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We present a microscopic theory for the current through a tunnel Josephson junction coupled
to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic
oscillator. It models a recent experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature
499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size
contact. We find the eigenenergies and eigenstates of the environment and derive the current through
the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the
transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes
with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in
fair agreement with the experimental data.

PACS numbers: 74.45.+c, 73.23.-b, 74.50.+r

I. INTRODUCTION

The Josephson effect, predicted and observed 50 years
ago in superconducting tunnel junctions [1–3], describes
the non-dissipative supercurrent that results from the co-
herent coupling between superconductors separated by a
thin insulating barrier. Since then the supercurrent has
been observed in many other weak links such as point
contacts, semiconducting nanowires, carbon nanotubes,
graphene sheets and thin ferromagnetic layers [4]. Micro-
scopically the Josephson coupling is established through
fermionic states whose energies depend on the supercon-
ducting phase difference δ across the weak link. For a
weak link shorter than the superconducting coherence
length ξ, these so-called Andreev bound states (ABS)
have energies smaller than the superconducting gap ∆
and are therefore localized at the weak link over a dis-
tance of the order of ξ [5–8]. In a single-channel weak
link, there is only one pair of ABS, |−〉 and |+〉, with
energies ∓EA (see Fig. 1(a)), where

EA = ∆

√
1− τ sin2 (δ/2). (1)

Here, δ is the superconducting phase difference and τ is
the transmission probability for electrons in the normal
state. The phase dependence gives rise to opposite su-
percurrents∓ (1/ϕ0) (∂EA/∂δ) in the ground and excited
states (with ϕ0 = ~/2e the reduced flux quantum). This
pair of states can be seen as a spin-1/2 and introduces an
internal degree of freedom to Josephson weak links.

At zero temperature only the lower energy state |−〉
is occupied. This ground state has been probed through
measurements of the current-phase relation in supercon-
ducting atomic contacts [9]. The direct observation of
the higher energy state |+〉 has been achieved only re-
cently [10, 11]. In the experiment of Ref. [10], a voltage-
biased Josephson junction was used as an on-chip spec-

trometer (see Fig. 2). The dissipative subgap current
through the Josephson junction is due to inelastic tunnel-
ing of Cooper pairs, the released energy being absorbed
in the environment (see Fig. 1). Current peaks are then
observed at energies corresponding to the eigenenergies
of the environment.
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Figure 1: (Color online) Principle of the photon spectroscopy
of Andreev bound states. (a) Phase (δ) dependence of the
Andreev levels with energies ∓EA in a short conduction chan-
nel of transmission τ. ∆ is the superconducting gap. (b) A
Cooper pair tunneling across the spectrometer junction re-
leases energy 2eV as a photon of frequency ν, which is ab-
sorbed either in the atomic contact by exciting the Andreev
transition at energy 2EA (a) or in a harmonic oscillator mode
(c) present in the embedding circuit of the atomic contact (see
Fig. 2).

In practice, the environment was an asymmetric
SQUID formed by a superconducting atomic contact in
parallel with a second Josephson junction (see Fig. 2).
This environment can be modeled as a spin-1/2 degree of
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freedom (the Andreev doublet) coupled with a harmonic
mode (the plasma mode of the Josephson junction) (see
Fig. 1). The goal of the present work is to reach a quan-
titative understanding of the measured spectra.

The rest of the paper is organized as follows. Sec-
tion II gives a Hamiltonian description of the circuit
schematized in Fig. 2. The spectrometer Hamiltonian
is then treated as a perturbation, and following previous
work [12–17], the atomic contact is treated under the
assumption of small phase fluctuations. In section III,
the resulting spin-boson Hamiltonian of the environment
is solved numerically, and the calculated current spec-
tra are compared with the experimental ones. Finally, in
section IV the Hamiltonian is solved analytically in the
Jaynes-Cummings approximation. Some perspectives are
discussed in the conclusion.

