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Nonlinear dielectric susceptibilities in supercooled liquids : a toy model

The dielectric response of supercooled liquids is phenomenologically modeled by a set of Asymmetric Double Wells (ADW), where each ADW contains a dynamical heterogeneity of Ncorr molecules. We find that the linear macroscopic susceptibility χ1 does not depend on Ncorr contrary to all higher order susceptibilities χ 2k+1 . We show that χ 2k+1 is proportional to the k th moment of Ncorr, which could pave the way for new experiments on glass transition. In particular, as predicted by Bouchaud and Biroli on general grounds [Phys. Rev. B, 72, 064204 (2005)], we find that χ3 is proportional to the average value of Ncorr. We fully calculate χ3 and, with plausible values of few parameters our model accounts for the salient features of the experimental behavior of χ3 of supercooled glycerol.

Upon fast enough cooling, most liquids do not cristallize but enter into a supercooled liquid state [1][START_REF] Donth | The Glass Transition[END_REF][3][4][5], where the viscosity η dramatically increases with lowering the temperature T . Below the glass transition temperature T g , η is so high that the system is in practice a solid -the glass-, yet, no structural difference between the glass and the liquid state has ever been detected [1]. Over the past fifteen years, a major breakthrough was the discovery of Dynamical Heterogeneities (D.H.) in supercooled liquids [6][7][8][9][10][11] ; i.e., relaxation happens through collective events gathering N corr molecules, and some groups are relaxing much faster than others. As it is expected that an increase of N corr when lowering T could increase dramatically η, an significant effort was made for measuring the T -dependence of N corr [8,12,13].

It has been argued that the most direct way to draw accurately the T -dependence of N corr from experimental data is based on the a.c. nonlinear susceptibility χ 3 [14][15][16], where χ 3 is the third order response of the fluid to a field with an angular frequency ω. This field can be of any nature, e.g. electric as in [15,16]. More precisely two nonlinear susceptibilities are related to χ 3 : χ 3 , which correspond to the third order nonlinear response at the third harmonics (i.e., at "3ω") and at the first harmonics (i.e., at "1ω") respectively. Bouchaud and Biroli (BB) have shown [14,16] that χ 

Here k B is the Boltzman constant, and τ α (T ) is the typical relaxation time at temperature T corresponding to the relaxation frequency f α = 1/(2πτ α ) where the imaginary part of the linear response is maximum.

∆χ 1 = χ 1 (ω = 0) -χ 1 (ω → ∞)
is the part of the static linear susceptibility corresponding to the slow relaxation process of interest, a 3 is the volume occupied by one molecule, and H and K are two complex scaling functions that approach zero for both small and large ωτ α . Note that the humped shapes of |H (ωτ α ) | and |K (ωτ α ) | are distinctive features of the glassy correlations. BB's prediction relies on very general grounds, such as a generalised fluctuation dissipation relation, and was inspired by spin glass physics [17], where a true second order phase transition happens at T c , accompanied by a critical divergence of χ 3 (while the linear suceptibility χ 1 does not diverge). A consequence of this generality is that the detailed expressions of the scaling functions H and K remain unkown. Here we present a phenomenological "toy" model where, for the first time, BB's predictions are recovered with an explicit expression for the functions H and K. By using plausible values of free parameters, the most salient experimental features of [15,16] can be accounted for. Moreover we obtain new predictions on higher order nonlinear susceptibilities χ 2k+1≥5 . This could motivate new experiments deepening our understanding of the glass transition.

Model : We assume that all D.H.'s are independent from each other and that a given D.H. is a group of N corr molecules evolving in an Asymmetric Double Well potential (ADW), depicted in Fig. 1. Each ADW is characterised by the height of its barrier V and by an asymmetry energy ∆. We neglect internal field effects. On Fig. 1,z represents the axis of the external electric field E(t) = E cos(ωt), and θ 1 is the angle between the field and the well which has the deepest energy at E = 0. For simplicity we assume that θ 2 = θ 1 + π. With respect to earlier versions [19,[START_REF] Böhmer | Chapter 14 in Broadband Dielectric Spectroscopy[END_REF], a key refinement is the assumption that the magnitude of the net dipolar moment µ, in either of the two wells, is given by µ = µ molec √ N corr where µ molec is the molecular moment : This estimator of µ is assumed here because there should not exist any geometrical ordering among the molecules contributing to a given D.H. [6]. With v DH = N corr a 3 the volume of a D.H., the simplest approach, for θ 1 = 0 and ∆ = 0, yields a static polarisation given by (µ/v DH ) tanh(µE/k B T ).

