS’s whose gap lie in the range ǫ ≤ p0E. But, as it
will be shown in the insets of Fig. 1 and Fig. 3, the gaps of the TLS’s driven in the nonlinear regime by a given E
extend on a much larger domain (see sections I.B) and II.B)): this is one of the main results of our fully quantum
approach. Thus the possible time dependence of τ1 is not expected to change the results. This was carefully checked by
performing all the calculations reported here twice, once using τ1, once using τ1(t): the resulting differences between
both assumptions turned out in any case to be totally negligible. Hence, throughout the paper τ1 is considered as
time independent, by simplicity.

With the above relations, we get for the diagonal elements < ρ1,1(t) > and < ρ2,2(t) > :
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< ρ1,1 (t) >=
1

2
+

Ωz

2
√

Ω2
x + Ω2

z

tanh
h̄
√

Ω2
x + Ω2

z

2kBT
,

and

< ρ2,2 (t) >=
1

2
− Ωz

2
√

Ω2
x + Ω2

z

tanh
h̄
√

Ω2
x + Ω2

z

2kBT
.

For its off-diagonal elements, it is found :

< ρ1,2 (t) >=< ρ2,1 (t) >=
Ωx

2
√

Ω2
x + Ω2

z

tanh
h̄
√

Ω2
x + Ω2

z

2kBT
,

where

Ωx (t) = −2
∆0

ǫ

p0.E

h̄
cosωt,

Ωz (t) = − ǫ

h̄
− 2

∆

ǫ

p0.E

h̄
cosωt.

Finally, one finds for the phonon field contribution:

< S̄x >=
h̄Ωx

2
√

Ω2
x + Ω2

z

tanh
h̄
√

Ω2
x + Ω2

z

2kBT
,

< S̄z >=
h̄Ωz

2
√

Ω2
x + Ω2

z

tanh
h̄
√

Ω2
x + Ω2

z

2kBT
,

and < S̄y >= 0.

ii) ”Spin-spin” induced relaxation
Let us now turn to ”spin-spin” interactions : for a given TLS, the effects of thermal transitions of its neighboring

TLS’s can be modeled as a small (fluctuating in time) electric field, i.e., as small fluctuating terms δH(t) ≪ ǫ, kBT .
The latter inequality ensures that the relaxation of the population of the levels (involving S̄z) will not be sensitive
to δH(t). It is shown in the Appendix A that, for a given TLS, the oscillations of Sx,y(t) are no longer regular but
progressively deformed by the random δH(t) terms: due to the absence of correlations between the δH(t) values seen
by various TLS’s, ensemble averaging leads, by cancelation of phases of many TLS’s [21], to a relaxation of S̄x,y to
zero (while Sx,y remains finite for any given TLS). This happens on a short characteristic time scale τ2 ≪ 0.1ω−1 and
yields a supplementary S̄x,y/τ2 for the relaxation of the coherence terms.

The temperature dependence of τ2 is not clear at present : in echo experiments [28], [29], both τ2 ∝ T−1 as well
as τ2 ∝ T−2 were reported [30]. This might come both from the fact that accounting for the detailed shape of echo
signals requires a very subtle theory (see e.g. [13]) and from the fact that several mechanisms contributes to τ2.
Indeed, the pioneering work [22] of Black et al. predicted a τ2 ∝ T−2 dependence but very recent calculations [23]
based upon the mechanism used in part II found that τ2 ∝ T−1 could be justified at low T . Since this new mechanism
will be used in the last section, we use throughout this work τ2 = κ2/T , where κ2 is a sample dependent constant.
In order to try to take into account the various mechanisms which might contributes to τ2, the parameter κ2 will be
widely varied, as can be seen in Fig. 2. Last, owing to the smallness of the p0E values considered here, we neglect
any E effect on τ2 as explained in Appendix B.

iii) Final form of the Bloch equations
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Inserting the above relaxation terms in Eq.(2), the three Bloch equations can be written as follows:

dS̄x

dt
− Ωz (t) S̄y +

S̄x− < S̄x >

2τ1
+

S̄x

τ2
= 0, (3a)

dS̄y

dt
− Ωx (t) S̄z + Ωz (t) S̄x +

S̄y

2τ1
+

S̄y

τ2
= 0, (3b)

dS̄z

dt
+ Ωx (t) S̄y +

S̄z− < S̄z >

τ1
= 0, (3c)

where all the S̄/τ terms come from the relaxation processes, while all the ΩS̄ terms arise from the quantum
dynamics, i.e. from the fact that H and s do not commute.

Equations (3a) and (3b) also write

dS̄+

dt
+ iΩz (t) S̄+ +

S̄+

τ∗
2

= iΩx (t) S̄z +
< S̄x >

2τ1
, (4)

with

S̄+ = S̄x + iS̄y,

and τ∗
2 = 2τ1τ2

2τ1+τ2

.

Let us note that τ∗
2 appears due to the existence in eqs.(3a)-(3b) of the two terms S̄x,y/(2τ1). Even if they are

required by consistency (see above and Ref. [24]), these two terms do not exist in the pionneering works accounting
either for the small instationnarities [5] or for echo experiments [28], [29], [30]. In fact these two terms play a negligible
role in the nonlinear susceptibility. To show this, let us first note that as long as τ1 > τ2, one gets τ∗

2 ≃ τ2, i.e. the
Eqs. (3a)-(3c) amount to the simpler Bloch equations used before (especially in pulse echo experiments). The key
point is that, in the (∆, ∆0) plane, this domain where τ1 > τ2 is quite large : it is shown in the inset of Fig. 1 and
in Ref. [25] that this domain contains, at least, all the TLS’s such that ǫ ≤ e1,2 = (κ1T/κ2)

1/3. As shown in the
inset of Fig. 1, e1,2 ≃ 0.2 K is much larger than the p0E values studied in this work. This indicates that the TLS’s
standing out of the τ1 > τ2 domain should not be affected by E, i.e. they should be in the linear regime (see Ref.
[26]). To summarize, nonlinear effects should come mainly from the τ1 > τ2 region where the two terms S̄x,y/(2τ1)
are negligible. This will be analytically demonstrated in section B)2).

