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We present a theory describing the trapping of a quasiparticle in a prototypical Josephson junc-
tion, a single-channel superconducting weak link. We calculate the trapping and untrapping rates
associated to absorption and emission of both photons and phonons. We show that the presence of
an electromagnetic mode with frequency smaller than the gap gives rise to a rather abrupt tran-
sition between a fast relaxation regime dominated by coupling to photons and a slow relaxation
regime dominated by coupling to phonons. This conclusion is illustrated by the analysis of a recent
experiment1 measuring the dynamics of quasiparticle trapping in a superconducting atomic contact
coupled to a Josephson junction. With realistic parameters the theory provides a semi-quantitative
description of the experimental results.

I. INTRODUCTION

There are several external mechanisms that undermine
the quantum coherence of superconducting circuits be-
ing explored for quantum information processing2. Their
influence has been reduced over the years by new de-
signs that minimize the coupling with external degrees of
freedom. However, a fundamental intrinsic decoherence
process arises from the coupling of the qubit variables
to superconducting quasiparticles tunneling through the
Josephson junctions of the circuits. Although in prin-
ciple the superconducting gap ∆ provides an inherent
protection against low energy excitations at low tempera-
tures, in practice there are residual nonequilibrium quasi-
particles that can rule the behavior of the circuits3–9.
As shown in a recent experiment10, this is particularly
true for weak links containing channels of high transmis-
sion, where localized excitations occupying Andreev lev-
els of energy below ∆ become possible. This has impor-
tant consequences for the corresponding proposed qubits
designs11–14. Furthermore, single quasiparticle trapping
in localized levels could be detrimental in experiments
proposed to detect “Majorana bound states” in con-
densed matter systems since their topological protection
relies on parity conservation15. Understanding the dy-
namics of relaxation of quasiparticles in superconducting
weak links is therefore an important present-day issue.

We report here on a theory highlighting the role of
the electromagnetic environment in this dynamics. In
experiments, Josephson junctions or weak links are very
often embedded in electrical circuits having electromag-
netic modes at frequencies lower than the superconduct-
ing gap. The environment can be a resonator intention-
ally coupled to the junction like in Ref. 10, or the plasma
mode of another junction placed in parallel like in Ref. 1.
We show that if the mode impedance is large enough, it
rules the quasiparticle dynamics when the sum of the An-

dreev level energy and of the energy of the mode exceed
the superconducting gap.

The rest of the paper is organized as follows: In Sec.
II we describe the model considered for a superconduct-
ing one channel contact coupled to a generic electromag-
netic environment; Sec. III is devoted to the analysis
of the transition rates between different quasiparticles
states induced by quantum phase fluctuations; in Sec.
IV we focus on the experimental situation of Ref. 1 and
compare the theoretical results for the transition rates
and the stationary probability for quasiparticles trapped
in the subgap states with the corresponding experimental
results. In Sec. V we present our main conclusions. The
more technical details on our calculations are described
in appendices A, B, C and D.
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FIG. 1: (a) Schematic representation of a single supercon-
ducting channel coupled to an impedance Zenv. δ and γ indi-
cate the phase drops through the channel and the impedance,
respectively, and Φ is the magnetic flux through the loop.
(b) Quasiparticle excitation spectrum in the single channel
weak link, with the continuum above the gap ∆ and a subgap
discrete spin-degenerate Andreev level of energy EA.

II. THEORETICAL FRAMEWORK

We consider the situation illustrated in Fig. 1(a) with
a single superconducting channel (SC) coupled to an ar-
bitrary impedance Zenv. The excitation spectrum of the
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SC contains a discrete, spin-degenerate Andreev level,

with an energy EA(δ) = ∆
√

1− τ sin2 δ/2, where δ

is the superconducting phase difference across the con-
tact and τ the transmission probability for electrons16

(see Fig. 1(b)). The Andreev level is completely empty
when the channel is in its ground state, which has a
phase dependent energy −EA and carries a supercurrent
I = − (∂EA/∂δ) /ϕ0, where ϕ0 = ~/2e is the reduced
flux quantum. The lowest-energy excitations correspond
to the occupation of the Andreev level by a single quasi-
particle (of either spin), the global energy and the super-
current of these “odd” configurations being then zero.
There is also an excitation of energy 2EA with respect
to the ground state, where the Andreev level is occupied
by two quasiparticles of opposite spins. This “even” con-
figuration can be seen as a localized excited “Andreev
pair”17, and carries a supercurrent opposite to that in
the ground state.

The system Hamiltonian can be written as Ĥ =

ĤSC(δ̂) + Ĥenv(γ̂), where the first term describes the
SC and the second one the electromagnetic environ-
ment, modelled by the impedance Zenv. The phases δ
and γ across the SC and the impedance are related by

δ̂− γ̂ = Φ/ϕ0 = ϕ, where Φ is the magnetic flux through
the loop.

The population of the SC electronic states becomes
then sensitive to the effects of quantum phase fluctua-
tions. Assuming that Re(Zenv)� RQ, we treat the fluc-
tuations to lowest order in perturbation and write the
Hamiltonian Ĥ = Ĥenv(γ̂) + ĤSC(ϕ) + ϕ0γ̂Î(ϕ), where

Î = ϕ−1
0 ∂ĤSC/∂δ is the current operator in the contact

region.
To describe the unperturbed single-channel SC we use

a one-dimensional SNS junction model with a Dirac delta
potential barrier (to account for non-perfect transmis-
sion) inside a normal region of negligible length. Details
of the diagonalization of this model in terms of Bogoli-
ubov fermion operators γα,σ, where σ indicates spin, are
given in Appendix A. Two types of states are obtained,
α ≡ k with energy Ek ≥ ∆ corresponding to the ex-
tended continuum states and α ≡ A corresponding to the
localized Andreev states with energy EA (see Fig. 1 (b)).
The SC ground state |Ψ0〉 corresponds to the absence of
excitations, i.e. γα,σ |Ψ0〉 = 0.