Expanding in E gives ∆χ 1 ∝ µ 2 /v DH , which is independent of N corr since the N corr dependence of µ 2 cancels that of v DH . For all higher orders such a cancellation does not happen, e.g. χ 3 ∝ µ 4 /v DH ∝ N corr . This is the main reason why we find below that χ 1 is blind to N corr contrarily to all higher order susceptibilities.

Let us now consider a set of N identical ADW's. With Π j,k the transition rate from the well k to the well j, we obtain the number n 1 -resp. where e(t)

≡ F cos(ωt) , F = µ molec √ N corr cos(θ 1 ) k B T E and M = µ molec cos θ 1 √ N corr a 3 , δ = tanh( ∆ 2k B T
).
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Setting E = 0 in Eq. 2 yields P = P 0 = Mδ. As M ∼ cos θ 1 , we obtain < P 0 >= 0 where the brackets denote the average over the isotropically distributed values of θ 1 . In the limit of small fields (i.e., e → 0), expanding Eq. 2 to the first order in e yields :

< P 1 (t) >= < MF > (1 -δ 2 ) 1 + (ωτ ) 2 cos(ωt -arctan ωτ ), (3) 
i.e., a Debye response, as expected in any double well model [START_REF] Frölich | Theory of Dielectrics[END_REF]. As the linear dielectric spectra of supercooled liquids are asymmetric in frequency, we assume, as in other phenomenological models [11,[START_REF] Brun | [END_REF], that the values of τ are distributed according to G(τ ), [23]. G(τ ), given in [18] and in Fig. 1, is chosen to recover accurately the experimentally well known linear susceptibility χ 1 (ω, T ) by weighting Eq. 3 with G(τ ) and summing over all values of τ . More precisely, G(τ ) determines the shape of χ 1 (ω, T ), but not its overall magnitude ∆χ 1 . We use the experimentally well known value of ∆χ 1 as an additional constraint in our model : from Eq. 3, we obtain µ 2 molec = 3k B T ǫ 0 a 3 ∆χ 1 /(1 -δ 2 ) ; i.e., µ molec is no longer a free parameter.

Computing χ

3 and χ

(1)

3 : For a given value of N corr and of δ, we consider all ADW's having the same τ and θ 1 . By using Eq. 2, we compute the polarisation up to the third order in field. We first average the result over θ 1 , then sum over τ with weight G(τ ), and finally average over the values of N corr existing among various D.H.'s. The latter average is denoted by [ ] av . This yields quantities -labelled below by an index "m" standing for "model"-which are comparable to experiments [15,16]. Note that this method, by using the values of a 3 , ∆χ 1 , G(τ ) drawn from standard experiments, eliminates θ 1 , ν 0 , V and µ molec . Thus, when comparing our model to the experimental values of χ 3 at a given T , the two remaining free parameters are [N corr ] av and δ. For simplicity we take a single value for δ, and postpone the possible averaging over δ to Ref. [18].

In practice, we solve Eq. 2 by assuming e ≪ 1, and develop Eq. 2, as well as P , in series of e, up to the third order. As the polarisation of a given set of ADW's sharing the same θ 1 , τ, N corr is not symmetric with respect to field reversal E → -E, we set P (t) = q=3 q=0 P q (t) where P q ∝ E q . Since e ≪ 1, one has |P q | ≫ |P q ′ >q | ; i.e., all P q ′ >q can be neglected when looking for P q . Thus, P q is obtained by keeping only the terms ∝ e q in Eq. 2. This was illustrated above to get first P 0 and then P 1 (t) -see Eq. 3-. Repeating the procedure to the order e 2 yields P 2 , [18]. Finally going to the order e 3 gives :