3. Non perturbative resolution of the Bloch equations

The Bloch equations cannot be solved analytically and even their numerical resolution is so far a great challenge.
However, in the audio-frequency range, some approximations can be made which strongly simplify the calculations.
As τ∗

2 is much shorter than the typical time (∼ 0.1
ω ) to modify the populations, S̄z may be considered constant [27]

in the right hand-side of Eq. (4). The coherence terms follow adiabatically the population evolution. They reach at
every moment the stationary state corresponding to the ”frozen” occupation numbers.

Therefore, Eq. (4) can be solved independently of Eq. (3). The stationary solution of Eq. (4) is

S̄+ =
iΩxS̄z+ < S̄x > /2τ1

iΩz + 1/τ∗
2

, (5)

which inserted into Eq. (3) leads to a differential equation for S̄z :

dS̄z

dt
+

Ω2
x/τ∗

2

Ω2
x + 1/τ∗

2
2 S̄z +

S̄z− < S̄z >

τ1
=

ΩxΩz

Ω2
x + 1/τ∗

2
2

< S̄x >

2τ1
, (6)

S̄z(t) in Eq. (6) is expanded into its Fourier series to get its stationary state. The expansion is limited to a finite
number of harmonics. This number, of the order of 10, is found a posteriori when a stable and accurate result is
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obtained. So the differential equation is equivalent to a linear system whose solutions are the harmonics S̄n
z . The

inverse Fourier-transform gives the periodic evolution of S̄z(t). The coherence terms S̄x and S̄y are deduced from Eq.
(5) where S̄z(t), the solution of Eq. (6), is inserted. Finally, the first harmonics S̄1

x of S̄x(t) is sought, to be included
into the dielectric susceptibility (see Eq. (7) below).

Indeed, the susceptibility [5] of a single TLS reads

χ̄ =
−2 |p0|
|E| cos θ

(

∆

ǫ

S̄1
z

h̄
+

∆0

ǫ

S̄1
x

h̄

)

, (7)

and it must be averaged over the distribution of TLS’s [5] and over the dipole-orientation angle θ to yield the total
susceptibility of the sample :

χ = P

∫ ∆max

0

d∆

∫ ∆0max

∆0min

d∆0

∆0

∫ 1

−1

d (cos θ) χ̄ (∆, ∆0, θ) . (8)

In the remainder of this article, we concentrate on the real part χ′ of χ which is linked to the capacitance of the
sample, i.e., to its dielectric constant ǫr by :

ǫr − 1 =
χ′

ǫ0
.

B. The quantum saturation effect: the quantum part of χ′(T ) is depressed by a E increase

1. Numerical results

We have used the standard values for amorphous-SiO2: p0 = 1 D, P = 3 × 1044 Jm−3, κ1 = 10−8 sK3 (all the
energies in τ1 taken in K), ∆0min = 10−6 K, ∆0max = 10 K, ∆max = 10 K. As explained above, we took τ2 = κ2/T ,
where κ2 was ranged from 3.10−11 sK to 10−7 sK, allowing to check our fundamental assumption ωτ2 ≪ 1 provided
T ≥ 0.5 mK. Last, the numerical relative accuracy of our simulations was, in any case, better than 10−3 : this was
checked very carefully, both by increasing the number of harmonics when solving Eq. (6) and by letting the successive
integration procedures converge to better than 10−4. For each set of parameters E, T, κ1, κ2, ∆0,min at least 4 × 104

couples of (∆, ∆0) were computed.
The simulations are displayed on Fig. 1. The resonant response (low temperature) is strongly depressed by the

drive level, while the relaxation contribution (high temperature) is little affected. This is at odds with the experiments
[9] where increasing E leads to an increase of both the resonant response and of its slope |∂ǫ′r/∂T | below Trev. Let
us note that the curve labeled ”linear response” was obtained independently by a standard series expansion of the
Bloch equations keeping only, as in Ref. [5], the terms proportionnal to E : as E is made very small, the nonlinear
calculations very precisely converge towards the linear regime.

However, the extreme sensitiveness of the resonance to the external field is very striking. It decreases rapidly
while |p0.E| << kBT . The low-temperature phase-coherent upturn is destroyed by its environment (the external
field), although the perturbation is much smaller than any thermodynamical quantity, which suggests that this effect
has a quantum origin. This is further confirmed by the inset of Fig. 2 showing the influence of T and τ2 on
δχ′(E, T ) = 1 − χ′(E, T )/χ′(0, T ) : for a given E, the smaller T , the larger δχ′, which is expected since quantum
effects generally increase as T decreases. Similarly, δχ′ is larger when κ2 is made smaller, i.e., when quantum coherence
is made more ”fragile”. Finally, the dimensionless δχ′ appears to depend not only on E, T, κ2 but also on κ1, and it
is shown in the main part of Fig. 2 that all these dependencies are a universal function of a dimensionless scale η,
namely, :

δχ′ =

{

0.1 ×√
η if η <∼ 1

0.1 × ln(η) if η ≫ 1
with η =

p0E

kBT
(

κ1

T 2κ2
)α, (9)

where α ≃ 0.45 ± .05 and ln(η) might be replaced by a power law of η with an exponent lower than 0.1. This
universal δχ′(η) dependence holds only when the relaxational part of χ′ can be totally neglected, i.e., well below
Trev ≃ 50 mK : in Fig. 2, only data corresponding to T ≤ 10 mK have been plotted. For these low T , δχ′(η) remains
universal even when (κ1, κ2, E) are varied over several decades. The factor κ1/(T 2κ2) in η becomes very large at low
T , yielding nonlinear effects even for very small E: this expresses that the lower T , the smaller the onset field of the
nonlinear regime, as already seen on Fig. 1. Let us mention that the data of Fig. 2 correspond to the particular case
θ = 0.
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FIG. 1: Inset: At T = 10 mK, κ1 = 10−8 sK3, and κ2 = 10−8 sK, the domain of TLS’s such that τ2 < τ1 is quite large and
contains all the gaps smaller than e1,2 = (κ1T/κ2)