III. TRANSITION RATES

The coupling of the SC to the environment allows for
transitions between different quasiparticle states. We
shall first consider processes which permit the removal
of a quasiparticle from the Andreev level. These pro-
cesses allow in particular the relaxation of the lowest-
energy excited states with one trapped quasiparticle back
to the ground state |Ψ0〉18. They consist either in the ab-
sorption of an environmental photon and transfer of the
trapped quasiparticle into the continuum states, or in the

recombination of a quasiparticle from the continuum with
the trapped one into a Cooper pair while releasing the
energy as a photon. These two processes are illustrated
in panels (a) and (b) of Fig. 2 and the corresponding rates

are denoted by Γ
(a,b)
out . The Fermi golden rule for the first

process yields

Γ
(a)
out =

2π

~
∑
k

∣∣∣〈k, σ ∣∣∣ϕ0Î
∣∣∣A, σ〉∣∣∣2 P (Ek − EA (δ))

× (1− fFD(Ek, Tqp)) , (1)

where fFD (E, Tqp) is the Fermi population factor for
quasiparticles in the continuum (assumed to be in equi-
librium at a temperature Tqp) and P (E) is the probabil-
ity of absorbing a photon of energy E from the environ-
ment. This probability is P (E) = D (E) fBE (E, Tenv),
where fBE (E, T ) is the Bose population factor, and
D (E) = Re {Zenv (E) /E} /RQ, with RQ = h/4e2, is
the density of states for the modes in the environment20.
The environment is assumed to be in equilibrium at a
temperature Tenv which can be in general different from
Tqp. The numerical evaluation of this rate (and every
other) for different transmissions, shows a rather univer-
sal dependence in the Andreev level energy position EA.
Simple analytical expressions can be derived in the per-
fect transmission limit τ → 1 and in the tunnel limit
τ → 0, for which the wavefunctions have a considerably
simpler form. In this limit one obtains (see Appendix B)

Γ
(a)
out =

8∆

h

∫ ∞
∆

dED (E − EA) g (E,EA)

×fBE (E − EA, Tenv) (1− fFD (E, Tqp)) , (2)

with g (E,EA) =
√

(E2 −∆2) (∆2 − E2
A)/(∆ (E − EA)).

We also give in Appendix B the expression of g (E,EA)
in the tunnel limit τ → 0.

When the environment of the SC contains a sin-
gle mode with infinite quality factor, and at low

temperature, this expression simplifies to Γ
(a)
out =

2∆
~

Z0

RQ
g (EA + hν,EA) exp (−hν/kBTenv) , where ν is the

mode frequency. The function g is of order 1 when
∆−hν < EA < ∆, so that the rate is simply determined
by the impedance Z0 of the oscillator. For aluminum and
for Z0 = 50 Ω, 2∆

~
Z0

RQ
≈ 1 GHz.

In a similar way for the second relevant process we find

Γ
(b)
out =

8∆

h

∫ ∞
∆

dED (E + EA) g (E,−EA)

× (1 + fBE (E + EA, Tenv)) fFD (E, Tqp) . (3)

We show in Appendix D that for perfect transmission
the matrix elements for electron-phonon coupling have
the same functional form in terms of E and EA as those
for the coupling with the electromagnetic modes. There-

fore its inclusion leads to the same expressions for Γ
(a,b)
out

as in Eqs. (2,3) but with a quadratic density of states
and Tenv replaced by the phonon temperature Tph (see
Appendix D for more details).
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FIG. 2: Left panel: Schematic representation of processes re-
moving a quasiparticle from the Andreev level. Process (a)
involves absorption of an environmental photon or phonon

and corresponds to the transition rate Γ
(a)
out. Process (b) cor-

responds to the recombination into a Cooper pair of the quasi-
particle trapped in the Andreev level with a quasiparticle from
the continuum, with the emission of a photon or a phonon,

and is characterized by a transition rate Γ
(b)
out. The right panel

shows the rates Γ
(a)
out (red) and Γ

(b)
out (blue) resulting from the

absorption and emission of environmental photons (full lines)
or phonons (dashed lines), for the parameters of Ref. 1 (see
Appendix C). We have set kBTenv = 0.06∆, kBTqp = 0.09∆,
kBTph = 0.015∆.

The time reversed processes, illustrated in Fig. 3 and

characterized by rates Γ
(a)
in and Γ

(b)
in are responsible for

the population of the Andreev level, either by trapping a
quasiparticle from the continuum or by breaking a pair.

IV. COMPARISON TO EXPERIMENTS

We focus on the recent experiments on superconduct-
ing atomic contacts1 that have analyzed in detail the
quasiparticle trapping in Andreev levels and its dynam-
ics. In these experiments, an atomic contact was em-
bedded in a superconducting loop containing a Joseph-
son junction, thus forming an asymmetric SQUID. It was
found that there is a significant probability for the SC to
get trapped in an odd state in which the highest trans-
mitted channel carries no supercurrent. The experiments
also showed that the relaxation rates for these states fall
into a nearly universal behavior as a function of the en-
ergy EA regardless of the particular values of the trans-
mission and phase difference. Trapping occurred essen-
tially when the Andreev level energy was smaller than
half the superconducting gap EA . 0.5∆, with the life-
time of trapped quasiparticles exceeding 100 µs. For
larger energies no significant trapping could be detected.
The origin of this sharp energy threshold was a puzzle
not explained in the paper reporting the experiment.