II. MODEL

A. Setup

The setup used in the experiment [10] is shown
schematically in Fig. 2. On the left-hand side, a voltage-
biased Josephson junction (critical current I0 = 48 nA)
is used as a spectrometer. It is biased with a voltage
source V in series with a resistor R = 2 kΩ. It radiates
microwaves at the Josephson frequency ν = 2eV/h [18],
which can be absorbed by its electromagnetic environ-
ment, an atomic-SQUID formed by an atomic point con-
tact in parallel with a second Josephson junction. The
critical current IL = 1.06 µA of this second junction
is much larger than those of the spectrometer junction
and of a one-atom contact. An external superconduct-
ing coil is used to apply a dc flux φ = ϕ0ϕ through the
SQUID loop. The capacitance C = 280 fF corresponds to
the sum of the junctions capacitors.The atomic-SQUID
and the spectrometer are coupled through a capacitor
Σ ∼30 pF. Whereas it behaves as an open circuit from the
dc point of view and ensures that the dc voltage V falls
on the spectrometer, it can be considered as a short for
the Josephson radiation in the explored frequency range
(ν � νp(C/Σ)1/2 ∼ 2 GHz, with νp the plasma frequency
of the SQUID junction).

B. Hamiltonian of the circuit

Neglecting the coupling capacitor and the bias resis-
tor, the circuit represented in Fig. 2 can be described
with the Hamiltonian H = Hspec +HSQ. The first term
Hspec = −EJ cos (γ+2eV t) corresponds to the spectrom-
eter with Josephson energy EJ = ϕ0I0. The voltage drop
across the spectrometer junction induces a superconduct-
ing phase difference α = γ + 2eV t, with γ the phase at

2e
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Σ

γ

ϕ

{τi}

I

I0

ν

C

EnvironmentSpectrometer

α

R

Figure 2: (Color online). Simplified diagram of the experi-
mental set-up. A voltage-biased Josephson junction (orange
cross) is used as a spectrometer. It emits microwaves in
its environment, an atomic-SQUID formed by an ancillary
Josephson junction (green cross in parallel with a capacitor
C) and an atomic point contact (blue triangles) of channel
transmission probabilities {τi}. The absorption of a photon
by the environment is accompanied by the transfer of a
Cooper pair through the spectrometer. The phases γ and δ
across the SQUID junction and the atomic contact are linked
by the external reduced flux ϕ threading the loop: δ = γ+ϕ.
The phase across the spectrometer is given by α = γ + 2eV t.

the SQUID junction [19]. The coupling with the SQUID
occurs through the phase operator γ.

The Hamiltonian

HSQ = ECN
2 − EL cos (γ) +HA (δ) (2)

accounts for the SQUID. The operator N is the number
of Cooper pairs that have crossed the tunnel junction; N
and γ are conjugated operators: [γ,N ] = i. EC = 2e2/C
is the charging energy for pairs and EL the Josephson
energy of the SQUID junction. The last term in Eq. (2)
describes the atomic contact. The phase δ = ϕ+γ across
the atomic contact differs from γ by ϕ, the reduced flux.
For a single channel contact, and neglecting excitations
which involve quasiparticles in the continuum, the An-
dreev Hamiltonian is [13, 14]

HA = −∆ (ImU σy + ReU σz) ,

with U =
[
cos( δ2 ) + i

√
1−τ sin( δ2 )

]
e−i
√

1−τ δ2

(3)

where the Pauli matrices σx,y,z act in a 2 × 2 subspace
corresponding to the two ABS. The physics of the ABS
is therefore analogous to that of a spin-1/2 in a mag-
netic field whose magnitude ∆ |U | = EA and direction
depend on the superconducting phase difference δ across
the contact. The eigenstates of HA are the ABS |±〉,
with eigenenergies ±EA (see Eq. (1) and Fig. 1(a)).
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C. Andreev spin and plasma boson

