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2Service de Physique Théorique Orme des Merisiers – CEA Saclay, 91191 Gif sur Yvette Cedex, France
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Understanding glass formation is a challenge because the existence of a true glass

state, distinct from liquid and solid, remains elusive: Glasses are liquids that have

become too viscous to flow. An old idea, as yet unproven experimentally, is that

the dynamics becomes sluggish as the glass transition approaches because increasingly

larger regions of the material have to move simultaneously to allow flow. We introduce

new multipoint dynamical susceptibilities to estimate quantitatively the size of these

regions and provide direct experimental evidence that the glass formation of molecular

liquids and colloidal suspensions is accompanied by growing dynamic correlation length

scales.

Why does the viscosity of glass-forming liquids increase
so dramatically when approaching the glass transition?
Despite decades of research a clear explanation of this
phenomenon, common to materials as diverse as molec-
ular glasses, polymers, and colloids is still lacking [1, 2].
The conundrum is that the static structure of a glass
is indistinguishable from that of the corresponding liq-
uid, with no sign of increasing static correlation length
scales accompanying the glass transition. Numerical sim-
ulations performed well above the glass temperature,
Tg, reveal instead the existence of a growing dynamic
length scale [3, 4, 5, 6, 7] associated to dynamic hetero-
geneities [8]. Experiments [8, 9, 10, 11, 12] have indi-
rectly suggested a characteristic length scale of about 5
to 20 molecular diameters at Tg, but its time and tem-
perature dependencies, which are crucial for relating this
finding to the glass transition, were not determined.

We present quantitative experimental evidence that
glass formation in molecular liquids and colloids is ac-
companied by at least one growing dynamic length scale.
We introduce experimentally accessible multipoint dy-
namic susceptibilities that quantify the correlated nature
of the dynamics in glass formers. Because these measure-
ments can be made using a wide variety of techniques in
vastly different materials, a detailed characterization of
the microscopic mechanisms governing the formation of
amorphous glassy states becomes possible.

Supercooled liquids are believed to exhibit spatially
heterogeneous dynamics over length scales that grow
when approaching the glass state [1, 13, 14, 15]. This het-
erogeneity implies the existence of significant fluctuations
of the dynamics because the number of independently
relaxing regions is reduced. Numerical simulations have
focused on a “four-point” dynamic susceptibility χ4(t),
which quantifies the amplitude of spontaneous fluctua-
tions around the average dynamics [3, 4, 5, 6, 7]. The lat-
ter is usually measured through ensemble-averaged cor-
relators, F (t) = 〈δA(t)δA(0)〉 = 〈C(t)〉, where δA(t) =

A(t) − 〈A〉 represents the spontaneous fluctuation of an
observable A(t), such as the density. Dynamic corre-
lation leads to large fluctuations of C(t), measured by
χ4(t) = N〈δC2(t)〉, where N is the number of particles
in the system. The susceptibility χ4(t) typically presents
a nonmonotonic time dependence with a peak centered at
the liquid’s relaxation time [16]. The height of this peak
is proportional to the volume within which correlated mo-
tion takes place [4, 5, 15, 16]. Unfortunately, numerical
findings are limited to short timescales (∼ 10−7 s) and
temperatures far above Tg. Experimentally, detecting
spontaneous fluctuations of dynamic correlators remains
an open challenge, because dynamic measurements have
to be resolved in both space and time [17].