In Ref. 1, the SQUID Josephson junction had a Joseph-
son energy much larger than the charging energy, and
it can therefore be described as an harmonic oscillator.
Spectroscopy measurements17,19 on similar circuits as the

one used in Ref. 1 showed that the plasma frequency
of this mode can be significantly renormalized by paral-
lel inductances and approach ∼ 0.5∆ (see Appendix C
and Ref. 19). As explained in the following, our the-
ory shows that the main relaxation mechanism for the
trapped quasiparticle states is their excitation into the
extended continuum states above the superconducting
gap by absorption of photons from the plasma mode.
This mechanism becomes inefficient when the energy dif-
ference between the Andreev level and the continuum ex-
ceeds the plasma energy, ∆−EA > hνp, hence providing
a simple explanation for the observed behavior.

The results for the transition rates Γ
(a,b)
out obtained us-

ing parameters which are appropriate for the experimen-
tal situation of Ref. 1 (see Appendix C) are shown by the

solid lines in Fig. 2. For EA & ∆ − hνp ∼ 0.52∆, Γ
(a)
out

is large because photons in the plasma mode can excite
the trapped quasiparticle out into the continuum. Sim-

ilarly, Γ
(a)
in is large in this energy range because quasi-

particles near the gap edge can relax in the Andreev
level while emitting a plasma photon (see Fig. 3). For
lower energies, the energy of the plasma photons is not
sufficient and the rate drops abruptly. Other processes,
like phonon absorption or emission start to play a role.
Hence, both Γin and Γout are determined by phonon pro-
cesses for EA < ∆ − hνp and by photon processes for
EA > ∆ − hνp. It should be noticed that three differ-
ent temperatures enter the calculation. We assume that
the phonons in the Al films of Ref. 1 are at equilibrium
with the substrate and therefore Tph is taken equal to the
base temperature measured by the thermometers in the
experiment (30 mK). The two other temperatures, Tenv

and Tqp, can be significantly larger due to incomplete
filtering of radiation. To fit the results we have used
Tenv ∼ 120 mK, similar to what is deduced from mea-
surements of the switching probability of the SQUID19,21

and Tqp ∼ 180 mK which simulates the presence of a
few tens of out-of-equilibrium quasiparticles per µm3, as
typically found in experiments with Al resonators and
qubits3–5,7,22.

The different transitions which determine the popula-
tion and relaxation of the Andreev level are illustrated
in the inset of Fig. 4. They also involve the even excited

state |even∗〉 = γ†A↑γ
†
A↓ |Ψ0〉. The analysis is further sim-

plified by symmetry relations: the rates connecting the
even excited state and the odd states are equal to the
ones connecting the odd states and the even ground state.
This is indicated by the color code used for the arrows
in the inset of Fig. 4. Notice that the full determina-
tion of the level populations requires also the evaluation
of the rates Γe∗→e and Γe→e∗ . In Ref. 1 it was assumed
that the relaxation rate Γe∗→e to the ground state was
very fast compared to all other ones and that Γe→e∗ was
negligible. For photonic or phononic environments these
have been calculated in Refs. 11,19 and 23 respectively
and reproduced with the present formalism, as discussed
in Appendix B and D. The calculation does corroborate



4

E + EA!

E

EA 

( b ) 

E – EA!

EA 

E
( a ) 

0 0.2 0.4 0.6 0.8 110−6

10−4

10−2

100

EA/6

K
in

 [k
H

z]

( a ) 

( b ) 

Δ −hνp
Δ

FIG. 3: Left: Schematic representation of processes adding
a quasiparticle in the Andreev level. Right: the emission

processes (a) rates, denoted by Γ
(a)
in in the text, are given by

the red curves for photons (full line) and phonons (dashed
lines). The processes (b) involving the breaking of a Cooper
pair (blue line in the plot) are much less efficient. The one
involving the phonons is below this scale. Same parameters
as in Fig. 2.
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FIG. 4: Stationary occupation probability P∞ for the odd
states, using parameters of Ref. 1. The theoretical results
(full lines) are compared with the experimental results for
different values of the contact transmission τ = 0.994 (full
circles, black); 0.96 (upper triangles, red); 0.91 (squares, dark
green); 0.85 (down triangles, blue) and 0.74 (diamonds, light
green). Same parameters as in Figs. 2 and 3. (Inset) Scheme
of the Andreev level occupation configurations and the differ-
ent transitions induced by the coupling to the environment.
The total rates Γout,in connecting odd states with the even

states (red and blue arrows) are obtained by adding Γ
(a)
out,in

and Γ
(b)
out,in. The rates Γe∗→e and Γe∗→e connecting the even

states (green and purple arrows) are calculated within the
same model (see Appendix B).

that Γe∗→e is much larger than all the other rates for the
transmissions explored in the experiment.