In the experiment [10], due to the large asymme-
try EL � EA, the phase dynamics is essentially ruled
by the SQUID junction. The size of the phase fluc-
tuations is determined by the dimensionless parameter
z = (EC/2EL)

1/2 � 1. Therefore, following Ref. [12], we
may treat the SQUID junction as a linear inductor and
retain only the lowest order coupling (∝

√
z) between

the SQUID junction and the atomic contact in Eq. (2).
Namely,

HSQ ≈ ECN2 + ELγ
2/2 +HA (ϕ) + ϕ0γCA (ϕ) , (4)

where CA = ϕ−10 ∂HA/∂δ is the Andreev current op-
erator. Hence, the parallel combination of the SQUID
junction and the capacitor C forms a harmonic oscillator
of resonant frequency νp =

√
2ELEC/h (see Fig. 1(c)).

Switching to second quantization, its Hamiltonian reads
hνp(a

†a+ 1
2 ), where the phase γ =

√
z
(
a+ a†

)
is linked

to the annihilation and creation operators a and a† of the
plasma mode of the SQUID.

In the basis of the Andreev states {|−〉 , |+〉}, the
SQUID Hamiltonian finally reads

HSQ = hνp

(
a†a+

1

2

)
−EAσz+

(
a+ a†

)
(Ωxσx + Ωzσz) ,

(5)
where

Ωz = ∆
√
z

τ sin (ϕ)√
1− τ sin2

(
ϕ
2

) (6)

and Ωx = Ωz
√

1− τ tan
(
ϕ
2

)
. The phase-dependence of

these coupling energies is represented in Fig. 3.

0 π 2π
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Figure 3: (Color online). Phase dependence of the coupling
energies Ωx (red) and Ωz (blue) in units of

√
z∆, for τ = 0.8.

The spin-boson Hamiltonian (5) yields a discrete eigen-
spectrum which results from the hybridization of the
bosonic plasma mode in the SQUID junction and the
Andreev spin-1/2 degree of freedom in the atomic con-
tact (see Fig. 4(a)). The term ∝ Ωx allows transitions

between Andreev states. It is minimum at ϕ = 0 and
maximum at ϕ = π. Note that the flux modulation of
the SQUID plasma frequency due to the contribution of
the effective inductance of the atomic contact would ap-
pear as a higher order effect in z.

D. Incoherent Cooper pair current

The global circuit Hamiltonian H cannot be diago-
nalized analytically. Along the lines of P (E) theory for
dynamical Coulomb blockade [20, 21], the spectrometer
may be treated as a perturbation. The dc current I flow-
ing through the spectrometer is calculated using the cur-
rent operator I0 sin(γ + 2eV t) and perturbation theory
up to the second order in EJ . At zero temperature and
for V > 0,

I (V )

I0
=
π

2
EJ
∑
k

∣∣〈k| eiγ |0〉∣∣2 δ ((Ek−E0)−2eV ) , (7)

where |k〉 are the eigenstates of HSQ with energy Ek.
Equation (7) accounts for incoherent Cooper pair tunnel-
ing through the junction’s barrier at rate I/2e, provided
that the energy 2eV matches an excitation energy of the
junction environment (see Fig. 1(b)). As in P (E) theory
for zero temperature, we assume that, before each tun-
neling event, the environment has relaxed to its ground
state |0〉.

In P (E) theory [20, 21], the environment is purely elec-
tromagnetic, linear and is described by an impedance
Z(ω). Equation (7) then simplifies and gives the current
as a function of ReZ (ω). In particular, this would yield
current peaks at 2eV = nhνp (n integer), with a width
related to the quality factor of the bosonic plasma mode
of frequency νp.