τ d(P 3 ) dt + P 3 = M(1 -δ 2 ) 6 e 3 - 1 2 P 1 e 2 -δP 2 e. (4) 
As P 1 and P 2 are known, the analytical expression of P 3 (t) is readily obtained from Eq. 4. After averaging over θ 1 , τ, N corr , one obtains P 3,m that must be identified with the third order term P 3 of the experimental polarisation. As e 3 ∝ E 3 (3/4 cos(ωt) + 1/4 cos(3ωt)), we recall that P 3 naturally defines the first and third harmonics cubic susceptibilities (with phases -δ (k) 3 , k = 1, 3) as [24] :

P 3 (t) ǫ 0 = 3E 3 4 |χ (1) 3 | cos(ωt -δ (1) 
3 ) +

E 3 4 |χ (3) 3 | cos(3ωt -δ (3) 
3 ).
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Results of the ADW model : A dimensional analysis shows that our model yields P q,m ∝ [< MF q >] av , which has two important consequences. First it yields P q,m ∝< (cos θ 1 ) q+1 >. This implies that the even terms P 2k,m ≡ 0, which ensures that the macroscopic polarisation reverses exactly upon the E(t) → -E(t) reversal, as required by macroscopic symmetry considerations. Second, all odd terms P 2k+1,m are non zero, yielding for the susceptibilities : χ 2k+1,m ∝ N k corr av . This shows that the linear susceptibility χ 1,m is blind to the value of N corr , contrary to higher order susceptibilities which are directly proportionnal to the k th moment of N corr . This first important result is reminiscent of the spin-glass transition [17] which has inspired BB's prediction.

The above mentionned analysis yields χ

3,m that we convert into its dimensionless form X

(3) 3,m = χ (3) 3,m k B T /[ǫ 0 a 3 (∆χ 1 ) 2 ]. Writing X (3) 3,m = |X (3) 3,m | exp[-iδ (3) 3, 
m ] where i 2 = -1, we get finally [18], with x = ωτ : 

3,tot is the weighted sum (see text) of X

3,m (see Eq. 6) and of X

3,trivial corresponding to the cubic susceptibility of independant molecules undergoing rotational brownian motion [16,25]. For f /fα ≥ 1 one has X is displayed here, and that [Ncorr]av = 15. δ and fex have the same values as in Fig. 3.

X (3) 3,m = 9[N corr ] av 5(1 -δ 2 ) ∞ 0 G(τ ) D (3) 3 (x)e i Ψ (3) 3 (x)-arctan(3x) 1 + (3x) 2 dτ D (3) 3 (x)e iΨ (3) 3 (x) ≡ 1 6 - e -i arctan x √ 1 + x 2 1 2 -δ 2 e -i arctan(2x) √ 1 + 4x 2 . ( 6 
)
Note that G nearly obeys Time-Temperature Superposition (TTS) ; i.e., it is nearly [START_REF] Brun | [END_REF] independent on T when plotted as a function of λ = τ /τ α . As ωτ = λωτ α , Eq. 6 shows that X

(3) 3,m equals [N corr ] av times a function which does not depend on T -we take δ as a constant in T -, when plotted as a function of ωτ α . Thus Eq. 6 gives the first phenomenological expression of the function H(ωτ α ) of Eq. 1 -we recall that according to BB's prediction X

(3) 3 is [N corr ] av H-. Eq. 6 thus shows explicitly that the T dependence of X

(3) 3 is directly that of [N corr ] av , up to small effects coming from small violations of TTS in G(τ ). This is the second important result of our model. Fig. 2 shows the frequency behavior of |X

3,m |. For most values of δ, the spectrum has a low pass character. In the vicinity of δ ⋆ = 1/ √ 3 the spectrum has a humped shape. To understand this, let us note P stat the solution of Eq. 2 at ω = 0. One gets P stat = M tanh[e + ∆/(2k B T )]. Expansion to order e 3 yields X stat 3,m (δ ⋆ ) = 0. Around δ ⋆ , X stat 3,m moves from a negative "Ising-like" value (low δ's), to a positive value for very asymmetric ADW's (high δ's). When ω = 0, the effective relaxation time τ /(cosh e + δ sinh e) comes into play, which contributes also to X

(3) 3,m . This is why close to δ ⋆ , |X

3,m | has a humped shape in frequency. A deeper, i.e., much less model dependent, reason for this humped shape is given below.