1/3 -see [25]-. Even at p0E = 5.12mK this domain is larger than the one of
the TLS’s driven in the nonlinear regime defined by ǫ ≤ ǫonset ≃ 70 mK (see Eq. (11c) ). Note that ǫonset ≫ p0E (p0E is the
small black area very near the origin): this explains that the nonlinear effects are visible even at very low fields, as shown in the
main Figure. Main Figure: Dielectric susceptibility of amorphous-SiO2 at 1 kHz vs temperature simulated at various fields
-the value of p0E in Kelvin labels each curve- within the standard two-level system model with the following set of parameters:
p0 = 1 D, κ1 = 10−8 sK3, κ2 = 10−9 sK, ∆0,min = 10−6 K, ∆max = ∆0max = 10 K, P = 3× 1044 Jm−3. The low-temperature
response vanishes rapidly as the electric field is increased due to the quantum saturation phenomenon. The linear response was
obtained by an independent perturbative method.
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FIG. 2: Inset : δχ′ = 1− χ′(E, T )/χ′(0, T ) plotted versus p0E (in kelvins). Curve A corresponds to p0 = 1 D, κ1 = 10−8 sK3,
κ2 = 10−9 sK, ∆0,min = 10−6 K, ∆max = ∆0max = 10 K, P = 3 × 1044 Jm−3 and T = 2 mK. The other three curves show
the effect upon quantum saturation of the parameter which was changed with respect to A : increasing T , as well as decreasing
κ1, decreases δχ′; while decreasing κ2 increases δχ′, as expected due to the quantum nature of δχ′. Main figure : The various
influences of the simulation parameters can be reduced to a universal function of the dimensionless variable η = p0E

kBT
( κ1

T2κ2

)α

with α = 0.45 ± .05 numerically. The dashed line shows that δχ′ ∝ √
η when η <∼ 1. The various parameters were ranged over

several decades : 10−10 sK3≤ κ1 ≤ 10−8 sK3; 3 × 10−11 sK≤ κ2 ≤ 10−7 sK; 10−6 K≤ ∆0,min ≤ 10−4 K; 10−8 K≤ p0E ≤ 3
mK. The data of this figure correspond to the particular case θ = 0.
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2. Physical interpretation

To further understand the universal δχ′(η) and demonstrate its quantum origin, let us briefly go into the structure
of the Bloch equations. By using the identity Ωx < S̄z >= Ωz < S̄x >, Eq. (6) can be written :

dS̄z

dt
+

S̄z

τz
=

< S̄z >

τz,1
,







1
τz,1

= 1
τ1

(

1 + 1
2

(Ωxτ∗

2
)2

1+(Ωzτ∗

2
)2

)

1
τz

= 1
τ1

(

1 + τ1

τ∗

2

(Ωxτ∗

2
)2

1+(Ωzτ∗

2
)2

) , (10)

In Eq. (10), one gets at E → 0 : τz = τz,1 = τ1. As argued in section I)A)2), the nonlinear behavior should come
from the TLS’s such that τ1 > τ2: in this case we see indeed from Eq. (10) that increasing E decreases τz much more
than τz,1. This strongly depresses the off diagonal suceptibility, as we show now.

Let us first derive, from Eq. (10), the critical value E∗ such that 1/τz becomes larger than 1/τz,1: focusing on
the gaps ǫ lying within the τ1 > τ2 domain, i.e. in the domain where τ∗

2 ≃ τ2, E∗ is determined by the condition
τ1τ2Ω

2
x ≃ 1 + Ω2

zτ
2
2 , yielding :







p0E∗

ǫ = h̄T
kB

√
κ1κ2

if kBǫτ2 ≤ h̄ (11a)
p0E∗

ǫ = ǫ
√

κ2

κ1

if kBǫτ2 ≥ h̄ (11b)
,

where all the energies are expressed in kelvins. With the standard values κ1 = 10−8 sK3 and κ2 = 10−9 sK, we see
that p0E

∗ is much smaller than ǫ. Indeed, for T = 10 mK we get p0E
∗/ǫ = 2.10−5 for the smallest gaps following

Eq. (11a), and, for example, p0E
∗/ǫ ≤ 3.10−3 for the gaps ǫ ≃ kBT which follow Eq. (11b). Solving Eq. (11b) with

respect to ǫ, for a given E, leads to a characteristic gap

ǫonset =
√

p0E

(

κ1

κ2

)1/4

, (11c)

where all the energies are in Kelvins. For the highest p0E ≃ 5.12 mK studied here, we get ǫonset ≃ 70 mK. As
shown in the inset of Fig. 1, ǫonset is both much larger than p0E and corresponds to a domain smaller than the one
defined by our assumption τ1 > τ2.

To show that E∗ in Eq. (11b) is indeed the critical field for a given TLS, at which the kind of nonlinearities of
Figs. 1-2 onsets, let us now compare χ′(E ≪ E∗) and χ′(E∗).

i) If E ≪ E∗, we get from Eq. (10) τz ≃ τz,1 ≃ τ1. Solving Eq. (10) is straightforward and leads for the nth

harmonics of S̄z(t) :

S̄n
z =

< S̄n
z >

1 + n2ω2τ2
1

, (12)

where < S̄n
z > is the nth harmonics of < S̄z(t) >. Remembering that the region of interest is ǫ < ǫonset, it

can be checked that ωτ1 ≫ 1 for basically all the considered TLS’s. This yields, from Eq. (12), S̄z(t) ≃< S̄0
z >.

Furthermore, since p0E ≪ ǫ due to Eqs. (11), we get < S̄z(t) >≃< S̄0
z >, which, once combined with the identity

Ωx < S̄z(t) >= Ωz < S̄x(t) >, yields S̄z(t) ≃ Ωz < S̄x(t) > /Ωx. Once reported into Eq. (5), this yields :

S̄x(t) ≃ < S̄x(t) >

1 + Ω2
zτ

2
2

(Ω2
zτ

2
2 ), (13)

where in the last factor the fact that Ω2
zτ

2
2 ≫ τ2/(2τ1), which holds for any reasonable set of (κ1, κ2), was used to

drop the term τ2/(2τ1).
ii) For E = E∗, we get from Eq. (10), τz,1 ≃ τ1 and τ1/2 ≤ τz(t) ≤ τ1. The fact that τz is now smaller than τz,1 is

responsible for the onset of nonlinear effects. This can be seen by setting τz = τ1/2 throughout the electrical period.
With this simplification, one gets, with a derivation similar to the one yielding Eq. (13) :