A last step in our calculation is to obtain the station-
ary distribution of quasiparticles by solving the master
equation involving all transitions indicated in the inset of
Fig. 4. The result for the occupation probability of the
odd states, P∞, is shown in Fig. 4 and compared with
the experimental results from Ref. 1 for contacts with
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FIG. 5: Total rates Γout (upper curves and symbols) and Γin

(lower cuves and symbols) calculated by the present model
and obtained experimentally in Ref. 1 for different contact
transmissions. The same convention as in Fig. 4 is used.

different transmissions. As can be observed, the theory
qualitatively describes the decrease in P∞ at fixed EA
which is observed experimentally for increasing transmis-
sion in the slow relaxation regime. There is, however,
some discrepancy in the quantitative values of P∞ which
is overestimated in our model calculations.

We show in Fig. 5 the comparison of the experimental
and theoretical results for the total rates Γin and Γout as
a function of EA for different values of the contact trans-
mission. One should remark the quite good agreement
which is obtained for Γout in the fast relaxation regime
(EA > 0.5∆) and for Γin in the slow relaxation regime.
The drop in Γout by more than two orders of magnitude
at EA ∼ 0.5∆ is also captured by our model. In the slow
relaxation regime the model correctly describes the de-
crease of Γin and the increase in Γout which is observed
at fixed EA with increasing transmission. The largest
discrepancies between model and experiment are found
for Γin when EA & 0.5∆ and for Γout when EA . 0.5∆.
It should be noticed, however, that the experimental de-
termination of Γin is less precise for EA > 0.5∆ where
P∞ � 1. The decay of Γin in theory is essentially related
to the assumption of a thermal distribution of quasipar-
ticles, which leads to Γin ∝ exp(−(EA + hνp)/kBTqp). A
weaker dependence on energy would be obtained with a
self-consistent description of this distribution4. On the
other hand, the deviations found for Γout in the slow re-
laxation regime are more significant and could indicate
that some additional relaxation mechanism, like tunnel-
ing to vortices or quasiparticle traps in the vicinity of
the contact, could be contributing for small EA. Since in
the limit where Γe∗→e � Γin,Γout � Γe→e∗ , the sta-
tionary occupation probability P∞ is simply given by
2Γin/(3Γin + Γout)

21, the deviations for Γout explain why
the theory overestimates P∞ in this regime. Further
combined experimental and theoretical work would be
required to clarify this point.
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V. CONCLUSIONS

In conclusion, we have presented a theory which de-
scribes the dynamics of trapping and untrapping quasi-
particles in phase-biased superconducting weak links. It
is shown that in realistic conditions this dynamics can
be controlled by the coupling of the weak link to its
electromagnetic environment. The results are in semi-
quantitative agreement with the experiments of Ref. 1,
where the sharp jump observed in the trapping and un-
trapping rates is associated to the onset of the coupling
to the environment plasma mode. The mechanisms de-
scribed here can be relevant for controlling decoherence
in superconducting qubits involving channels with non-
negligible transmission. In case of the Andreev qubits
discussed in Refs. 11,12, where poisoning by trapped
quasiparticles in the ABS should be avoided, the pres-
ence of a mode of energy larger than ∆ − EA would be
beneficial. In contrast, for the proposals of Refs. 13,14
which are based on the manipulation of the odd states,
a larger lifetime of the trapped quasiparticles is desir-
able. In this case one would need an electromagnetic en-
vironment containing no mode of frequency larger than
∆−EA. Finally, as discussed in Ref. 6, even in the case of
qubits based on tunnel junctions changes in the occupa-
tion of the Andreev states make the Josephson coupling
and hence the qubit frequency fluctuate thus giving rise
to dephasing. Therefore, even in this case of Andreev
levels very close to the gap edge, slowing down the dy-
namics of these occupations could have an influence on
the qubit decoherence.
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Appendix A: Diagonalisation of the SC Hamiltonian
and SC wavefunctions

The point contact is modelled as a 1D SNS junction
with a Dirac delta barrier in the normal region.

The normal region’s length L̃N can be taken to the
limit L̃N → 0 in the ballistic regime, effectively turning
the scattering problem into the problem of a delta barrier
in a superconducting system, with a well-defined phase
bias between the left and right leads.

Continuum wavefuntions: For an homogeneous su-
perconducting system, the Hamiltonian’s eigenfunctions

have a momentum |k| = kF ± κE , where κE =

ξ−1
0

√
(E/∆)

2 − 1 (ξ0 being the superconducting coher-

ence length, given by hvF /∆ in the ballistic regime). The
eigenfunctions with positive energy Ek and spin-up take
the following shape:

ψ
(↑)
k,ϕ̃ (x) = 1√

L

(
uE
vEe

iϕ̃

)
e+ikx for |k| > kF

(quasielectrons)

ψ
(↑)
k,ϕ̃ (x) = 1√

L

(
vE

uEe
iϕ̃

)
e−ikx

for |k| < kF
(quasiholes)

(A1)

where ϕ̃ is the phase of the superconducting order pa-
rameter, L is a length over which the freely propagating
eigenfunctions are defined and uE , vE are, respectively,
the electron and hole components of the plane wave:

(u/v)E =
1√
2

√
1±

√
1− (∆/E)

2
(A2)

Eκ	


kkF -kF 

Δ	


 +κ	
-κ	
  +κ	
-κ	

 u!
 v! (	
 )	
  u!

 v! (	
 )	
 v!
 u! (	
 )	
  v!

 u! (	
 )	


FIG. 6: Quasiparticle energies and two-component eigenfunc-
tions near the Fermi level for spin-up quasiparticles. There
is a four-fold degeneracy of states for each energy E, with
two quasielectron states (blue dots) with a momentum |k| =
kF +κE and another two quasiholes with an absolute momen-
tum of |k| = kF − κE .