To compare our model to the nonlinear susceptibilities of glycerol reported in [15,16], we first focus on the case f ≥ f α . Fig. 3 shows that choosing [N corr ] av = 5 and δ = 0.60 yields a very good agreement between our model and the values of X

(3) 3 (f ≥ f α ) measured at T = 204.7K ≃ T g + 16K. We emphasize that the agreement is good for both the modulus and the phase of X

(3) 3,m . Fig. 4 shows the same kind of comparison for X (1) 3 , for which an expression similar to Eq. 6 is given in [18]. On Fig. 4 the best agreement between our model and the data reported in [16] is obtained with [N corr ] av = 15 and δ = 0.60 : With respect to the data, our model underestimates the phase by ≃ 20 • and yields a maximum for the modulus at f ⋆ ≃ 1.6f α not far from the experimental value of 2.5f α . The fact that the optimal [N corr ] av is not the same in Fig. 3 and in Fig. 4 may come from interferences between the nonlinear responses of the D.H.'s with different τ , see Eq. 6 and Ref. [18]. These interferences have different effects on X 3,m , see [18], and this is not fully captured by our toy model, due to its simplicity. We emphasize, on the other hand, that [N corr ] av = 5 -15 is the right order of magnitude when comparing to the values given by 4D-NMR experiments [8] or by Ref. [13]. Moreover our model accounts for the fact that |X 3 | in glycerol. Finally, δ = 0.60 amounts to ∆ ≃ 1.4k B T ≈ 1.4k B T g , i.e. it does not introduce a new energy scale. Now, let us move to the case f < f α . Here we must take into account the finite lifetime τ ex of D.H.'s ; i.e., the fact that the liquid flows at large times [10]. The effective value of [N corr ] av decreases with frequency when f τ ex ≤ 1, since a given molecule is involved in various DH's at large times ; i.e., it becomes independent of other molecules in the long run : as X (k=1,3) 3,m ∝ [N corr ] av , this will give a humped shape to the nonlinear susceptibility even for the values of δ where |X (k) 3,m | has a low pass character. To take this idea into account, we simply use the -well knownnonlinear response X (k) 3,trivial of independent molecules (see [15,16,25]) and assume that it dominates the measured X (k) 3 when f τ ex ≪ 1. In practice, we write heuristically the total cubic susceptibility X (k) 3,tot (with once again k = 1, 3) as :

X (k) 3,tot = pX (k) 3,m + (1 -p)X (k) 3,trivial with p = exp (-f ex /f ), see [18]. For f > f α , X (k) 3,tot is of course very close to X (k) 3,m , since p ≃ 1. For f ≤ f α , Figs. 3-4 show that, with f ex = 0.14f α , X (k) 
3,tot has the same global qualitative trends as the measured X (k) 3 in glycerol. We note that f ex /f α = 0.14 amounts to Q = τ ex /τ α ≃ 7, which is compatible with the values Q ≃ 3 -10 reported before [10] albeit still debated [18]. We think that the oscillation of |X (k) 3,tot | around 0.1f α is unphysical and comes from the very naive way of including τ ex in our analysis.

To conclude, we have developped a very simple toy model for the nonlinear susceptibilities in supercooled liquids. We find that χ 2k+1,m ∝ [N k corr ] av ; i.e., that χ 1,m is blind to the value of N corr contrary to all higher order susceptibilities. This yields the first phenomenological expression of the scaling functions involved in BB's predictions. With reasonnable values of parameters, the main trends of nonlinear experimental data are recovered. Our model explains very simply why the nonlinear responses yield brand new information on the glassy dynamics. This simplicity may trigger more experiments deepening our understanding of the glass transition. where e(t) ≡ F cos(ωt) ,

F = µ molec √ N corr cos(θ 1 ) k B T E and M = µ molec cos θ 1 √ N corr a 3 , δ = tanh( ∆ 2k B T ). (8) 
As explained in the article, the two sources of nonlinearity in Eq. 8 are : (i) the nonlinear character of the equilibrium value P stat = M(δ cosh e + sinh e)/(δ sinh e + cosh e) = M tanh[e + ∆/(2k B T )] ; and (ii) the nonlinear character of the instantaneous relaxation time τ ef f = τ /(δ sinh e + cosh e).