Induced fluctuations are more easily accessible exper-
imentally than spontaneous ones and can be related to
one another by fluctuation-dissipation theorems. We in-
troduce a dynamic susceptibility defined as the response
of the correlator F (t) to a perturbing field x:

χx(t) =
∂F (t)

∂x
(1)

The relaxation time of supercooled liquids increases
abruptly upon cooling, so a relevant perturbing field
is temperature, in which case Eq. 1 becomes χT (t) =
∂F (t)/∂T . Density also plays a role in supercooled liq-
uids, although a less crucial one [18]. Hence, another
interesting susceptibility is χP (t) = ∂F (t)/∂P , where
P is the pressure. Colloidal hard spheres undergo a
glass transition [19] at high particle volume fraction
ϕ. Thus, the appropriate susceptibility for colloids is
χϕ(t) = ∂F (t)/∂ϕ. Equation 1 also applies in the fre-

quency domain, χx(ω) = ∂F̃ (ω)/∂x, where F̃ (ω) can be
the dielectric susceptibility. We will show below that
linear response formalism and fluctuation theory can be
used to relate χx(t) to the spontaneous fluctuations of
C(t), and thus to χ4(t). Thus, χx(t) is an experimen-
tally accessible multi-point dynamic susceptibility that

http://arXiv.org/abs/cond-mat/0512379v1


2

directly quantifies dynamic heterogeneity in glass form-
ers.

For molecular liquids, the dynamics conserves energy,
volume and number N of particles, and one can estab-
lish, in the NPT ensemble relevant for experiments, the
following fluctuation-dissipation theorem,

kBT 2χT (t) = N〈δC(t)δH(0)〉 (2)

where kB is the Boltzmann constant, H(t) the fluctu-
ating enthalpy per particle, and C(t) the instantaneous
value of a generic dynamic correlator F (t). Both C(t)
and H(t) are sums over local contributions [20], NC(t) =

ρ
∫

d3~rc(~r, t) and NH(t) = ρ
√

kBcP T
∫

d3~rĥ(~r, t). Here,
ρ is the average number density, cP the constant pressure
specific heat that sets the scale of the enthalpy fluctua-

tions, 〈δH2〉 = kBcP T 2, so that the field ĥ(~r, t) has unit
variance. Using translational invariance, Eq. 2 can be
rewritten as:

√

kB

cP

TχT (t) = ρ

∫

d3~r
〈

δc(~r, t)δĥ(~0, 0)
〉

(3)

This expression shows that χT (t) directly probes the
range of spatial correlations between local fluctuations
of the dynamics and that of the enthalpy. In the case
of colloids, the dynamics only conserves density and a
similar expression can be obtained

√

ρkBTκT ϕχϕ(t) = ρ

∫

d3~r
〈

δc(~r, t)δρ̂(~0, 0)
〉

(4)

where κT is the isothermal compressibility and δρ̂ denotes
density fluctuations rescaled by their root mean square.

Equations 3 and 4 show that χx(t) probes the extent
of spatial dynamic correlations that differ from the ones
studied in earlier theoretical and numerical works, which
focused instead on χ4(t) = ρ

∫

d3~r〈δc(~r, t)δc(~0, t)〉. We
have, however, established a direct relation between χx(t)
and χ4(t) by using the thermodynamic formalism de-
veloped in [21], which is generically applicable to bulk
glass formers above the glass transition. For dynam-
ics conserving energy and volume, we relate the fluc-
tuations of C(t), and therefore χ4(t) measured in the
NPT ensemble, to its isobaric-isoenthalpic counterpart,
χNPH

4 (t), which quantifies the amplitude of the fluctua-
tions of C(t) in the NPH ensemble in which all configura-
tions have exactly the same enthalpy: χ4(t) = χNPH

4 (t)+
kBT 2χ2

T (t)/cP . Because χNPH
4 (t) > 0, one derives an

experimentally measurable rigorous lower bound [22] for
χ4(t):

χ4(t) ≥
kB

cP

T 2χ2
T (t) (5)

A similar inequality holds between χ4(ω) and χT (ω),
where χ4(ω) denotes the amplitude of spontaneous fluc-

tuations around F̃ (ω). Similar arguments also apply to
χ4(t) computed in the NV T ensemble preferred in nu-
merical simulations. In that case, energy replaces en-
thalpy in Eqs. 2 and 3, and the specific heat at constant

volume, cV , replaces cP in Eq. 3 and relation 5. Finally,
we find that an inequality similar to relation 5 holds for
colloidal systems, for which the volume and the number
of particles are conserved quantities:

χ4(t) ≥ ρkBTκT ϕ2χ2
ϕ(t) (6)

We have determined χx(t) experimentally and numer-
ically in three representative glass formers. For super-
cooled glycerol near Tg ≈ 185 K, the real part of the
dielectric susceptibility, ǫ′(ω), was measured every 1 K
in the temperature range from 192 K to 232 K. After
fitting to a Havriliak-Negami form [1], we use smoothed
finite differences to evaluate χT (ω) = ∂[ǫ′(ω)/ǫ′(0)]/∂T
and show in Fig. 1A the right hand side of relation 5
as a function of inverse frequency. We plot in Fig. 1B
the right side of relation 6 for hard sphere colloids where
χϕ(t) = ∂f(q, t)/∂ϕ. The normalized intermediate scat-
tering function [20] f(q, t) is measured by dynamic light
scattering [23] for a wavevector q close to the first peak
of the static structure factor. Several packing fractions
are studied, from diluted samples where f(q, t) decays ex-
ponentially in ∼ 1 ms to concentrated suspensions with
a two-step decay and a final relaxation time of ∼ 10 s.
Finite differences of data sets obtained for nearby ϕ are
used to deduce χϕ(t). Finally, we show in Fig. 1C nu-
merical data obtained by standard molecular dynamics
simulations of a binary Lennard-Jones mixture, a well-
studied model for fragile supercooled liquids [24, 25]. The
dynamics is recorded at nearby temperatures through the
self part of the intermediate scattering function, whose
characteristic decay time spans a range from 1 ps to 100
ns (using Argon units [24, 25]).

Dynamical susceptibilities behave similarly in all three
cases. All display a peak for t ≈ τα, the average relax-
ation time. The peak height increases when the glass
transition is approached. This behavior represents the
central result of our work. Together with Eqs. 3 to 6,
it provides direct evidence of enhanced dynamic fluctua-
tions and a growing dynamic lengthscale associated with
the glass transition.

How tight the bounds of relations 5 and 6 are depends
upon the specific material and range of parameters stud-
ied. A quantitative answer is given by simulations where
the microcanonical quantity χmicro

4 (t), i.e. the difference
between χ4(t) in the NV T ensemble and kBT 2χT (t)/cV ,
can be easily measured. For the Lennard-Jones mix-
ture, we find that the right side of relation 5 is much
smaller than χ4(t) at high T , but the difference rapidly
diminishes when T decreases. Both sides of relation 5
become comparable for the lowest temperature shown
in Fig. 1C, which is still well above Tg. Following
Ref. [26], we also find that mode-coupling theory predicts
χ4(t) ∼ χ2

T (t) ∼ (T/Tc − 1)−2 near the mode-coupling
singularity Tc > Tg, provided that conserved variables
are properly taken into account.

These results support the idea that relation 5 can be
used as an equality to quantitatively estimate χ4(t) at
low temperature, at least for fragile systems. This use
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FIG. 1: Dynamic susceptibilities in “χ4 units”, right side of
relations 5 and 6 for three glass-formers. (A) χT (ω) was ob-
tained for 99.6% pure supercooled glycerol (in a desiccated
Argon environment to prevent water absorption) by using
standard capacitive dielectric measurements for 192 K ≤ T ≤
232 K (Tg ≈ 185 K). (B) χϕ(t) was obtained in colloidal hard
spheres via dynamic light scattering. The static prefactor,
ρkBTκT , was evaluated from the Carnahan-Starling equation
of state [20]. From left to right, ϕ = 0.18, 0.34, 0.42, 0.46,
0.49, and 0.50. (C) χT (t) was obtained in a binary Lennard-
Jones (LJ) mixture via numerical simulations. From left to
right, T = 2.0, 1.0, 0.74, 0.6, 0.5 and 0.465 (in reduced LJ
units [24, 25]). Relative errors at the peak are at most about
10% for (A) and (C), and 30% for (B). For all of the systems,
dynamic susceptibilities display a peak at the average relax-
ation time whose height increases when the dynamics slows
down, which is direct evidence of enhanced dynamic fluctua-
tions and a growing dynamic length scale.

