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We have measured, as a function of the age ta, the aging of the nonlinear dielectric susceptibility χ3

of glycerol below the glass transition. Whereas the linear susceptibility can be accurately accounted
for in terms of an age dependent relaxation time τα(ta), this scaling breaks down for χ3, suggesting
an increase of the amplitude of χ3. This is a strong indication that the number Ncorr of molecules
involved in relaxation events increases with ta. For T = 0.96 × Tg, we find that Ncorr increases by
∼ 10% when ta varies from 1ks to 100ks. This sheds new light on the relation between length scales
and time scales in glasses.

An old plastic ruler under tension has a longer length
than a newly made one [1]. This is a striking illustration
of the aging phenomenon, the hallmark of the physics
of glasses. The physical properties of an aging system
depend on the time ta elapsed since the material has
fallen out of equilibrium; i.e., since the glass transition
has been crossed. Understanding aging is of paramount
importance [1, 2], both from a fundamental and a prac-
tical point of view (many daily-life materials do in fact
age). Yet, there is no universally accepted theoretical
description of the basic mechanisms of aging, although
many scenarii have been proposed (see [2–6]).

One of the most distinctive features of aging is the in-
crease of the physical relaxation time τα with the age ta
[1, 4, 7–12]. In the case of spin-glasses, this increase has
been rather convincingly attributed to the growth of the
numberNcorr of cooperatively relaxing spins. Both simu-
lations [13] and experiments [14] are compatible with this
scenario, and allow one to estimate the dynamical growth
law Ncorr(ta). The situation is much less clear for most
other glassy systems, either experimentally or numeri-
cally [13, 15]. In fact, while there are only two simulations
[16, 17] reporting the growth of a dynamical correlation
length during the aging of model glasses, and few ana-
lytical studies [13, 18, 19], there is to our knowledge no
available experimental result for real glass-formers. The
last decade has witnessed an outburst of activity on dy-
namical heterogeneities and on the determination of the
size Ncorr of dynamically correlated molecules in glasses
[2, 5], but almost all these studies have been confined
to equilibrated systems. Whereas a compelling positive
correlation between Ncorr,eq(T ) and the equilibrium re-
laxation time τα(T ) has been established above the glass
temperature Tg (see [5] and refs. therein), its aging coun-
terpart has not been investigated experimentally. The
aim of the present study is to extend to the aging regime
the experimental determination of Ncorr that relies on
the cubic nonlinear dielectric susceptibility [20, 21]. We
will report, for the first time, clear experimental evidence
of the growth of the size of dynamically correlated regions
during the aging of glycerol – a prototypical glass former.

As argued in [19], non-linear susceptibilities are the
ideal gambits that elicit the growth of amorphous order
in glassy systems. Whereas linear susceptibilities (dielec-
tric, magnetic, elastic, etc.) are blind to amorphous order
and dynamical correlations, the equilibrium cubic nonlin-
ear dielectric susceptibility χ3 of deeply supercooled glass
formers is given, at temperature T , by [19]:

χ3(ω, T ) ≈ Z(T )Ncorr,eq(T )H(ωτα(T )) (1)

Z(T ) ≡
ǫ0∆χ

2
1(T )a

3(T )

kBT
, (2)

where ω = 2πf is the angular frequency, kB the Boltz-
mann constant, ǫ0 the vacuum permittivity, a3(T ) the
molecular volume, and ∆χ1(T ) = χ1(ω = 0, T )−χ1(ω ≫
τ−1
α ) is the contribution to the static linear susceptibil-
ity of the degrees of freedom associated with the glass
transition. In Eq. (1), H(u), with u = ωτα(T ) ≡
f/fα(T ), is a complex scaling function which goes to
zero both for small and large arguments, and peaks
in-between. Eq. (1) can be fully justified within the
Mode-Coupling Theory of glasses [22]; it has been con-
firmed experimentally in [20, 21], and used to extract
precise estimates of Ncorr,eq(T ) in equilibrium. In the
aging regime, it is natural to conjecture [19] that the
above expression remains valid with τα(T ) −→ τα(ta)
and Ncorr,eq(T ) −→ Ncorr(ta), therefore allowing one to
infer information about the growing of Ncorr during ag-
ing. Strictly speaking, such a simple substitution is too
naive: one expects on general ground that (a) the scaling
function H should also be replaced by a different scal-
ing function H̃; and (b) the prefactor Z(T ) might itself
acquire an age dependence: the value of both ∆χ1 and
a could evolve with age, and the temperature T should
in principle [19] be replaced by an “effective” temper-
ature Teff (ta) that encodes the possible deviations to
the equilibrium fluctuation-dissipation theorem [23–25].
However, our experiments are “weakly” out of equilib-
rium, since they reach equilibrium eventually. In this case
we expect that the scaling assumption Eq. (1) general-
ized to the aging regime, with H̃ = H and Z(ta) = Z(T ),
holds to a very good approximation. Our strategy will
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FIG. 1: (Color online) Equilibrium values of the modulus and
the phase of X3, measured in glycerol for three temperatures
around Tg ≃ 188K.