We expand P (t) in series of powers of the field E up to third order P (t) = P 0 + P 1 (t) + P 2 (t) + P 3 (t) where P q ∝ E q . As E(t) 2 = E 2 (1 + cos(ωt))/2 and E(t) 3 = E 3 (3 cos(ωt) + cos(3ωt))/4, P 2 (t) and P 3 are the sum of two terms :

P 2 (t) = P (0) 2 + P (2) 2 (t) P 3 (t) = P (1) 3 (t) + P (3) 3 (t), (9) 
where the superscript in parentheses indicates the index of the relevant harmonics. For example, P 3 (t) is given by a term oscillating at the fundamental frequency, and by a term oscillating at three times the fundamental frequency.

As the condition e ≪ is well obeyed experimentally, one can neglect all P q ′ >q terms when computing P q . Therefore P q is obtained by keeping only the terms ∝ e q in Eq. 8 above.

To the order e 0 it is found that :

P 0 = Mδ. (10) 
Now, going to the order e 1 , one has (by using the result for P 0 in Eq. 10) :

τ dP 1 dt + P 1 = M 1 -δ 2 × F cos(ωt), (11) 
which yields :

P 1 (t) = M(1 -δ 2 ) 1 + (ωτ ) 2 F cos (ωt -arctan(ωτ )) . (12) 
We now go to the order e 2 and get :

τ d(P 2 ) dt + P 2 = -δF P 1 (t) cos(ωt). (13) 
As P 1 (t) oscillates at frequency ω, the right hand side of Eq. 13 contains one constant term and another term oscillating at 2ω. Therefore, one finds :

P (0) 2 = M(δ -δ 3 )F 2 2 1 + (ωτ ) 2 cos [π + arctan(ωτ )] P (2) 2 (t) = M(δ -δ 3 )F 2 2 1 + (ωτ ) 2 1 + (2ωτ ) 2 cos [2ωt + π -arctan(ωτ ) -arctan(2ωτ )] . (14) 
Finally, we reach the order e 3 and get :

B. Averaging over θ1,τ and Ncorr.

As explained in the main article, three kinds of averages must be done in our ADWP model : (i) First, we have to average over the angle θ 1 , the values of which are assumed to be isotropically distributed. Denoting this average by < >, one finds < (cosθ 1 ) 2k+1 >= 0 and < (cosθ 1 ) 2k >= 1/(2k + 1), for any integer k. As we have found above that P q ∝ MF q , one obtains < P q >∝< MF q >∝< (cosθ 1 ) q+1 >. Therefore, all the even integer harmonics vanish, contrarily to all odd harmonics which are found to be

< P 2k+1 >∝ N k corr . (22) 
(ii) Second we have to average over various relaxation times τ , with weight G(τ )dτ . The distribution function G is chosen so as to recover accurately the experimental linear response, χ 1 . Therefore G must simultaneously solve the two following equations for the real part, χ ′ 1 , and the imaginary part, χ ′′ 1 :

χ ′ 1 (ω) -χ ′ 1 (∞) ∆χ 1 = ∞ -∞ G(ln τ ) × 1 1 + (ωτ ) 2 × d ln τ χ ′′ 1 (ω) ∆χ 1 = ∞ -∞ G(ln τ ) × ωτ 1 + (ωτ ) 2 × d ln τ, (23) 
where we have used the fact that G(τ )dτ = G(ln τ )d ln τ . In practice one uses [START_REF] Brun | [END_REF]23] : 