of relation 5 is equivalent to assuming that dynamic
heterogeneity in molecular liquids is strongly correlated
with enthalpy fluctuations, and through a similar argu-
ment, with density fluctuations in colloids. In fact, sup-
posing that enthalpy is the only source of fluctuations,
δC ≈ (∂C/∂T )P δH/cP , and if we use the definition of
cP , we obtain directly that χ4(t) ≈ kBT 2χ2

T (t)/cP . A
more general result can be obtained by taking into ac-
count that energy and density are both fluctuating quan-
tities, in which case χ4(t) is the sum of two contributions:
χ4(t) ≈ kBT 2χ2

T (t)/cV + ρkBTκT ρ2χ2
ρ(t). The second

term is negligible in most fragile liquids [18], but dom-
inates in colloidal systems. The presence of additional
sources of fluctuations justifies that the rigorously de-
rived inequality 5 does not hold as an equality.

Our results for dynamic fluctuations provide an esti-
mate of the size ξ of dynamic heterogeneity in liquids near
Tg. Because χ4(t) = ρ

∫

d3~r〈δc(~r, t)δc(~0, t)〉, this quan-
tity, once divided by the amplitude of the fluctuations
at zero distance, 〈δc2(~0, t)〉, defines a correlation vol-
ume. The correlation functions are normalized to unity
at t = 0, so 〈δc2(~0, t)〉 is of order one or smaller. Our
simulations indeed show that in the temperature regime
where the dynamics slows down and on timescales not
much longer than the system relaxation time, this aver-
age is of the order of one and displays extremely weak
temperature dependence, as expected for a local quan-
tity in glass formers. Thus, the height of the peak in the
dynamic susceptibility, χ⋆

4 ≈ kBT 2(χ⋆
T )2/cP , yields di-

rectly a correlation volume expressed in molecular units,
χ⋆

4 ≃ (ξ/a)ζ , where a is the molecular size and cP is
expressed in units of kB . Numerical [4, 6] and theoreti-
cal [6, 15, 16, 26] works suggest that ζ ≈ 2 to 4.

A direct comparison between our data and existing
measurements can be performed for glycerol, where mul-
tidimensional nuclear magnetic resonance (NMR) exper-
iments show that ξ = 1.3±0.5 nm for T = 199 K [27, 28].
Assuming a simple compact geometry for heterogeneities,
ζ = 3, we estimate that ξ increases from 0.9 nm at
T = 232 K to 1.5 nm at 192 K. Given the assumptions
involved in both approaches, and the uncertainty about
numerical prefactors of order unity, the agreement is re-
markable. An important physical conclusion of our work
is that dynamic heterogeneity is strongly correlated to en-
thalpy fluctuations in fragile liquids, although there is no
signature of any static large-scale correlations [3, 6, 15].

For other glass-forming liquids, we obtain an estimate
for ξ at Tg by assuming for simplicity that correlators
obey time-temperature superposition, F (t) = F(t/τα),
and using relation 5 as an equality. One gets

χ⋆
4(Tg) ≈ [F ′(1)]2

kB

cP

(

∂ ln τα

∂ lnT

∣

∣

∣

Tg

)2

(7)

The logarithmic derivative is proportional to the well-
known “steepness index” m, introduced in the glass lit-
erature to characterize the fragility of glass-forming liq-
uids [29]. From reported values [1, 29] of the quantities
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FIG. 2: (A) Correlation volume χ⋆

4(Tg) in supercooled liquids
at the glass transition. Filled squares represent a lower bound
to χ⋆

4(Tg) in molecular units estimated through Eq. 7. Dif-
ferent points represent different materials, which are ranked
by their fragility m. Open squares represent the same quan-
tity evaluated from available multidimensional NMR data, us-
ing [28] χ⋆