S̄x(t) ≃ < S̄x(t) >

1 + Ω2
zτ

2
2

(
1

2
Ω2

zτ
2
2 ), (14)
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The off-diagonal part of the response in phase with E is χ̄′
x ∝ S̄1

x/E : it is read directly from Eqs. (13)-(14),
remembering that < S̄x >∝ E cosωt. This yields χ̄′

x(E = E∗) ≃ 1
2 χ̄′

x(E ≪ E∗), where the factor 1/2 comes from

the above relation τz = 1
2τz,1, which was a simplification of the case E = E∗. The comparison of Eqs. (13)-(14)

is thus only semi-quantitative, but it yields the main two features of the quantum saturation phenomenon : first
χ̄′(E∗) < χ̄′(E ≪ E∗), second this effect comes from the off-diagonal part of the susceptibility, i.e., it is purely
quantum (the diagonal susceptibility χ̄′

z ∝ S̄1
z/E is much smaller than χ̄′

x due to the fact that ωτ1 ≫ 1 below Trev).
We have here an example of quantum decoherence [33]. It is not surprising that these effects were missed by the

adiabatic approximation mentionned in the introduction since, in this approach, τ2 has disappeared, yielding for the
nonlinear onset [9] no other possibility than |p0.E| ∼ kBT , as expected for a system at equilibrium. Moreover we
have shown that the quantum saturation depends on the precise coupling of the three Bloch equations, i.e. of the fact
that τz evolves faster with E than τz,1 : this is out of reach for the adiabatic approximation since it contains only
one differential equation [11] instead of Eqs. (3a)-(3c). Finally, the results of Figs 1-2 do not depend on the precise
microscopic mechanism involved in τ2, but only on the fact, well established by echo experiments, that, for a vast
subclass of TLS’s one has τ2 ≪ τ1 : this is the main reason of the E-induced depression of χ′ of Figs 1-2.

3. Effect of the density of states

More can be learnt from Eqs. (11), and more precisely from Eq. (11b) which holds for the vast majority of the

TLS’s responsible for the nonlinear behavior. First, let us note that the onset field E∗ increases as
√

κ2/κ1 : this

suggests that the depression of χ′, when E is increased, depends on E
√

κ1/κ2, which, remembering that κ1/κ2 is the

square of a temperature, leads to the dimensionless scale p0E/(kBT )
√

κ1/(T 2κ2) as the natural parameter for the
quantum saturation phenomenon. This dimensionless scale matches exactly the definition of η in Eq. (9).

Second, from the above discussion of Eqs. (13)-(14), the TLS’s such that ǫ ≤ ǫonset are already in the saturation
regime, while the gaps larger than ǫonset are hardly altered by E. It is thus natural to consider the number of TLS’s
such that ǫ ≤ ǫonset as an estimate of the amplitude of the quantum saturation phenomenon 1 − χ′(E, T )/χ′(0, T ),
stating :

1 − χ′(E, T )/χ′(0, T ) ∝
∫ ǫonset

ǫmin

P (ǫ)dǫ ∝
√

E ∝ √
η, (15)

where the last equality was obtained by using the above-stated relationship E ∝ η; while the second equality uses
both Eq. (11c) and the fact that the energetic density of states P (ǫ) is a constant due to the standard distribution
P (∆, ∆0) = P̄ /∆0. Equation (15) yields exactly Eq. (9) derived from the numerical simulations. This argument
enables to state that the small corrections to the standard P̄ /∆0 previously proposed only yield small changes to the
behavior of Figs. 1-2 : this is true, e.g., for the slight depression of the density of states at small gaps derived by
Burin [31], as well as for P̄ /∆1+y

0 with |y| ≪ 1 proposed in Ref. [32].
To summarize this section I), solving the Bloch equations leads to the quantum saturation effect, i.e., to a strong

decrease of the off-diagonal part of χ′ when E is raised. This effect holds for a very large set of κ1 and κ2 -the
main parameters of the model-, and it mainly comes from the TLS’s such that ǫ ≤ ǫonset < e1,2. For an ensemble of
TLS’s with a P̄ /∆0 density of states, quantum saturation goes as E0.5, and such an exponent justifies a posteriori
the nonperturbative character of the method used here. Last, the quantum saturation phenomenon onsets for fields
E∗ ≪ kBT/p0, as seen from Eq. (9). It is thus non-negligible since the field is, in most experiments, decreased well
below kBT/p0. However, in the literature, the trend of the data is systematically the opposite of the one of Figs. 1-2.
Since -see Appendix B- more general Bloch equations, corresponding to larger E, should not qualitatively change the
results of Figs. 1-2, we conclude that the standard TLS model cannot account for the basic features of the nonlinear
experimental data in the kHz range.

II. ADDING INTERACTIONS

A. Burin et al ’s mechanism

At this step, at least one drive-dependent parameter must be added into the model to explain the large discrepancy
with the experimental data. Moreover, it must enhance the relaxation process at low temperature, since coherence is
broken by the external field as shown in Figs. 1-2.
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Recently, Burin et al. [8] proposed an additional field-induced relaxation mechanism. They show that the resonant
dipole-dipole coupling, which is so small in glasses, can be strongly increased by a low-frequency electric field. Indeed,
thermal excitations, which are at zero-field localized on each TLS, tend to delocalize by hopping to resonant nearest
neighbors. This is due to the fact that resonant hopping demands both TLS’s to have very close values of both ∆ and
∆0 : as the electrical field modulates the TLS parameter ∆, the probability of finding, for a given TLS, a resonant
TLS, increases from a negligible value at very low E, to a non-negligible value above a threshold of the external field.
Let us note that this mechanism transports energy; hence it can be treated as a new relaxation mode.

The frequency must be small for the electric field to have time to modulate the coupling parameters. This is of no
consequence here, since our crucial assumption ωτ2 ≪ 1, leading to Eq. (5), already restricts our work to the low
frequency case. Another assumption is that the external field amplitude is smaller than the characteristic splitting
energy ∼ kBT , in order to treat the field as a weak perturbation. The typical values of the frequency and |p0.E| are
respectively 100 Hz and 1 mK but may be softened as a rigourous determination is out of reach.