G(ln(τ )) = N GGE e -( β 
Here Γ(x) is the Euler gamma function and α, β, σ, γ, τ 0 are T dependent parameters. For glycerol, a good set of parameters is given by : 

with T expressed in Kelvins. Note that τ 0 is nearly proportionnal to the typical relaxation time τ α defined by τ α = 1/(2πf α ) where f α is the frequency of the peak of χ ′′ 1 . Additionally one finds from Eq. 23 :

∆χ 1 = (1 -δ 2 )(µ molec ) 2 < [cos(θ 1 )] 2 > k B T ǫ 0 a 3 , (26) 
and with < (cos θ 1 ) 2 >= 1/3, we obtain 3,m as those obtained in the main article with a single value of δ. The line is a guide to the eyes.
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 13 related to the average value of N corr over the various D.H.'s existing at a given T -noted [N corr (T )] av -by : χ (3) 3 (ω, T ) ≈ ǫ 0 (∆χ 1 ) 2 a 3 k B T [N corr (T )] av H (ωτ α ) χ ((ω, T ) ≈ ǫ 0 (∆χ 1 ) 2 a 3 k B T [N corr (T )] av K (ωτ α ) .

Figure 1 :

 1 Figure 1: Inset : ADW model where each D.H. of Ncorr molecules evolves in an asymmetric double well making an angle θ1 with respect to the applied field E. Main graph : distribution of relaxation times for Glycerol at T = 204.7K, [18, 23].

  n 2 -of ADW's in state 1 -resp. state 2-by solving the two master equations : ∂n 1 /∂t = -Π 21 n 1 + Π 12 n 2 and ∂n 2 /∂t = -Π 12 n 2 + Π 21 n 1 . Assuming thermally activated barrier hoppings, one gets [19, 20] : Π 12 = W exp[(∆/2 + µE cos θ 1 )/k B T ], Π 21 = W exp[-(∆/2 + µE cos θ 1 )/k B T ] where W = ν 0 exp[-V /k B T ]. Here ν 0 = 1/τ m where τ m is the microscopic characteristic time of the thermal fluctuations within each well. The polarisation P of the set of N identical ADW's is given by P = µ cos(θ 1 )(n 1 -n 2 )/(N v DH ). The two master equations yield the dynamical equation for P , which involves the relaxation time τ = 2W cosh(∆/2k B T ) of the identical ADW's : τ dP dt + P (δ sinh e + cosh e) = M (δ cosh e + sinh e)

Figure 2 :

 2 Figure 2: (Color Online) Effect of the dimensionless asymmetry energy δ on |X (3) 3,m | : the spectra have a low pass character excepted close to δ ⋆ = 1/ √ 3. Here [Ncorr]av = 5.

Figure 3 :

 3 Figure 3: (Color Online) For [Ncorr]av = 5, δ = 0.60 comparison of the ADW model with the experiments of Ref. [16] at T = 204.7K. X

  and the experiments are very well accounted for by the model. For f /fα ≤ 1, only the global trends of the data are restored by the model with fex/fα = 0.14. Inset : Phases corresponding to the main graph, same symbols.

Figure 4 :

 4 Figure 4: (Color Online) Same symbols as in Fig. 3, excepted that X (1) 3

( 3 ) 3 |

 33 is peaked at a frequency ten times smaller than |X(1) 

  δ sinh e + cosh e) = M (δ cosh e + sinh e)

  α = 10 β = -5.5996 × 10 -1 + 4.0900 × 10 -3 T + 1.50795 × 10 -5 T 2 σ = 1.57 × 10 -1 exp 407.525 T -141 γ = -7.826920 + 1.015 × 10 -1 T -4.32345 × 10 -4 × T 2 + 6.34415 × 10 -7 × T 3 τ 0 = 1.1511 × 10 -15 × exp 19.08905 × 127.38588 T -127.38588 ,

(µ molec ) 2 Fig. S 5 :

 25 Fig. S 5: Values of δ1, δ2 yielding, with a gaussian weight distribution, the same values of X (k)
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We detail hereafter the calculations for X 3,m summarized in our main article. We then give a short justification of our assumption p = exp[-f ex /f ] made in the end of the main article. Finally, we give more informations about what happens when averaging over the dimensionless asymmetry parameter δ.