These plane waves are schematically shown in Fig. 6.
Summations in momenta such as the one in Eq. (1)

may be rewritten, for the sake of convenience, as integrals
over quasiparticle energies weighted by the superconduct-

ing density of states ρSC (E) = ρF
|E|√
E2−∆2

, where ρF is

the normal density of states at the Fermi level.
That being the case we shall brand the wavefunctions

(and the states they refer to) not by using their momen-
tum k as an index, but their energy Ek → E, their asso-
ciated quasielectron/hole character and the direction of
their momentum.

With the plane waves from Eq. (A1) it is possible to
construct solutions to the BdeG equations in an inhomo-
geneous system following a scattering approach24.

These wavefunctions are Nambu spinors of the form

ψ
(η±)
E↑ (x) =

(
U

(η±)
E (x)

V
(η±)
E (x)

)
(A3)
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where UE is the electron amplitude, VE the hole am-
plitude, and η denotes the electron/hole character of the
quasiparticle state. Spin-down eigenfunctions can be eas-
ily obtained from spin-up ones by use of the electron-
hole symmetry in the system, through the substitution

U → V ∗, V → −U∗.
For the sake of simplicity, we shall ommit the spin sub-

index in the wavefunctions that we discuss next.
Condensing all the phase difference δ in the right lead,

the wavefunctions take the following shape

ψ
(η±)
E (x) = ψ

(η±)
Src (x)+

(
A(η±)ψ

(e−)
E,0 (x) +B(η±)ψ

(h−)
E,0 (x)

)
Θ (−x)+

(
C(η±)ψ

(e+)
E,δ (x) +D(η±)ψ

(h+)
E,δ (x)

)
Θ (x) , (A4)

where ψ
(η±)
Src is a source term of an quasielectron or quasihole impinging the contact from any of the leads

ψ
(e+)
Src = ψ

(e+)
E,0 (x) Θ (−x) , ψ

(h+)
Src = ψ

(h+)
E,0 (x) Θ (−x) , ψ

(e−)
Src = ψ

(e−)
E,δ (x) Θ (x) , ψ

(h−)
Src = ψ

(h−)
E,δ (x) Θ (x) .

(A5)
The rest of the contributions to the wavefunctions are outgoing partial waves (as illustrated in Fig. 7).
Imposing continuity for the wavefunction and its derivative (taking into account the effect of the delta barrier) the

values of the partial wave coefficients are obtained for each incidence

A(e+) = −µττ (µτ + i) sinh2 θE ·Q−1 B(e+) = iτ sin δ/2 sinh
(
θE + i δ2

)
·Q−1

C(e+) = −iτ (µτ + i) e−iδ/2 sinh θE sinh
(
θE + i δ2

)
·Q−1 D(e+) = −µττe−iδ/2 sinh θE sin δ

2 ·Q
−1

(A6)

A(e−) = C(e+) (−δ)

B(e−) = D(e+) (−δ)

C(e−) = A(e+) (−δ)

D(e−) = B(e+) (−δ)

A(h+) = B∗(e+)

B(h+) = A∗(e+)

C(h+) = D∗(e+)

D(h+) = C∗(e+)

A(h−) = C(h+) (−δ)

B(h−) = D(h+) (−δ)

C(h−) = A(h+) (−δ)

D(h−) = B(h+) (−δ)

, (A7)

where sinh θE =
√

(E∆ )2 − 1, µτ =
√

R
τ , τ is the normal

transmission probability from the potential barrier, R =
1−τ its normal reflection probability, and Q = sinh2 θE+
τ sin2 δ

2 .

Β"

A"
D"

C"
1"

H δ(x)	


(Δ = 0)	

Δ	
 Δeiδ	


( a ) 

Β"

A"

D"

C"

H δ(x)	


(Δ = 0)	

Δ	
 Δeiδ	


( b ) 

FIG. 7: Schematic representation of the scattering problem
for the case of a quasi-electron impinging the contact and
the resulting outgoing quasiparticle partial waves (a), either
normally or Andreev-reflected or transmitted. The scattering
problem for the ABS does not require a source term (b), but
these outgoing partial waves exhibit an evanescent behaviour.

Andreev Bound State wavefunction: The wave ampli-

tudes for states with E < ∆ exhibit subgap poles at

E = EA (δ) = ∆
√

1− τ sin2 δ
2 , which signals the exis-

tence of a bound state at such an energy.

The wavefunctions for the Andreev Bound States
(ABS) may be obtained in a similar way than those for
states lying at E > ∆ taking into account that the quasi-
particle momentum gains an imaginary component below
the gap. The partial waves for the ABS are

ψ
(e±)
EA,ϕ̃

(x) = 1√
ξ0

(
uA
vAe

iϕ̃

)
e±i(kF+iκA)x

ψ
(h±)
EA,ϕ̃

(x) = 1√
ξ0

(
vA

uAe
iϕ̃

)
e∓i(kF−iκA)x

(A8)

These differ from the propagating partial waves because
the uE , vE coefficients and the quasiparticle momentum
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E,η±,σ	

Δ	


EA (φ)	


γE,η±,σ
+ Φ0 = Even;E, η±,σ

γAσ
+  Φ0  =  Odd,σ 

γA↑
+ γA↓

+  Φ0  =  Even * 

 Φ0  =  Even 

FIG. 8: Single-particle excitations of the unperturbed SC
Hamiltonian, with the parity notation for different ABS occu-
pancies. The ground state of the system is noted as the even
state. As single-particle excitations of the ABS have an odd
parity, the ABS doublet excitation has an even parity, so it is
branded as the even excited |Even∗〉 state.