Such an approach is not possible here due to the strong
non-linearity of the Andreev degree of freedom. As
the model does not include dissipation, the spin-boson
Hamiltonian HSQ yields a discrete spectrum. Then,
Eq. (7) predicts infinitely sharp dc current peaks at the
excitation energies of HSQ. A finite broadening of each
of the peaks may be introduced phenomenologically with
the substitution δ (E − E0) → (Γ/π) /

[
(E − E0)

2
+ Γ2

]
in Eq. (7). While the model is unable to predict the
amplitude of the linewidth Γ, it should be large enough
for the incoherent Cooper pair current through the spec-
trometer junction to be small, I � I0, so that pertur-
bation theory is valid. Near voltage V = εk/(2e), where
εk = Ek − E0, this condition reads (EJ/Γ)Pk � 1, with
transition probability Pk =

∣∣〈k| eiγ |0〉∣∣2.
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III. SPECTRA CALCULATION

A. Numerical resolution

The spectrum of Hamiltonian (5) can be obtained nu-
merically. To do so, we write it as a matrix in the basis
{|σ, n〉}, where σ = ± accounts for the Andreev spin-
1/2 and n is the plasmon occupation number, and trun-
cate to the lower energy states. By numerical resolu-
tion of a 14 × 14 Hamiltonian matrix (n ≤ 6), we have
computed all the resonances of energy smaller than 2∆
and the corresponding transition probabilities Pk. Fig-
ure 4 shows the excitation spectrum (b) and the transi-
tion probabilities (c) for the transitions indicated in (a),
for a channel of transmission τ = 0.98. In the experi-
ment, the superconducting gap energy is ∆/h ' 43 GHz,
the charging energy is EC/h ' 270 MHz and the Joseph-
son energy of the SQUID junction is EL/h ' 900 GHz,
leading to z ' 0.012. Note that EL is renormalized as
EL = ϕ0 (IL + 2ϕ0/L), where L/2 = 0.44 nH is a parallel
inductor (not shown in Fig. 2) accounting for a 1.35 mm-
long aluminum connecting wire present in the actual ge-
ometry of the sample.

B. Incorporating line broadening

The experimental data displayed in the right panels
of Fig. 5 show broad lines. One notices that the transi-
tion solely concerning the plasma mode is already broad,
which indicates that this mode is subject to dissipation
and/or dephasing; note also that voltage fluctuations
across the spectrometer junction can limit the energy res-
olution [22]. To account for the broadening of the energy
levels of HSQ one should at least include the coupling
of the plasma mode to a dissipative bath. Treating the
latter as an infinite collection of harmonic oscillators, as
it is usually done, would lead to a complex spin-boson
problem without analytical solution. Here we simply in-
troduce in Eq. (7) a phenomenological Lorentzian broad-
ening, cf. Sec. IID. By fitting the plasma resonance peak,
we found Γ/h = 2 GHz, which we used for all the calcu-
lated lines shown in the left panels of Fig. 5.

C. Comparison with experiment

In experiments atomic contacts have several channels.
We extend the model to contacts with multiple chan-
nels by adding an Andreev term (3) for each channel
to the Hamiltonian. This Hamiltonian describes the
physics of N spins coupled to the same bosonic mode but
not directly coupled to each other. All the approxima-
tions made before are still valid [23]. Figure 5 compares
the calculated spectra (left) with the experimental ones
from Ref. [10] (right), for two different atomic contacts

P

ϕ
π 2π0

ze-z

10-6

10-4

10-2

1

z2e-z1
2

ε
Δ

0

1

2
(b)

(c)

(a)

-,0

-,1

-,2

-,3

+,0

+,1

+,2

+,3

Figure 4: (Color online). (a) Energy spectrum diagrams of
HSQ for a single channel: each state is labelled |−, n〉 or |+, n〉
for the Andreev pair in the ground (−) or excited (+) state
and n photons in the plasma mode. At degeneracy 2EA =
hνp, the plasma and Andreev modes hybridize, which leads to
an avoided crossing visible in (b). (b, c) Excitation energies
ε (in units of ∆) (b) and transition probabilities P (c) of the
first resonances, as a function of the reduced flux ϕ, for a
channel of transmission τ = 0.98. These lines are obtained by
numerical resolution of a 14 × 14 Hamiltonian matrix. Each
color encodes a transition from the ground state towards a
different excited state, as represented in (a).