I. THE NONLINEAR SUSCEPTIBILITIES IN THE ASYMMETRIC DOUBLE WELL POTENTIAL MODEL.

A. Calculations for one set of identical Asymmetric Double Wells.

In this section we consider a set of N identical Asymmetric Double Wells (ADW) ; i.e., a set of ADW's sharing the same values for all microscopic parameters of the model. Denoting n 1 (respectively n 2 ) the number of ADW's in state θ 1 (respectively θ 2 = θ 1 + π), the polarisation P of the considered set of ADW's is given by :

where it was assumed that the net dipolar moment in either of the two states of a given ADW is given by µ = µ molec √ N corr , with µ molec the molecular dipole moment (see the main article). Combining the two master equations for n 1 (t) and n 2 (t), with n 2 (t) = N -n 1 (t), one gets the equation for the dynamics of P :

We separate the terms oscillating at ω from those oscillating at 3ω. Denoting by

2 |-the amplitude of P 1 (t) -respectively P (2) 2 (t)-, one obtains :

3 ) dt + P

(1) 3

as well as

3 ) dt + P

(3) 3

By using Eqs. 12-14 and the two previous equations, one finds :

3 ) dt + P

3 (ωτ ) cos ωt + Ψ

where D

3 (ωτ ) cos(ωt + Ψ

3 (ωτ )) ≡

as well as

3 ) dt + P

3 (ωτ ) cos 3ωt + Ψ

with D

3 (ωτ ) cos(3ωt + Ψ

(3)

Note that the above definitions of D

3 and Ψ

3 are consistent with those in the main article. The solution of Eq. 18 is given by

The solution of Eq. 19 is given by

At this point the two free parameters of our ADWP model are N corr and δ. In particular Eq. 27 sets the value of µ molec , since ∆χ 1 and a 3 are experimentally well known.

(ii) The third and the last average to be taken is over the values of N corr . Indeed the proportionality expressed by Eq. 22 remains true when averaging over the τ 's. Therefore, it is very easy in our model to take into account the fact that there exists a distribution of the values of N corr among various dynamical heterogeneities of a real supercooled liquid. As all above equations have been derived for given free parameters N corr and δ, we superpose the ensemble of models with the same δ but with different values of N corr . Denoting the average over N corr by [ ] av , we obtain from Eq. 22 :

where χ 2k+1,m is the macroscopic nonlinear susceptibility of the order 2k+1, and where the index m stands for "model", so as to avoid any confusion between the nonlinear susceptibilities produced by the model and those corresponding to what is experimentally measured (denoted χ 2k+1 ). Note that χ 2k+1,m represents generically the set of components of the macroscopic polarisation which is proportionnal to E 2k+1 and oscillates at one of the odd harmonics between 1ω and (2k + 1)ω. For example, χ 3,m corresponds to two terms : one is proportionnal to χ

3,m -note the presence of exponent (1)-and oscillates at 1ω, and the other one is proportionnal to χ The macroscopic polarisation P is given by [24] :

where the function χ 1 (t) corresponds to the experimental macroscopic linear response while χ 3 (t 1 , t 2 , t 3 ) is the experimental macroscopic nonlinear response. It is shown in ref. [24], that for a field E(t) = E cos(ωt) one gets :

3 ) + 1/4E 3 χ

3 ) + ...

We now must identify the result of our model with above relations giving the experimental macroscopic polarisation. We start from Eqs. 20-21 and average over θ 1 which yields :

We then average over the τ 's, as in Eq. 23, and then over N corr . With Eqs. 21-30, we obtain :

where the last equality was obtained by replacing χ 

As in the main article one defines the dimensionless nonlinear suscceptibility as X

3,m = χ

3,m ] one obtains :

3,m ≡ phase of X

3,m = arctan S

(3) SIN

S

(3) COS with S

(3)

A similar calculation for χ

3,m yields : 

Note that in the first equality of Eq. 35 there is a factor 3 instead of 9 found in Eq. 34. This comes from Eq. 30 where there is a factor 3/4 for the cubic term oscillating at ω while it is only 1/4 for the cubic term oscillating at 3ω.