therefore be the following: (i) since the linear suscep-
tibility does not depend on Ncorr, its age dependence
should only come from that of τα(ta). Indeed, we will
establish that χ′′

1(ω, ta) ≈ G′′(ωτα(ta)), where G′′ is the
equilibrium scaling function (see Fig. 3). This allows us
to determine τα(ta) directly; (ii) by waiting long enough
(i.e. ta = 200ks) we measure the equilibrium non-linear
susceptibility χ3(ω, T ) for various frequencies (see Fig.
3), thereby allowing one to obtain the scaling function
H(u); (iii) inserting these informations into Eq. (1) in
the aging regime, we can deduce the age dependence of
Ncorr (up to the assumption that Z(ta) = Z(T ), see Fig.
4) [26].
Experiments. Ultrapure glycerol was purchased from

VWR and placed in our dielectric setup described in Refs
[20, 21, 27]. Glycerol was the dielectric layer of a ca-
pacitor made with stainless steel electrodes separated by
a 8.25µm thick Mylar c© ring. All the aging quantities
were measured with the same T quench: The sample
was first set to 196K ≈ Tg + 8K (where τα ≈ 1s) during
1hr, then it was cooled, without any undershoot, to the
working temperature T = 180.1K (or T = 182.7K) in
1.8ks, and finally T was kept constant within a ±70mK
interval during 200ks. We used a high harmonic purity
a.c. field of amplitude ≤ 3MVrms/m to measure, sepa-
rately, χ3(ω, ta) as well as χ1(ω, ta) and χ1(3ω, ta) -see
[28]. Once χ3(ω, ta) is known, the key quantity is, ac-
cording to Eq. (1), X3(ω, ta) defined as:

X3(ω, ta) ≡
χ3(ω, ta)

Z(ta)
≈ Ncorr(ta)H(ωτα(ta)) (3)

The equilibrium values of X3,eq(ω, T ), obtained after
the end of aging, are plotted as a function of f/fα,eq
in Fig. 1 for T = 180.1K and for T = 182.7K (fα
is defined as the peak frequency of χ′′

1,eq(ω, T ), [29]).

For comparison, we also plot the equilibrium data at
194.1K ≈ Tg + 6K obtained in [20, 21] which shows
that the qualitative trend already found above Tg [20, 21]
holds also below Tg, i.e. |X3,eq| for fixed f/fα,eq(T ) in-
creases when T decreases, [30].

Scaling analysis. During aging both |χ1| and |X3| de-
crease for a given ω, because the dielectric spectrum
shifts to lower frequencies [7–12]. This is illustrated by
the series of symbols on Fig. 2. For not too deep quenches
[7], such as ours, and for our limited range of 3.5 decades
in frequencies, the shape of the spectrum of χ′′

1 is not
expected to change during aging except for an overall
scaling factor. This is confirmed by Fig. 2 where the
χ′′

1(ω, ta) data for all frequencies and all ages can be very
accurately reproduced by the equilibrium susceptibility
χ′′

1,eq(ω, T = 180.1K), up to a rescaling of the frequency
by a factor x(ta) = fα(ta)/fα,eq (see the dotted lines in
Fig. 2 obtained by adjusting the factor x(ta) for each ta).
We have also checked that our values of x(ta) are close
to what is predicted by the ansatz introduced in Ref. [9],
[31]. We have checked that the very same x(ta) factor
also allows us to rescale the χ′

1(ω, ta) data onto the equi-
librium curve. Note that since the χ′′

1(ω, ta) are not pure
power-laws in frequency, horizontal and vertical shifts (in
log-log) are not equivalent. Hence, the accurate rescaling
of Fig. 2 implies that the amplitude of χ′′