When the electric field increases, so does the probability of finding a resonant neighbor close enough to yield
tunneling with not too small a probability : the one-particle excitation will relax more rapidly at high E towards
another site. One can show the relaxation rate is proportionnal to the square root of the drive level [8]. To include
this new enregy relaxation channel, we set in Eqs.(3a)-(3c) τ−1

1 = τ−1
1,ph. + τ−1

1B where τ1,ph is the phonon field induced

relaxation mechanism used throughout section I) and where

τ1B =
B

√

|p0.E|
, (16)

with the constant B = 10−5 sK1/2 for physically reasonnable parameters [8]. As a result, increasing E at any given
T leads to an increase of the susceptibility χ′ : this shows that Burin et al.’s mechanism is strong enough to overcome
the decrease due to the ”quantum saturation phenomenon”. However, the agreement between the set of calculated
curves (unreported) and the data is very poor since the net increase of χ′(T ) when E is increased is stronger at high
T than at low T . This is due to the fact that, since relaxation dominates the total response, the most influent TLS’s
are such that ǫ ≤ kBT : their number enlarges with T and so does their supplementary relaxational response due to
the new relaxation channel τ1B.

To interpolate between Fig. 1 and Eq. (16) which appear as extreme cases, one might use the very general argument
that interaction effects should disappear at high T , e.g., above 100 mK -see Ref. [20]-. This demands that the chosen
τ1B(T ) becomes infinite, i.e., negligible, at high T . Such a general requirement can be of course modeled by different
laws but all the ones we tried gave the same kind of behavior for the susceptibility. This is why we report on the
calculations using a simple law, namely,

τ1B (T ) =
τ1B

1 − e−TB/T
with TB = 15 mK, (17)

where τ1B is given by Eq. (16) and the thermally activated behavior models a dipole-dipole coupling constant of
TB = 15 mK : the energy scale TB can be deduced from Fig. 3 of Rogge et al.’s data [9] on a-SiOx since χ′ becomes
T -independent below 15 mK even for E values ten times larger than the range of the linear regime. Of course, this
TB scale can be adjusted empirically since the T where χ′ becomes T -independent depends on the material. As

the coupling constant goes as g/ |r − r′|3 and as [5], for a-SiO2, g ∼ 10 Knm3, we get a mean distance λB between
interacting dipoles of nearly 10 nm.

B. Numerical results

The modified-model predictions using Eq. (17) are displayed on Fig. 3. The values of |p0.E| have been limited to
10 mK because of the restrictions on both the Bloch equations and the field-induced mechanism. A trend completely
different from the one of Fig. 1 is obtained at low temperature since an increase of the response is observed when the
drive level increases.

By computing separately (unreported) in Eq. (8) the two terms of the right hand side of Eq. (7), we checked that
χ′

x behaves qualitatively as in section I) and that the new trend of Fig.3 is due to the diagonal part χ′
z . To explain

this new behavior, one first note that τ1B(T ) is now the upper bound of τ1, even for the numerous TLS’s whose small
∆0 value lead, in section I), to a very large τ1. With ωτ1B(T <∼ TB) <∼ 1, the 1/(ω2τ2

1 ) cutoff of S̄z seen on Eq. (12)
has now disappeared, i.e. the dS̄z/dt term in Eq. (6) can be dropped, yielding :
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FIG. 3: Main Figure : Simulation of a-SiO2 susceptibility at 1 kHz vs temperature with Eq. (8) and the same parameters as in
the main part of Fig. 1. The calculations were done within a modified TLS model where excitations are no longer localized but
can experience field-induced hops to neighboring sites, which is modeled by an additive relaxation channel (see the definition
of τ1B(T ) in Eq. (17)). The data show a linear behavior at low enough drive levels (the p0E values label the curves), an
evolution of Trev with E compatible with experiments and a substantial decrease of the T dependence of χ′ at low T ; Inset
: For p0E ≪ kBT , in the (∆, ∆0) plane, < S̄1

z > is not negligible only within the ǫ < 2T domain. Even for p0E = 0.8 mK,
the hatched area where τz < τz,1 has a non negligible size with respect to this ǫ < 2T domain : this yields a supplementary
T -dependent contribution to the diagonal susceptibility χ′

z which overcomes the E-induced depression of χ′

x seen on Fig. 1,
and yields the E-enhanced χ′ trend seen on the main part of the figure.

S̄z(t) ≃
τz

τz,1

〈

S̄z(t)
〉

, (18)

where τz, τz,1 are defined in Eq. (10). At E → 0, one has τz ≃ τz,1 ≃ τ1, yielding with Eq. (18), S̄z(t) ≃
〈

S̄z(t)
〉

.

With the additionnal remark that
〈

S̄1
z (ǫ < 2T )

〉

≃ h̄p0E/(4kBT ) while
〈

S̄1
z (ǫ > 2T )

〉

≃ 0, one gets, with the standard

P̄ /∆0 density of states, that χ′
z(T ) ∝ + lnT : this is the trend seen above Trev.

To explain the behavior below Trev, the key point is that for quite a large domain in the (∆, ∆0) one has τz/τz,1 < 1 :
since this factor is T dependent, it will modify the T dependence just above derived for χ′

z from Eq. (18). Focusing on
the ǫ ≤ 2T gaps, we get, below Trev, τ1 ≃ τ1,B(T ) and τ1 ≫ τ2 : the condition τz/τz,1 < 1 amounts to τ1τ2Ω

2
x ≥ Ω2

zτ
2
2 ,

i.e. :

ǫ ≤ 2p0E
(

√

τ1B(T )/τ2 sin φ + cosφ
)

with φ = arctan
∆0

∆
, (19)

The τz/τz,1 < 1 condition is shown, as a hatched domain, in the inset of Fig. 3. Even for the lowest E studied
here, it is not negligible with respect to the ǫ < 2T area. Since in the hatched domain one has τz/τz,1 ≃ τ2Ω

2
z/(τ1Ω

2
x),

this factor remains T dependent even below TB when τ1B(T ) has reached its maximum value : this is due to the
fact that τ2 remains T dependent even at very low T . With

〈

S̄1
z (ǫ < 2T )

〉

≃ h̄p0E/(4kBT ), integration of Eq. (18)

within the hatched area yields a contribution δχ′
z ∝ E3/4/T 1/2. Thus: i) this term increases as T decreases; ii) δχ′

z

increases with E, i.e. it can overcome the E-induced depression of χ′
x. Disregarding the slight difference -see [35]-

between the δχ′
x ∝ −E1/2 seen for the quantum saturation phenomenon and the δχ′

z ∝ +E3/4, the linear regime
of Fig. 3, up to p0E = 0.32mK can be seen as resulting from the compensation of both effects. At higher E, the
δχ′

z increase dominates over the E-induced depression of χ′
x, yielding a net increase of χ′ with E. Note that χ′

z(E)
becomes T independent when T ≤ p0E/kB : in this case, indeed,

〈

S̄1
z (ǫ < 2T )

〉

is no longer T dependent. This yields
the substantial decrease of the T dependence of χ′ seen for the two highest E values on Fig. 3.