II. MORE ON THE FREQUENCY DEPENDENCE OF THE WEIGHT p = exp[-fex/f ].

All above calculations have been made as if the lifetime τ ex of the considered Asymmetric Double Wells is infinite. As a supercooled liquid is ergodic above T g , the heterogeneity of the dynamics implies that τ ex must be finite. This comes from the fact that a region of space relaxing faster than the average must become a region relaxing slower than the average, to restore ergodicity. We shall assume, for simplicity, that any ADW is reshuffled with the same characteristic time τ ex , whatever the value of τ it had just before.

After reshuffling, the glassy correlations are different from those established before. Thus, if one performs an average over time longer than τ ex , a given molecule is no longer correlated to any other molecule. This is why, one expects any molecule to become effectively independent of all other molecules in the limit of large times t ≫ τ ex . Therefore one expects, at large times, the measured nonlinear dimensionless susceptibilities X (k) 3 to be dominated by the corresponding susceptibilities X (k) 3,trivial of independent molecules undergoing Brownian rotational motion. Note that X (k) 3,trivial has been fully calculated in Ref. [25]. Very few things are quantitatively established concerning the reshuffling phenomenon ; even the value of Q = τ ex /τ α remains a subject of discussions [START_REF] Richert | Experimental approaches to Heterogeneous Dynamics[END_REF]. Therefore a detailed description of its impact on nonlinear susceptibilities is not available at present. This is why, we heuristically add the nonlinear susceptiblities X (k) 3,m given by our ADWP model (multiplied by the weight p) to X (k) 3,trivial (multiplied by the complementary weight (1 -p)). As the limit of large times t ≫ τ ex corresponds to low frequencies f τ ex ≤ 1, we physically expect that p vanishes in this limit. The simplest way to express this idea quantitatively is to state that the weight (1-p) of the trivial response is given by the probability of a reshuffling event happening during one E oscillation period of 2π/ω. It is reasonnable to assume that the probability of the reshuffling events are given by a Poissonian distribution (1/τ ex ) exp (-t/τ ex ), and therefore :

This is the weighting function that has been used in Figs. 34of the main article. Of course it plays a role only for the range f ≤ f α as one has p(f ≥ f α ) ≃ 1 since f ex /f α ≪ 1.

III. AVERAGING OVER δ.

For simplicity we have presented in the main article the results of our ADWP model obtained for a single value of the dimensionless asymmetry δ. One can generalise the results by averaging over δ, at the cost of additional parameters. To investigate this question, we computed the values of X (k) 3,m for 100 values of δ linearly distributed in the [0; 0.99] interval. We then averaged the complex values of X (k) 3,m by a weight w(δ). For simplicity we have used either a flat distribution which is non zero only between δ min ≥ 0 and δ max < 1 ; or a "gaussian" distribution where

Here C is the proper normalisation constant taking into account that δ is defined only on the [0; 1] interval. Note that δ 1 is close to, but not exactly equal to, the average of δ ; and similarly δ 2 is not exactly its standard deviation due to the fact that δ is restricted to the [0; 1] interval.

Two interesting features are worth noting in this averaging procedure over δ :

• First, the values of X • Second, the shape chosen for w(δ) can strongly change the resulting X

3,m values. To investigate this point, we have fixed the two first moments of δ, and chosen accordingly the parameters δ 1 , δ 2 , δ min and δ max . It is found that X (k) 3,m can be strongly different for a gaussian weight and for a flat weight distributions. This clearly shows the strong importance of the interference effects, evoked in the main article, between the nonlinear susceptibilities of the dynamical heterogeneities corresponding to different values of τ . These interference effects are strong enough to yield, e.g., a change in the log-log slope of X 3,m (f α ) by a factor significantly different from 1 (i.e., larger than 2, or smaller than 1/2). We emphasize that the changes of X 3,m (f ). This is the reason why it is not surprising that fitting the measured values of X 3 requires different values of [N corr ] av , as in the main article. Indeed, it is very likely that the extreme simplicity of our model cannot fully capture these complicated interference effects. However, relaxing only this constraint that the values of [N corr ] av should be the same when fitting X