AC1 (transmissions 0.942, 0.26) and AC2 (transmissions
0.985, 0.37). The theory is obtained with the numerical
method sketched before, still using seven photon levels
(28× 28 matrix).

The model describes both the Andreev transitions
|−, 0〉 → |+, 0〉, of energy 2EA (V-shaped lines), and the
plasma transition |−, 0〉 → |−, 1〉, of energy hνp (red hor-
izontal line at 0.51 ∆). It also describes the higher har-
monic transitions: |−, 0〉 → |+, 1〉, of energy 2EA + hνp
(replica of the Andreev transition, shifted up by 0.51 ∆)
and |−, 0〉 → |−, 2〉, of energy 2hνp (white horizontal line
at 1.02 ∆). These processes correspond to the tunneling
of one Cooper pair and emission of two photons. They are
less probable and result in fainter transitions as seen both
in experiment and calculation. Theory also accounts for
the anti-crossings arising from the coupling between the
Andreev-spin and the plasma-boson. Only crossings of
transition lines involving the same number of photons
show significant hybridization, in good agreement with
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Experiment for contact AC2
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Figure 5: (Color online). Comparison between calculated (left) and experimental (right) spectra I (ϕ, V ) for contact AC1
(transmissions 0.942, 0.26) (top) and AC2 (transmissions 0.985, 0.37) (bottom). The two insets show theoretical (black lines)
and experimental (green lines) I (V ) cuts for ϕ = π, for each contact. Right: The experimental spectra are extracted from
Figure 3 in Ref. [10]. The grey regions at ν < 4 GHz and around 25 GHz are not accessible because there the biasing of the
spectrometer is unstable. Left: The calculated spectra are obtained using Eq. (7) with a phenomenological damping parameter
Γ/h = 2 GHz. The calculated currents have been multiplied by 0.6 to match the measured ones. The transition probabilities
and excitation energies are computed numerically, using 7 photon levels in the plasma mode.
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the data.
Extra phase-independent current at 2eV . ∆/2 in the

experimental data is attributed to the coupling to uncon-
trolled environmental modes outside of the SQUID.

Finally, the global weakening of the signal at high V
is well captured by the model. This weakening is due to
the lower impedance of the SQUID capacitance compared
to its inductance at frequencies larger than the plasma
frequency. However, the agreement for the amplitude and
width of the different peaks is not quantitative. Having
set the width to 2 GHz, a correct peak amplitude is only
obtained when multiplying theory by a factor 0.6. A
rigorous treatment of dissipation is needed. This could be
achieved by adding an electromagnetic impedance with
a dissipative component in parallel with the SQUID.

IV. ANDREEV-PLASMA MODE
HYBRIDIZATION

We use the rotating wave approximation, valid in the
vicinity of the degeneracy hνp = 2EA, to obtain ana-
lytical expressions for the excitation energies and transi-
tion rates. The Hamiltonian can be approximated by the
Jaynes-Cummings model [24, 25]:

HJC
SQ = hνp

(
a†a+

1

2

)
−EAσz + Ωx

(
aσ+ + a†σ−

)
(8)

where σ± = 1
2 (σx ∓ iσy). Then, by block-

diagonalization in the subspace {|+, n〉 , |−, n+ 1〉}, one
derives the eigenstates and eigenenergies and computes
the excitations energies and transition probabilities.