Last, the off-diagonal susceptibility χ′
x ∝ S̄1

x mainly behaves as in section I), i.e. we recover the quantum saturation
phenomenon yielding, when E is raised, both a decrease of χ′

x and of the slope |∂χ′
x/∂T |. With respect to section

I) the quantum saturation effect is somehow weakened, which can be understood since, for a given E, the number of
TLS’s lying within the ǫ ≤ ǫonset domain of Fig. 1 is larger than the corresponding one in the hatched area of Fig.
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3. Finally, the variations of χ′
x with T remain smaller than the ones of χ′

z , excepted in the case where T < p0E/kB :
the small T dependence of χ′(T < TB; p0E >∼ 5 mK) is thus the only case where χ′

x dominates the T behavior of χ′

on Fig. 3.
To summarize, the bigger the electric field, the smaller the field-induced relaxation time (see Eqs. (16)-(17)), which

enhances the relaxationnal part of the response, leading to a net increase of χ′ with E at a given T . At a given E,
when T decreases below TB, the χ′(T ) increase is due to the fact that τ2 is still T dependent : this is, of course, out
of reach for the adiabatic approximation where τ2 has disappeared. Finally, inserting Burin et al.’s new relaxation
rate in Bloch equations allow to account for the main trend of the nonlinear data : however, in this approach, the
so-called ”resonant” regime below Trev is not a coherent one but, mainly, a field-enhanced relaxation regime.

C. Comparison with experiments

On Fig. 3, one observes a pseudolinear regime up to p0E ≃ 0.05kBT where the dielectric response is quasi-
independent on the external field. This value of the electrical field agrees with the experimental linear regime, which,
depending on the materials, extends up to p0E/(kBT ) in the range [0.02; 0.12] (see Figs. 3-5 of Ref. [9]). We checked
that this pseudolinear regime comes from the form of τ1,B ∝ E−β where β takes the highly nontrivial value 1/2.
Setting lower values for β, such as β = 0.1, yields the quantum saturation phenomenon to dominate, leading to the
same trends as in Fig. 1, at odds with experiments. Setting β = 1 leads to the tendency of Fig. 3 but with a linear
regime reduced to p0E/(kBT ) < 0.01. The second key point is the trend of the reversion temperature Trev with E :
using Eq. (17), i.e., β = 1/2, leads Trev to increase by a factor three when E = 30×Erev, where Erev is the electrical
field such that the nonlinearities onset at Trev. This is in good agreement with Fig. 3 of Ref. [9]. On the contrary,
using β = 1 leads Trev to increase much faster with E : Trev(E = 30 × Erev) = 30 × Trev(E = 0). Finally, the key

role of β = 1/2 is somehow reminiscent of Eq. (9) where δχ′ ∝
√

E, even if an analytical argument supporting this
idea is still lacking.

With respect to experimental data, a failure, at this step of the discussion, is the ratio between the two slopes
∂ǫ′r/∂ lnT below and above the reversion temperature. In Fig. 3 this ratio is near -1.7:1 instead of -1:1 in most
experiments. Furthermore, the low-temperature linear -susceptibility data tend to a T -independent plateau while
they do not in our simulations. At very low temperature, interactions are likely to be so strong that the independent
TLS model does not apply anymore, even with a renormalized relaxation time such as that of Eq. (17). A transition
toward a dipole-glass was invoked to explain the behavior of the samples whose χ′ no longer depends on T below a
few mK. In this picture, dipole orientation is progressively frozen, which would lead to a plateau of the susceptibility
[6],[39] : by continuity, this would weaken the slope ratio near -1:1. Since the TLS model should not apply at very low
T , it is not surprising that the plateau of the susceptibility measured in the nonlinear regime is not well accounted
for by Fig. 3. Indeed, Fig. 3 does not show a completely T -independent plateau but only a substantial reduction of
the T -dependence of χ′ at low T : as stated in II)B), this is due to χ′

x which still exhibits a small T dependence, even
when χ′

z has turned into its T independent regime. However, if, on Fig. 3, the susceptibility is frozen below a given
T , one gets plateaus for χ′ whose heights depend on E, as in experiments. Finally, pushing β toward 1 strengthens
the tendency of χ′ to become T independent at low T (unreported), even if β ≃ 1 leads to the above-mentioned
discrepencies with respect to experimental data. Let us note that some materials (see Rogge et al. [9]) do not yield
any sign of such a glass transition even at T = 0.6 mK.

D. New predictions

Let us move briefly to the physical predictions implied by Burin et al.’s mechanism. Remembering that the inequality
ωτ2 ≪ 1 allowed the key simplification for the derivation of χ′(E, T ) -see Eq. (5)- we restrict ourselves to the kHz
range where this condition is fulfilled. Two main predictions can be done :

i) τ1B(T ) will be suppressed in samples whose thickness h is smaller than the distance λB separating the quasi-
similar TLS’s required by Burin et al.’s mechanism. Indeed, at distances larger than h, dipolar interactions within
the dielectric will be suppressed by the screening effect of the numerous electrons of the electrodes. Thus, if h <∼ λB ,
one should observe a non linear behavior such as the one calculated in section I) -see Fig. 1-, where the quantum
saturation of the levels only remains. In other words, ranging h from a fraction of λB to a few λB in a series of samples
and studying χ′(E, T ) should lead to a gradual transition from Fig. 1 to Fig. 3 if Burin et al ’s mechanism is relevant,
while it should not affect the non linear behavior in the standard TLS model. Note that such an experiment looks
feasible due to the quite large value of λB ≃ 10 nm, -see II)A)-. This is due to the fact that Burin et al.’s mechanism
requires the two interacting TLS’s to have both very close values of ∆ and very close values of ∆0 : these conditions
are stringent enough to make λB much larger than the distance between a given TLS and its nearest neighbor.
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ii) The net relaxation frequency τ−1
1 + τ−1