κE become complex for E < ∆:

uE → uA =
1√
2
eiθA/2 vE → vA =

1√
2
e−iθA/2 (A9)

κE → iκA = iξ−1
0 sin θA (A10)

with sin θA =
√
τ

∣∣∣∣sin δ2
∣∣∣∣ =

√
∆2 − E2

A

∆
. (A11)

Only partial waves confined within a length κ−1
A , which

diverges for EA → ∆, may appear in the wavefunctions

ψA (x) =

(
AAψ

(e−)
EA,0

(x) +BAψ
(h−)
EA,0

(x)
)

Θ (−x)

+
(
CAψ

(e+)
EA,δ

(x) +DAψ
(h+)
EA,δ

(x)
)

Θ (x)

.

(A12)

A linear homogeneous system of equations is obtained
for the partial wave weights by applying the same condi-
tions as in the case of the continuum states. The system
exhibits a nontrivial solution for E = EA (δ). Eliminat-
ing the redundant equation and imposing the normalisa-
tion condition for the wavefunction, it is finally obtained
that, in the bound states



AA = −iÑA sin
(
θA − δ

2

)
e−iβ̃τ eiδ/2

BA = −i
√
RÑA sin δ

2 · e
iβ̃τ eiδ/2

CA =
√
RÑA

∣∣sin δ
2

∣∣ e−iβ̃τ
DA = σδÑA sin

(
θA − δ

2

)
eiβ̃τ

(A13)

where sin β̃τ =
√
τ , σδ = sign (δ) and

ÑA =

√
−σδ
√
τ

2 cos θA sin
(
θA − δ

2

) . (A14)

A similar derivation of this result can be found in 19.

The solutions of the BdeG equations allow us to ex-
press the electron field operators as

Ψσ (x) = UA (x) γAσ − σV ∗A (x) γ†Aσ̄ +
∑
E,η±

(
U

(η±)
E (x) γE,η±,σ − σV

(η±)∗
E (x) γ†E,η∓,σ̄

)
(A15)

where γAσ and γE,η±,σ are the quasiparticle operators which diagonalise the SC Hamiltonian. The excitation spectrum
of the system is represented in Fig. 8.

Appendix B: Current operator and transition rates

The current operator in the new basis defined by Eq. (A15) is

Î (x) = − ~e
2mi

∑
i,j,σ

(
γ†iσ γiσ̄

) U∗i
dUj
dx −

dU∗i
dx Uj σ

(
U∗i

dV ∗−j
dx −

dU∗i
dx V

∗
−j

)
σ
(
V−i

dUj
dx −

dV−i
dx Uj

)
V−i

dV ∗−j
dx −

dV−i
dx V ∗−j

( γjσ
γ†jσ̄

)
(B1)

The sum in i, j indices are a shorthand notation for all the different contributions appearing in Eq. (A15). The minus
sign in front of some particular wavefunction subindices notes that such a component corresponds to the antiparall

wavefunction (e.g., if i = E (e+), then U−i = U
(e−)
E ), which only applies when the index corresponds to an excitation

in the continuum.

1. Transitions involving the odd states

A relevant matrix element in the problem is the one
associated to the |Odd, σ〉 → |Even;E, e+, σ〉 process,

which is found to be

− ~ekF
m
√
Lξ0

(
CAC

∗
(e+) −DAD

∗
(e+)

)
(uEuA + vEvA) .

(B2)
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The electron-hole symmetry in the field transformations
ensures that this matrix element is the complex con-
jugate of the matrix element associated to the process
|Odd, σ〉 → |Even;E, h−, σ〉.

In the ballistic limit τ → 1, restricting δ to the interval
[0, π] so as to establish a bijection between δ and EA (δ),
one finds

|CA| →
(

∆2 − E2
A

∆2

)1/4

DA → 0 (B3)

∣∣C(e+)

∣∣→√
E2 −∆2

E2 − E2
A

D(e+) → 0. (B4)

The squared amplitude of these matrix elements in this
limit is

~2e2k2
F

m2Lξ0

√
∆2 − E2

A

∆

E2 −∆2

E2 − E2
A

(
1 +

EA
E

)
. (B5)

Matrix elements for the |Odd, σ〉 → |Even;E, e−, σ〉 and
|Odd, σ〉 → |Even;E, h+, σ〉 processes vanish in the limit
of perfect transmission.

Conversely, the squared amplitude for the quasiparticle
recombination processes |Odd, σ;E, e−, σ̄〉 → |Even〉 and
|Odd, σ;E, h+, σ̄〉 → |Even〉 in the limit τ → 1 is found
to be

~2e2k2
F

m2Lξ0

√
∆2 − E2

A

∆

E2 −∆2

E2 − E2
A

(
1− EA

E

)
. (B6)

Whereas the amplitudes for the other two recombina-
tion processes, which are |Odd, σ;E, e+, σ̄〉 → |Even〉 and
|Odd, σ;E, h−, σ̄〉 → |Even〉, are zero in this same limit.