4 =
∫

d3r exp(−2r/ξ), for glycerol (Tg+ 10 K) [27],
orthoterphenyl (Tg + 9 K) [28, 34] and d-sorbitol (Tg+ 7
K) [28]. A linear fit to the weak increase of χ⋆

4 with fragility
is shown as a dashed line. (B) Correlation length ξ(Tg) in
supercooled liquids at the glass transition expressed in bead
units a. The correlation volume is first evaluated using ∆cP

instead of cP in Eq. 7. Following [30], ∆cP is expressed in kB

“per bead” units accounting for different molecular shapes
and sizes. Using ζ = 3, the result is finally converted into
a length scale expressed in bead units. The known empiri-
cal correlations [29] between m, β and ∆cP translate into a
weak increase of ξ(Tg) with fragility, which we fit with a linear
relation shown as a dashed line.

appearing in Eq. 7 and assuming a stretched exponen-
tial form for F(x) = exp(−xβ), we estimate χ⋆

4(Tg) for
different glass-forming liquids in Fig. 2A.

For complex molecules, fluctuations that are unrelated
to the glassy dynamics might contribute to the specific
heat. These effects may be taken into account by re-
placing cP in Eq. 7 by ∆cP , the jump in specific heat
at Tg, which is sensitive only to the glassy degrees of

freedom. Furthermore, for large molecules, the molecu-
lar size is probably not the relevant microscopic length-
scale, and it is sensible to express the specific heat in
units of kB per “independent bead” instead of molec-
ular units [30]. These physical assumptions are used in
Fig. 2B, where we have converted our results into length-
scales expressed in bead units, and they lead to a trend
similar to that of the main plot but with less scatter: Dy-
namic correlations revealed by χT increase weakly with
fragility [31]. This result is compatible with some theo-
retical approach [32], but contrasts with others that pre-
dict an opposite trend [33]. This discrepancy might arise
from the existence of at least two physically distinct dy-
namic lengthscales, one revealed by χT , and a second
associated to χ4. Although we found that both quan-
tities are comparable for fragile systems, the bound in
relation 5 may underestimate χ4 for strong materials.

To further test our length scale estimate of Eq. 7, we
apply the formula to a polymeric liquid poly(vinyl ac-
etate) (PVAc) using the monomer size for a [27]. We find
ξ ≈ 2.0 nm at Tg, to be compared with the value of 3.7±1
nm obtained at Tg+10K [9, 28] [we assume ζ = 3, and use
the data on PVAc given in [9, 28]]. Again, the agreement
is satisfactory. A similar agreement is found for orthoter-
phenyl and sorbitol, for which available NMR data are
reported in Fig. 2A. Hence, we find that typical values for
the dynamic correlation length at Tg obtained via Eq. 7
are in good agreement with previous experiments per-
formed near Tg [1, 8, 9, 27, 34]. However, our approach
has a broader scope, because it allows one to extend ex-
perimental studies of dynamic heterogeneity to a range
of temperatures not previously accessible and to the full
time dependence of the fluctuations (Fig. 1). Finally, we
remark that even for (strong) Arrhenius molecular liquids
with activation energy E, relation 5 and time tempera-
ture superposition give χ⋆

4(T ) ≥ (kB/cP ) × E2/(kBT )2,
showing that dynamic heterogeneity must also exist in
that case [35], in agreement with the general argument
that for systems with finite range interactions, diverg-
ing time scales must be accompanied by diverging length
scales.

Our experiments provide a quantitative demonstration
that dynamic correlations and length scales increase as
the glass transition is approached. More work is needed
to characterize the time and temperature dependencies
of dynamic fluctuations over a larger range of materials
and parameters. Open issues also concern the precise
space-time geometry of dynamic heterogeneity that fixes
the value of the exponent ζ and the relation between time
scales and length scales, the connection between coopera-
tivity and heterogeneity, and the extension of our results
to the nonequilibrium aging dynamics encountered in the
glass phase.
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