1(ω, ta) does not
depend on the age. A finer look at the rescaling suggests
that this amplitude is constant within a 1% uncertainty
range, and if anything, decreases with age. This is impor-
tant for the discussion of the Z(ta) factor in Eq. (1) that
includes ∆χ1(ta) to which χ′′

1 (ω, ta) is proportional. To
estimate the difference between Z(ta) and Z(T ) we in-
voke the “fictive” temperature Tfict(ta) [3, 6, 7, 32] (not
to be confused with the effective temperature Teff ) de-
fined such that χ′′

1 (ω, ta) = χ′′

1,eq(ω, Tfict(ta)). This phe-
nomenological recipe leads to Tfict(ta > 0.3ks) < T+2K.
By extrapolating the T dependence of ∆χ1 above Tg, we
estimate that ∆χ1(ta) may increase by at most 1.1% dur-
ing aging. The order of magnitude is similar to the one
suggested by the rescaling analysis above, albeit with an
opposite sign. Similarly, we estimate that a3 might de-
crease by ∼ 0.2% during aging. Finally, close to 180K,
T/Teff(ta) was found to increase in glycerol during ag-
ing, by ∼ 2% according to [24], but by at most 0.7%
according to the recent work of Ref. [25]. Altogether, we
conclude that Z(ta)/Z(T ) remains very close to unity,
with a probably much overestimated maximum increase
of 4% during aging. This effect is therefore smaller than
the ∼ 12% increase of Ncorr(ta) that we infer from our
analysis below.

Our central experimental result is summarized in Fig.
3 where we now show both χ′′

1(ω, ta) and |X3(ω, ta)| as a
function of f/fα(ta) for 1ks ≤ ta ≤ 200ks. As expected
from the results of Fig. 2, χ′′

1(ω, ta) collapses very well
onto the equilibrium curve. However, this collapse is not
observed for |X3(ω, ta)| (Fig. 3, filled triangles and left
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FIG. 2: (Color online) Aging of the out-of-phase susceptibil-
ity χ′′

1 (ω, ta) of glycerol at T = 180.1K (filled symbols), in
log-log coordinates. The thick (resp. thin) solid line corre-
spond to the equilibrium spectrum at T = 180.1K (resp. at
T = 182.7K). The dotted lines superimposed to the filled
symbols are obtained by translating horizontally the 180.1K
equilibrium spectrum by a factor x(ta) (see text). Inset: Re-
sulting curve for the scaling factor x(ta) = fα(ta)/fα,eq .

axis). The rightmost points of these series of triangle cor-
respond to the equilibrium values |X3,eq(ω, T )| and are
singled out as large black squares. The thick line joining
these black squares is an interpolation that corresponds
to the equilibrium value of |X3,eq(ω, T )| for intermediate
frequencies. At variance with the good superposition ob-
tained for χ′′

1 , Fig. 3 reveals that, for a given f/fα(ta),
the value of |X3(ω, ta)| is systematically below the cor-
responding value at equilibrium. This is exactly what is
expected from Eq. (3): the ratio between these two val-
ues should be equal to Ncorr(ta)/Ncorr,eq(T ), and should
thus increase with age, precisely as observed in Fig. 3.
Defining the vertical logarithmic distance δ, in Fig. 3,
as:

δ(u, ta) ≡
Z(ta)X3(ufα(ta), ta)

Z(T )X3,eq(ufα,eq)
=

Z(ta)Ncorr(ta)

Z(T )Ncorr,eq(T )
,

(4)
we obtain the last equality if Eq. (3) holds, in which
case δ(u, ta) should be independent of frequency. With
Z(ta)/Z(T ) ≈ 1 justified above, we conclude that δ(u, ta)
directly measures Ncorr(ta)/Ncorr,eq(T ).

The values of δ(u, ta) are plotted in Fig. 4, [33]. We
indeed observe that, up to the precision of our measure-
ments, δ(u, ta) does not depend on frequency. This is
an important consistency test of our scaling assumption,
Eqs. (1,3). From Fig. 4, we deduce that δ(u, ta) increases
by ≈ 12% when ta increases from 1ks to 100ks. Since the
ratio Z(ta)/Z(T ) increases by at most 4%, we interpret
the data of Fig. 4 as giving the first experimental evi-
dence that the size of the dynamically correlated clusters
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FIG. 3: (Color online) T = 180.1K. Solid curves: equilib-
rium quantities vs f/fα,eq . Small symbols: aging quanti-
ties vs f/fα(ta) -the value of f labels each data set-. Note
the collapse of the aging and equilibrium curves for χ′′