The products of the terms that contain in these ex-
pressions the functional dependence in E and EA with
the superconducting density of states yield the factors
g (E,EA) mentioned in the main article

g (E,EA) =

√
(E2 −∆2) (∆2 − E2

A)

∆ (E − EA)
. (B7)

In the opposite tunnel limit τ → 0 all squared ampli-
tudes tend to zero as τ3/2, with the leading term being
the same for the four different processes

~2e2k2
F

m2Lξ0

τ

2

√
∆2 − E2

A

∆

(
1 +

∆ cos δ

E

)
. (B8)

The same applies to amplitudes of recombination pro-
cesses, with a minus sign appearing inside the parenthesis
instead of a plus.

From these we may define another g (E,EA) factor for
the tunnel regime.

g (E,EA) =
τ

2

√
∆2 − E2

A

E2 −∆2

(
E

∆
+ sgn (EA) cos δ

)
.

(B9)
These results are in agreement with the ones recently

derived by Kos et al. using a different method25 taking
also into account the factor (E ± EA)

−1
that comes from

the environmental density of states (see Eq. (C1)).

Ce 

Re 

Le 

LJ 

CJ 

RJ 

( a ) ( b ) 

0 0.2 0.4 0.6 0.8 110−6

10−4

10−2

100

E/6

R
e[

Z en
v(E

)] 
/ R

Q

( c ) 

FIG. 9: (a) Electrical elements in the relevant neighbor-
hood of the SQUID loop. (b) Equivalent electrical model
for the Josephson junction in the SQUID. (c) Environmental
impedance as seen by the SC.

2. Transitions between the even states

An analytical expression for the amplitude that links
the two even states can be derived for any value of τ〈

Even
∣∣∣Î∣∣∣Even∗

〉
=

~ekF
mξ0

CADA

(
u2
A − v2

A

)
eiδ (B10)

∣∣∣〈Even
∣∣∣Î∣∣∣Even∗

〉∣∣∣2 =
e2∆4

~2

(1− τ) τ2 sin4 δ
2

E2
A (δ)

. (B11)

These results coincide with the results from 12.

Appendix C: Modelling the EM environment for the
experiment in Ref. [1]

The density of environmental modes D (hν) is, follow-
ing the formalism presented in Ref. 20,

D (hν) =
1

hν

Re {Zenv (ν)}
RQ

, (C1)

where Zenv (ν) is the electric impedance as seen from the
SC, represented in Fig. 9(c).

In the experiment shown in Ref. 1, a SC is placed
in parallel with a Josephson junction having a criti-
cal current much larger than that of the atomic con-
tact (see Fig. 9(b)). This junction is perceived by the
atomic contact as the parallel combination of an induc-
tor LJ = ϕ0/I0 and a capacitor CJ , I0 being the critical
current of the junction. The finite quality factor of the
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corresponding electromagnetic (“plasma”) mode is mod-
eled with a resistance RJ in series with the capacitor.
The SQUID loop formed by the contact and the junction
is connected to a biasing circuit through an inductor Le
and a capacitance Ce. Dissipation in this circuit is mod-
elled by a resistance Re in series with the capacitor (see
Fig. 9(a)).

The total impedance seen by the SC is

Zenv (ν)

RQ
=

4

π

EC
hνp0

i ν
νp0
ae (ν) bp0 (ν)

ap0 (ν) ae (ν)− ν2

ν2
3
bp0 (ν)

, (C2)

with a? (ν) = 1 + i 1
Q?

ν
ν?
− ν2

ν2
?

where ? ≡ e, p0 and

bp0 (ν) = 1 + i 1
Qp0

ν
νp0

.

The characteristic frequencies and quality factors in-
side these expressions are

νp0 = 1
2π (LJCJ)

−1/2
νe = 1

2π (LeCe)
−1/2

ν3 = 1
2π (LJCe)

−1/2
(C3)

Qp0 =
1

RJ

√
LJ
CJ

Qe =
1

Re

√
Le
Ce

. (C4)

The equivalent circuit in Fig. 9 has two modes. A low-
frequency mode determined essentially by the on-chip LC
filter connecting the SQUID to the outside world, and a
high-frequency mode corresponding to the plasma oscil-
lation of the junction “dressed” by the external circuit:

νP =
1

2π

√
L−1
J + L−1

e

CJ
(C5)

Parameters for this equivalent circuit were obtained in
the following way:

The Josephson junction inductance LJ = 595 pH is
determined by the critical current extracted from the
switching probability measurements. The other five pa-
rameters of the equivalent circuit of Fig. 9 were adjusted
so as to reproduce at best all the available experimental
information.

a. The energy gap measured from the IV characteris-
tics is ∆ = 194 µeV.

b. The dressed plasma frequency must be close to
∆/2h in order to explain the position of the sharp
threshold observed in the rates Γin and Γout. This
is compatible with what was reported in17.

c. A value of Ce = 60 pF is expected from a measure-
ment at very low frequency (100 kHz) on a larger
test capacitor fabricated on the same run.

d. The DC sub-gap current of the JJ alone is IJ = 4.4
nA at VJ = ∆/4e. Imposing the power equal-
ity IJVJ = RJI0 between the DC injected power
and the microwave power absorbed at ∆/2h by the
junction’s environment, we get RJ = 0.3 Ω.

e. The low frequency mode of the environment was
measured at 558 MHz in a separate microwave re-
flectometry experiment19.

f. At this resonance frequency, the reflection ampli-
tude S11 shows a dip of −15 dB, from which we
determine Re = 0.25 Ω.