1B of a given TLS increases as E increases. Thus, nonequilibrium data
should be of smaller amplitude when E is raised. Indeed, they are currently interpreted as resulting from the very
large τ1 existing in any glass due to the subclass of TLS’s whose energy barrier is so high that ∆0 is very small. These
very ”slow” TLS’s have an extremely delayed response to any change of the external constraints, such as the d.c.
electrical, or strain, field imposed to the sample: these TLS’s yield an excess of states at low energy with respect to
the equilibrium density of states, the latter having a small depression at low energies due to TLS-TLS interactions.
To our knowledge, the influence of E on nonequilibrium phenomena has been reported only once, in Rogge et al.’s
work devoted to nonequilibrium phenomena on a mylar sample [41]. Applying a relative strain field F to the sample
leads to a sudden jump of the dielectric capacity C, measured at 5 kHz, followed by a logarithmic relaxation. At
T = 11 mK, i.e., well below Trev, and with F = 2.7 × 10−6, the initial relative jump is dC/C = 13 × 10−7 if the
measuring field is E = 5×104 V/m (see Fig. 1 of Ref. [41]), while it decreases to dC/C = 4.5×10−7 if the measuring
field is E = 8.5× 104 V/m (see Fig. 2 of Ref. [41]). Let us note that, with p0 = 1 D and a relative dielectric constant
of 5, E = 5 × 104 V/m amounts to an energy of 10 mK, of the order of T : in terms of our Fig. 3 this means that
one stands just above the pseudolinear regime, i.e., in a regime where our calculations, as well as Burin’s mechanism,
should apply. Even if this was not investigated systematically, this single experimental datum favors the idea that
nonequilibrium effects should be of smaller amplitude when E is increased, due to the interaction-induced reduction
of the diagonal relaxation time.

III. CONCLUSIONS

In conclusion, we have simulated the nonlinear dielectric susceptibility of amorphous materials by using the TLS
model. Phase coherence effects have been taken into account, which is the main difference with the adiabatic approx-
imation. In the kHz range, the standard TLS model yields a nonlinear behavior at odds with experiments due to the
field induced depression of the quantum response. However, it was possible to fit in many details the experimental
low-temperature field-induced rising response by adding a new relaxation mechanism based upon the existence of
interactions below 100 mK. In this approach, the low temperature response mainly loses its quantum origin at low
frequency. Our work stresses the necessity to inject interactions into the TLS model to get satisfactory predictions.
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IV. APPENDIX

A. Phase decoherence induced by small TLS interactions

In this Appendix, we aim at giving some physical insight into the relaxation term introduced in the dynamics of
an ensemble of TLS’s due to their small mutual interactions. Expanding on the assumption that these interactions
are much smaller than the other relevant energy scales (such as T or the gap ǫ), the basic idea [16] is to model these
interactions by a small random electric field acting on each TLS. This idea is not new [22], [16], and numerical results
are presented here only to help understand theoretical results.

1. Interactions effects when the measuring field E = 0

Consider first the case where the measuring field E = 0. Modeling mutual interactions between TLS’s by a random
electric field leads, for a given TLS, to a total Hamiltonian given, by :

H =
1

2

(

ǫ 0
0 −ǫ

)

+

(

∆
ǫ

∆0

ǫ
∆0

ǫ −∆
ǫ

)

p0.Erand, (A1)
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where the electric field Erand is random in time for the considered TLS, and, at a given instant t, varies randomly
for various TLS’s. Note that Eq. (A1) is expressed in the eigen basis of the TLS.

Defining the density operator ρ(t) by :

ρ(t) =

(

1
2 + z x + iy
x − iy 1

2 − z

)

, (A2)

it is clear that x, y, z are, respectively, the quantum mean values of the three spin operators (S̄x, S̄y, S̄z are the
corresponding symbols once the ensemble average over many similar TLS’s is made). By using ih̄ρ̇ = Hρ−ρH , where
the dot stands for time derivation, the dynamics of x, y, z follows :







ż = −Ω1y , h̄Ω1 = −2∆0

ǫ p0Erand (A3a)
ẋ = −Ω0y , h̄Ω0 = ǫ + 2∆

ǫ p0Erand (A3b)
ẏ = Ω0x + Ω1z (A3c)

.

To characterize the random fluctuations in time of Erand we model its autocorrelation function by <

Erand(t)Erand(t + t′) >t=
u2

p2

0
τc

[θ(t′ + τc) − θ(t′ − τc)] where θ(t) stands for the Heaviside step function, τc is the

characteristic time scale of the fluctuations and u/
√

τc the typical scale of the fluctuating part of the Hamiltonian
H . This means that Erand(t) is drawn at random once every τc and can be considered constant over time intervals
[nτc, (n + 1)τc], where n is an integer. Within each of these intervals, Erand(t) takes the constant value En. This
allows to solve exactly the equation for ÿ obtained from Eqs. (A3) : ÿ + (Ω2

0,n + Ω2
1,n)y = 0. This yields :

y(nτc + t) = y(nτc) cosΩnt +
ẏ(nτc)

Ωn
sin Ωnt, (A4)

where Ωn =
√

Ω2
0,n + Ω2

1,n with Ω0,n and Ω1,n defined as in Eqs. (A3) by setting Erand(nτc + t) = En. Inserting

Eq. (A4) into Eq. (A3a) and Eq. (A3b), with the notation Xn = X(nτc) for any quantity X , we get :











xn+1 = xn − Ω0,nyn

Ωn
sn − Ω0,n ẏn

Ω2
n

(1 − cn) (A5)

zn+1 = zn − Ω1,nyn

Ωn
sn − Ω1,nẏn

Ω2
n

(1 − cn) (A6)

ẏn+1 = Ω0,n+1xn+1 + Ω1,n+1zn+1 (A7)

,

where sn = sin Ωnτc, cn = cosΩnτc. The four equations (A4)-(A7) allow to deduce x, y, z at step (n + 1) provided
the corresponding quantities are known at step n. Choosing the initial conditions x1, y1, z1, yields ẏ1 = Ω0x1 + Ω1z1

which allows to initiate the recurrence. Finally, let us note that choosing the initial quantum state as |Φ1 >=

a1|+ > +
√

1 − |a1|2 exp(iϕ1)|− >, where |+ >, |− > are the eigen states of the TLS, amounts to setting : x1 =

|a1|
√

1 − |a1|2 cosϕ1, y1 = |a1|
√

1 − |a1|2 sin ϕ1, z1 = |a1|2 − 1/2.
Figure 4 shows the dynamics of a TLS defined by ∆ = 1 K, ∆0 = 0.01 K evolving from the initial state a1 =

1/2; ϕ1 = π/2, i.e., from x1 = 0; y1 =
√

3/4; z1 = −1/4. The random field characteristics were set to u/
√

τc = 0.1
K and τc = h/(4ǫ), i.e., τc was chosen four times lower than the Bohr period. Without ’noise’, y(t) exhibits the
well-known regular Bohr oscillations (short-dashed line on Fig. 4). The effect of ’noise’ is to deform these ocillations
(continuous line on Fig. 4) by an amount increasing with time : as a result the periodicity of y(t) gradually disappears.
This is illustrated in the inset of Fig. 4 showing the exponential decrease in time of the absolute value |Cy| of the
autocorrelation of y, defined by Cy(t) =< δy(t′)δy(t′ + t) >t′ /λ2 with δy(t) = y(t)− < y > and λ2 =< (δy)2 >.