1 (right
axis). This contrasts with what is observed for |X3| (left axis)
where the aging values are systematically below the equilib-
rium ones. This reflects the increase of Ncorr(ta) during ag-
ing; see text, Eqs. (3,4) and Fig. 4.

increases with the age in a glass former, see [34]. The in-
crease of Ncorr(ta) during aging can be approximately
accounted for by extending the observation made in
[20, 21]: the temperature dependence of Ncorr,eq deduced
from non-linear susceptibility measurements can alterna-
tively be obtained as: ∂Ncorr,eq/∂T ≈ 1.5∂(TχT )/∂T ,
where TχT = T ×maxω|

[

∂(χ′

1,eq(ω, T )/∆χ1)/∂T
]

|, see
[21, 35–37]. We now surmise that this can be extended to
the out-of-equilibrium regime by simply translating the
fα(ta) dependence of Fig. 2 in terms of Tfict(ta) (see
[38]). This heuristic procedure leads to the solid curve
shown in Fig. 4, which is indeed close to the values of
δ(u, ta) directly drawn from our experiments. This sug-
gests that it might be possible to extend the theoretical
work of [35, 36] to aging, and get a simplified way of
estimating Ncorr(ta) using linear susceptibilities.

Time and length scales. Finally, we take advantage
of the wide range of time scales over which the evolu-
tion of Ncorr has been measured to revisit one of the
most crucial aspect of glassy dynamics, namely the re-
lation between time and length scales. Within the Ran-
dom First Order Transition theory [39, 40], one expects

ln(τα/τ0) = ΥℓψPS/kBT , where τ0 is a microscopic time
scale, Υ a typical molecular energy barrier, ℓPS the point-
to-set correlation length [5, 39], which sets the size of
the clusters that must rearrange cooperatively for the
system to relax, and ψ the so-called barrier exponent.
In Wolynes’ version of RFOT, Υ = κkBT where κ is a
number that depends weakly on molecular details, and
ψ = 3/2 [40]. In order to compare with our results,
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FIG. 4: (Color online) T = 180.1K. Values of δ(u, ta) =
Z(ta)Ncorr(ta)/Z(T )Ncorr(eq) ≈ Ncorr(ta)/Ncorr(eq) ex-
tracted from Fig. 3. δ(u, ta) is found to be independent
of frequency, as predicted by Eqs. (3,4). The solid line
is the estimation based on phenomenological fictive tem-
perature Tfict(ta), see text. Inset: Estimation of the ex-
ponent ψ (see text) using all aging and equilibrium data,
starting from 204K where τα,eq = 20ms. The x-axis is
R(τα) = Ncorr(τα)/Ncorr,eq(20ms) with τα = τα(ta) or τα,eq.
For the y-axis, we chose either Υ = Υ0 which amounts to
V = v(τα, T )/v(20ms, 204K) and yields ψ ≈ 1; or Υ = κkBT
which amounts to W = w(τα)/w(20ms) and yields ψ ≈ 3/2.

one should postulate that the size of dynamically cor-
related clusters Ncorr is proportionnal to ℓ3PS . This re-
lation is not unreasonable, but sharp theoretical argu-
ments are still lacking to relate unambiguously “coop-
erative” regions to “dynamically correlated regions”. In
any case, we collect all our past and present data in the
inset of Fig. 4, where we plot v(τα, T ) = T ln(τα/τ0)
and w(τα) = ln(τα/τ0) as a function of Ncorr, where
τα = τα(ta) or τα,eq. In Fig. 4, V and W correspond
respectively to Υ = Υ0 independent of temperature and
to Υ = κkBT . We fix the value of τ0 to 10−14s, leav-
ing ψ as the only free parameter. To our surprise, we
find that the best choice for ψ within the first hypothesis
(Υ = Υ0) is ψ ≈ 1, which is the value found numerically
in [41], whereas in the second hypothesis (Υ = κkBT ),
we find ψ ≈ 3/2, as predicted by Wolynes et al.! Our
data is compatible with both hypotheses [42], although
slightly favoring the first one, in particular in the aging
regime (see Fig. 4). Note that a factor 10 on τ0 changes
the value of ψ by ∼ 10%.