The two capacitances, CJ and Ce, and the environ-
mental inductance Le were adjusted so as to reproduce
the two characteristic frequencies of the circuit. The cho-
sen value CJ = 168 fF is a 25% lower than what is ex-
pected from the nominal area of the junction (2.8 µm2)
and the typical specific capacitance for the junctions fab-
ricated usually in our laboratory (75 fF/µm2). Ce = 68
pF is a 13% higher than what is expected from the test
low frequency measurement. Finally, the nominal value
Le = 600 pH for the environmental inductance is an 80%
of what is expected from a crude geometrical estimation.

With these values we predict a dressed plasma mode
frequency of 0.48∆/h and a quality factor Q = 116.

Appendix D: Relaxation due to phonons

The electron-phonon interaction in real space is26

Ĥe-ph = γ̃

∫
dr
∑
σ

Ψ†σ (r) Ψσ (r) φ̂ (r) (D1)

where φ̂ (r) is the phonon field operator:

φ̂ (r) =
∑
q

√
hνq
2V

(
bqe

iqr + b†qe
−iqr) . (D2)

The electron-phonon coupling constant γ̃ is Z~2π2

mkF
n0

B
1
2

,

with n0 being the atomic density, B the adiabatic bulk
modulus and Z the electron valence from the supercon-
ductor.

The SC density inside the interaction Hamiltonian
takes a form similar to the current operator’s in the quasi-
particle basis (Eq. (B1)). But differently from the cou-
pling with the EM environment, the phonon coupling
depends on the geometrical spread of the SC wavefunc-
tions, a feature characteristic of the coupling of phonons
with localized states23,27.

After eliminating terms linear in e±2ikF x, which vanish
in the spatial integration due to their rapid oscillatory
behavior, the matrix element associated to the process
|Odd, σ〉 → |Even;E, e+, σ〉 is found to be

(
C∗(e+)CA −D

∗
(e+)DA

)
(uEuA − vEvA)

e−(κA+iκE)x

√
Lξ0

.

In the limit τ → 1, the squared amplitude of the part of
this matrix element that does not depend on x, as well
as the similar quantity obtained from the matrix element
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for the process |Odd, σ〉 → |Even;E, h−, σ〉, tend to the

expression in Eq. (B6), except for the factor (~ekF /m)
2
.

It can also be found in the same limit that the analo-
gous x-independent quantity for the |Odd, σ;E, e−, σ̄〉 →
|Even〉 and |Odd, σ;E, h+, σ̄〉 → |Even〉 processes is, on
the other hand, the same as in Eq. (B5).

The spatial integrals are of the form∫ ∞
0

dx · e−(κA±iκE)x sin qxx · F (q⊥, x) ,

where

F (q⊥, x) =

∫
A⊥(x)

d2r⊥e
iq⊥r⊥ |Ψ⊥ (r⊥)|2 ,

Ψ⊥ (r⊥) being the axial spread of the SC wavefunctions
on the leads, whose geometric details are enclosed in their
cross section A⊥ (x).

The momentum transfer Q to or from a phonon tak-
ing an active role in these relaxation processes is large
compared to the inverse penetration length of the ABS:
Q� κA, κE in the region EA (δ) < ∆

2 . Following the ap-
proximations detailed in 23 in the theoretical description

of the phonon-mediated |Even∗〉 → |Even〉 relaxation,

the F (q⊥, x) factor introduces a cutoff L̃ in the integral
in the x direction

F (q⊥, x)→ θ
(
L̃− |x|

)
(D3)

and the spatial integration may be easily evaluated in the
limit L̃−1 � Q� κA, κE :

4Q sinQL̃

Q2 + |κA ± iκE |2
≈ 4L̃.

Combining the different contributions, the squared am-
plitude for the process |Odd, σ〉 → |Even;E, e/h±, σ〉me-
diated by the emission of a phonon is

|M1|2 = 8
hνQ
V

L̃2γ̃2

Lξ0

√
1− EA

∆

2 E2 −∆2

E2 − E2
A

E − EA
E

.

The transition rate for such a process is

2π

~
V

∫
d3Q

(2π)
3 4 |M1|2 ρSC (E) (1− fFD (E, Tqp)) fBE (hνQ, Tph) δ (hνQ − E + EA) , (D4)

where we have used the same notation as in the main text. We may rewrite the integral over momenta in Eq. (D4) as
an integral over energies, with a density of states quadratic in E−EA that appears as a result of this transformation.
The resulting total rate is then

Γ
(a)
out =

2π

~
8

π

(
L̃

ξ0

)2
γ̃2

π2

(
∆

~cs

)3 ∫ ∞
∆

dE

∆

(
E − EA

∆

)3

g (E,−EA) fBE (E − EA, Tph) (1− fFD (E, Tqp)) . (D5)

Repeating the same process for the process for the form |Odd, σ;E, ησ̄〉 → |Even〉 yields

Γ
(b)
out =

2π

~
8

π

(
L̃

ξ0

)2
γ̃2

π2

(
∆

~cs

)3 ∫ ∞
∆

dE

∆

(
E + EA

∆

)3

g (E,EA) (1− fBE (E + EA, Tph)) fFD (E, Tqp) . (D6)

Using the material constants for aluminum, the factor

2π
~
γ̃2

π2

(
∆
~cs

)3

is of the order of 10 GHz. The phonon rate

is reduced because of the relevant thermal factors (which
are of the order of e−β∆ ∼ 10−5) and the geometrical

factor 8
π

(
L̃
ξ0

)2

. If this factor is of the order of 10−2, the

phonon-induced relaxation rates are reduced to around
1 kHz, which coincide with other estimations in analo-
gous systems14.
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