Since the value yn depends on the set of values En drawn for the considered TLS from n = 1, ensemble averaging
(over many TLS’s with the same ∆, ∆0) will lead to a cancelation of y due to the absence of correlations between the
noise series seen by different TLS’s. This cancelation happens on a time scale τ2 which should be of the order of the
one of Cy shown in the inset of Fig. 4. This cancelation of y after ensemble averaging amounts to a supplementary
relaxation term S̄y/τ2 in the Bloch equation describing S̄y dynamics.

The dynamics of x(t) (unreported on Fig. 4) is similar to the one of y, yielding a corresponding relaxation term
S̄x/τ2. This contrasts totally with the dynamics of z(t), depicted on Fig. 4: provided the amount of noise δH(t) is
much smaller than the gap ǫ, z(t) stands very close to its initial value z1, even at large times. In fact small fluctuations
exist, with an autocorrelation decrease similar to the one of Cy, but the key point is that |z(t)/ < z > −1| ≪ 1. Hence
the ’noise’ does not yield any supplementary relaxation term in the Bloch equation governing the population dynamics
S̄z.
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FIG. 4: Dynamics of a TLS (∆ = 1 K, ∆0 = 0.01 K) submitted to a random electric field (u/
√

τc = 0.1 K, τc is the quarter

of the Bohr period h/
√

∆2 + ∆2

0
). z, the quantum mean value of Sz, is basically constant (solid line with square symbols),

i.e., mostly unchanged by the random electric field. On the contrary, y, the mean quantum value of Sy, is strongly affected
by random electric field : the periodic Bohr oscillations (short dashed line) seen in the absence of random electric field, are
progressively distorded when random electric field is present. Inset: As a result, Cy, the normalized autocorrelation function
of y(t), decreases exponentially with time.

2. Interaction effects with a finite measuring field E.

When the measuring E is no longer zero, the whole dynamics should be recalculated, with the supplementary
dipolar Hamiltonian corresponding to E. However, the fact that the measuring frequency ω is much lower than 1/τ2

greatly simplifies the problem. Indeed, if ω were zero, taking into account of E would strictly amount to replace ∆
by ∆ + p0.E : with this new definition of ∆, all the previous calculations apply, yielding the same relaxation terms
in the Bloch equations. We will assume that this holds true for finite ω, due to the fact that for the kHz frequencies
considered here, the experimental values of τ2 ensure ωτ2 ≪ 1, even at the lowest T studied in the body of the paper.

B. Validity of Bloch equations.

The three Bloch equations Eqs. (3a)-(3c) are valid in the quasilinear response [34]. When the electric field becomes
strong enough, the relaxation terms form a nondiagonal matrix, e.g. a S̄z/τx,z term might come into play in the
first Bloch equation, and the corresponding Bloch equations are usually named in the litterature Generalised Bloch
Equations (G.B.E.). However, up to our knowledge, these generalized relaxation terms have been calculated only in
the case of transverse fields in the rotating wave approximation [36]. This is at odds with our physical situation : i)
The transverse field case amounts to ∆ = 0, which, by far, is not the case considered here (remember that, due to the
1/∆0 density of states, for most TLS’s one has ∆ ≥ ∆0) ; ii) The measuring field E ∼ cosωt is an oscillating one, not
a rotating one ∼ exp iωt and the rotating wave approximation would be valid only close to the resonance ω ≃ ǫ/h̄, a
condition totally irrealistic here due to the extreme smallness of h̄ω = 2 × 10−7 K.

However, even if they do not apply in our case, one can use the G.B.E. derived in the rotating wave approximation
for transverse fields to guess qualitatively what could be the influence of the off-diagonal relaxation terms. Two points
are worth mentioning :

i) One can easily check that the GBE still yield qualitatively the quantum saturation phenomenon, even if the
off-diagonal relaxation terms are responsible for quantitative modifications. In particular, it was shown, in the limit
of infinite E, that the GBE reduce to the standard Bloch equations with τ2 = 2τ1 and that one gets a vanishing
susceptibility.

ii) In the GBE, the off-diagonal relaxation times become infinite (i.e. negligible) when τc → 0, where τc is the
correlation time of the random field created, on a given TLS, by its neighbors. In the same spirit [37], in the GBE, τ2

is affected by a multiplicative factor
(

1 + Ξ2τ2
c

)

where Ξ = |p0.E| /h̄ is the Rabi frequency. The order of magnitude

of τc in glasses was measured only once by Devaud and Prieur [38] who found τc ≃ 10−8 s at T = 70 mK with an
expected τc ∼ 1/T temperature dependence. The E dependence in the relaxation times can be neglected if Ξτc ≤ 1.
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Aware of these limits, we guess the standard Bloch equations can give a fair approximation as long as |p0.E| does
not exceed 0.1− 1 mK at low temperature. As an additional remark, the validity domain of our calculations extends
as τc decreases.

To summarize, the GBE do not suppress the quantum saturation phenomenon, on the contrary, they are intended
to quantitatively account for the various measurable quantities in the saturation regime (such as linewidths, etc...).
The problem of the strong depression of χ′ when p0E is increased from extremely small values up to 10−4 − 10−3 K
is thus unavoidable and is at odds with Rogge et al.’s experiments [9] which were carried out on various glasses and
showed absolutely no sign of field induced depression of χ′(T < Trev), despite the fact that p0E was varied from 0.05
mK to 50 mK : the fact that the domain p0E ≤ 1 mK was experimentally investigated is of special importance since,
as stated above, in this domain, at least, the Bloch equations used here should be valid.
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