Conclusion. We have reported the first direct obser-
vation of the increase of Ncorr in the aging regime of a
structural glass. For glycerol at T = 0.96Tg, our quench
protocol yields an increase of Ncorr by ∼ 10%, which
lasts ∼ 100ks [34]. These results deepen our micro-
scopic understanding of aging and give precious informa-
tion about the relation between time and length scales in

glasses. Our study opens a new path for studying aging
in many other systems. It could also be extended to the
more complicated thermal histories designed to probe the
memory and rejuvenation effects [4, 8]. Monitoring the
behaviour of Ncorr in these experiments should shed a
new light on these phenomena.
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SUPPLEMENTARY INFORMATION:

For the sake of completness, we give here the main in-
gredients of the 3ω measurements in the aging regime.

Note that the quantity defined as χ
(3)
3 in Eq. (6) below

has been noted χ3 in the main letter, to simplify the no-
tations.

As explained in Refs. [21, 27], when a field E(t) is

applied onto a dielectric liquid, the macroscopic polari-
sation P can be expressed as :

P (t)

ǫ0
=

∫

∞

−∞

χ1(t− t′)E(t′)dt′ (5)

+

∫∫∫

∞

−∞

χ3(t− t′1, t− t′2, t− t′3)E(t′1)×

×E(t′2)E(t′3)dt
′

1dt
′

2dt
′

3 + ...,

where the function χ1(t) corresponds to the experi-
mental macroscopic linear response while χ3(t1, t2, t3) is
the experimental macroscopic nonlinear response. This
expression is valid as long as the non linear terms are
small, i.e. as long as, for any integer k, |χ2k+1E

2k+1| ≪
|χ2k−1E

2k−1|. This is why Eq. (5) is restricted to the
cubic response, and neglects higher order terms.
It is shown in ref. [27], that for a field E(t) = E cos(ωt)

one gets, from Eq. (5):

P (t)

ǫ0
= E |χ1| cos(ωt− δ1) (6)

+3/4E3
∣

∣

∣
χ
(1)
3

∣

∣

∣
cos(ωt− δ

(1)
3 )

+1/4E3
∣

∣

∣
χ
(3)
3

∣

∣

∣
cos(3ωt− δ

(3)
3 ) + ...

The time dependent polarisation amounts to an elec-
trical current given by

I(t) = S
∂P (t)

∂t
(7)

where S is the surface of the electrodes. Inserting Eq. (6)
into Eq. (7), one finds that I(t) is the sum of a current
I(1ω, t), oscillating at the fundamental frequency, and of
a current I(3ω, t) oscillating at 3ω. As for the field range
E ≤ 3MVrms/m involved in our experiments the con-
dition mentionned above |χ2k+1E

2k+1| ≪ |χ2k−1E
2k−1|

is satisfied, one gets firstly that |I(3ω, t)| ≪ |I(1ω, t)|;
secondly that the value of I(1ω, t) is fully dominated by
χ1 and thus I(1ω, t) can be, to a very good approxima-
tion, analysed by using the usual framework of complex
admittance Y(ω). The small third harmonics current is
given by:

I(3ω, t) =
3

4
ǫ0Sωχ

(3)
3 (ω)E3 cos(3ωt+

π

2
− δ

(3)
3 ) (8)

This quantity is so small that carefully designed elec-
tronic setups must be used to avoid to mix the sought
I(3ω, t) with the nonlinear imperfections of the voltage
source and of the voltage amplifier [27]. It was shown in
Ref [27] that two kinds of setups can be used: either a
“two samples bridge” involving two samples of different
thicknesses -see the inset of Fig. 5-; or a “twin-T notch
filter”, see the main part of Fig. 5.
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The two samples bridge is a technique measuring a dif-
ferential voltage Vm ≡ Vthin − Vthick and relying on the
“balancing relation” ensuring that Vm(1ω) = 0: this hap-
pens provided one has zthickYthick = zthinYthin where Y
is the admittance of one sample and z is the impedance
relating the sample to the ground. An important fea-
ture of the two samples bridge is that once the balancing
condition is met at 1ω it is also met at any other fre-
quency. Thus the balancing condition enables, at the
same time, to suppress the contribution coming from
the nonlinear character of the input voltage amplifier -
since Vthin(1ω) − Vthick(1ω) = 0-; and to suppress the
3ω spurious component of the source -since the linear
response of the samples cancels at any frequency-. The
two samples bridge is thus the most efficient technique
to get I(3ω, t), provided one has a way to check that
the condition Vthin(1ω) − Vthick(1ω) = 0 remains true
during the I(3ω, t) acquisition. This condition might in-
deed not remain true in the case where some uncontrolled
slight disymetry between the two samples happens, such
as the one resulting from a slight difference in the tem-
perature of the two samples. Fortunately, when mea-
suring at equilibrium, one varies the field E: one thus
checks all along the 3ω acquisitions that I(3ω, t) is ac-
curately -up to ±1%- proportional to E3, which ensures
that the condition Vthin(1ω) − Vthick(1ω) = 0 is met -
enough- during all the acquisitions. However, in the ag-
ing case, one monitors I(3ω, t) as a function of the age ta,
for a constant E. Thus, if some violation of the condition
Vthin(1ω)−Vthick(1ω) = 0 happened, it might pollute the
age dependence of the 3ω response of the samples, and
we would have no way to correct this imperfection.
This is why we have decided to work with only one

sample and to use the “Twin-T notch filter” -see Fig. 5-:
its transmission coefficient Tfilt(ω) is smaller than 10−4

for the frequency f0 = 1/(2πRC) and of order 1 for 3f0.
Therefore, by choosing the components R,C so as to set
2πf0 = 1ω, we are absolutely sure that the 1ω voltage at
the input of the Lock-in amplifier is small enough dur-
ing the 3ω acquisitions in the aging regime. Besides, by
setting the voltage source to one of the few values where
the DS360 voltage source is nearly perfectly harmonic,
one gets a setup where the 3ω spurious contribution of
the source is nearly negligible -this very little spurious
contribution can, of course, be easily measured and sub-
tracted from the measured signal-. This is why we have
choosen the twin T notch filter for our 3ω measurements
in the aging regime.
At 3ω the sample is equivalent to a pure current source

I(3ω, t) with an impedance Z(3ω) = 1/[Y(3ω)] placed in
parallel. Neglecting for simplicity any remaining spurious
contribution of the DS360 source, one gets for the voltage
Vmeas(3ω, t) measured by the lock-in amplifier:

Vmeas(3ω, t) = α(3ω)Z(3ω)I(3ω, t) (9)

FIG. 5: Main figure: Electronic setup used for the measure-

ments of χ
(3)
3 (ω, ta) in the aging regime. Note that the quan-

tity defined as χ
(3)
3 in Eq. (6) of this Supplementary Material

has been noted χ3 in the main letter, to simplify the nota-
tions. The “twin-T” notch-filter damps the response at 1ω by
a factor larger than 104. Inset : Two samples bridge, see ref.
[27].

where α(3ω) is the global transmission coefficient be-
tween the sample and the Lock-in. In the simplest case
where (r, |Z|) ≪ (R, 1/[C3ω]) the coefficients multiply
and one gets α(3ω) = Tfilt(3ω)× r/[r + Z(3ω)]. In any
case, α(3ω) is directly measured by setting the funda-
mental angular frequency of the source to Ω ≡ 3ω, and
by using α(Ω) ≡ Vmeas(Ω)/Vsource(Ω).

Eq. (9) is written at equilibrium, when all the in-
volved quantities no longer depend on the age ta. At
equilibrium, we have of course carefully checked, both
at T = 180.1K and at T = 182.7K, that Vmeas(3ω, t)
is proportionnal to the cube of the voltage source V 3

s .
In the aging case, all the susceptibilities of the sample
-linear and nonlinear- depend on the age ta. As a result,
all the quantities involved in Eq. (9) depend on the age
ta. This is why, by repeating for each quantity the very
same T quench, we have separately measured the age de-
pendence of I(3ω, t, ta) but also of Z(3ω, ta), Z(1ω, ta),
α(3ω, ta), and of Vappl(1ω, t, ta) = Vs(1ω, t)−Va(1ω, t, ta)
where Vappl(1ω, t, ta) is the voltage applied onto the sam-
ple at age ta and at time t -see Fig. 5-. We have made
all the possible consistency checks -for example, given
R,C,Z(1ω, t, ta) one can predict the age dependence of
Vappl(1ω, t, ta)-. A single T quench lasts 200ks at 180.1K,
and for each of the 5 different frequencies ranging from
12mHz to 11Hz, we have measured the age dependence of
the 5 different quantities mentionned above. As a result,
with all the cross-checks, the data acquisition, for 180.1K
and 182.7K altogether, took a bit more than 104ks, i.e.
a bit more than 4 months.