To fourth order in
√
z, the current (7) through the

spectrometer displays four peaks

I(V )

I0
=
π

2
EJ

∑
σ=±;n=1,2

Pσn δ (2eV − εσn) (9)

at the bias voltages matching the excitation energies (see
top panel of Fig. 6):

ε±n = EA +

(
n− 1

2

)
hνp ±Wn (10)

with Wn =
√

(EA − 1
2hνp)

2 + nΩ2
x. The amplitudes of

the current peaks are proportional to the transition prob-
abilities (see bottom panel of Fig. 6):{

P−n = 1
n!z

ne−z cos2
(
θn
2

)
P+
n = 1

n!z
ne−z sin2

(
θn
2

) (11)

with θn = arctan (nΩx/W0).
These peaks correspond to excitations towards com-

posite states, resulting from the hybridization of the
plasma and Andreev modes (see Fig. 4(a)). The first
two resonances in Eq. (9) correspond to the excitation

with a single photon of the hybridized Andreev (2EA)
and plasma mode (hνp); the last two resonances corre-
spond to the excitation of higher harmonic modes at 2hνp
and hνp + 2EA. These two-photon processes are possi-
ble because the spectrometer, a Josephson tunnel junc-
tion, is a nonlinear emitter. They correspond to the tun-
neling of one Cooper pair and emission of two photons.
Note that far from degeneracy, using perturbation theory
with z � 1, one finds for the plasma resonance and its
harmonic the transition probabilities ze−z and 1

2z
2e−z.

These amplitude are consistent with the Poisson distri-
bution found at arbitrary z in the P (E) derivation with
a bosonic mode [21].

10-6

10-4

10-2

j

ϕ
π 2π0

ze-z

z2e-z1
2

P

1

ε
Δ

0

1

2

Figure 6: (Color online). Excitation energies ε (in units of
∆) (top) and transition probabilities P (bottom) of the first
resonances, as a function of the reduced flux ϕ, in the Jaynes-
Cummings approximation for a channel of transmission τ =
0.98. Each color encodes a transition towards a different state,
as shown in Fig. 4(a).

It is worth mentioning that the Jaynes-Cummings
model gives an excellent description, even far from de-
generacy when |W0| � hνp. There, the error made in
energy scales as Ωx/ (2EA + hνp), and is in general neg-
ligible. However, this model fails to predict the anti-
crossing between the second harmonic of the plasma res-
onance and the Andreev resonance at 2hνp = 2EA (red
and green lines in Fig. 6). In practice this correction is
one order of magnitude smaller than the anti-crossing at
hνp = 2EA and is not seen in the experiment [10]. Note
however that the derivation in the case of multiple chan-
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nels is much more involved when more than one Andreev
transition crosses the plasma resonance.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have treated inelastic Copper pair
tunneling through the emitter junction using perturba-
tion theory in its coupling with the environment, and cal-
culated the environmental transition energies and prob-
abilities by diagonalization of the SQUID Hamiltonian.
This Hamiltonian contains a spin-like term describing the
atomic contact and which is coupled to a harmonic term
for the plasma mode of the SQUID junction. The calcu-
lated spectra are in fair agreement with the experimental
ones. However this theory could benefit from several ex-
tensions.

First of all, the atomic contact Hamiltonian was re-
stricted to a two-level system Hamiltonian, by neglect-
ing excitations which involve quasiparticles in the con-
tinuum. In particular, quasiparticle trapping, which was
measured in a similar experiment [11], leaves the Andreev
doublet in a long-lived “odd” state for which both the An-
dreev states are either occupied or empty [26], with time
scales in the millisecond range [27]. It limits the Andreev
transition rate and therefore reduces the corresponding
dc current. On the other hand, transitions from the An-
dreev bound states to the continuum were measured on
the same contacts using another detection method [11].
They do not contribute to the dc current and were not
seen in the experiment described in Ref. [10] due to the
long lifetime of the odd states. To deal with all the An-
dreev excitations on the same footing, one must consider
the full Hamiltonian of the atomic contact, as done in
recent works [17, 28].

Second, the description used here for the environment
eigenstates and for the spectrometer is far from being
complete. As discussed above, this is a difficult problem
for two reasons: (i) the coupling of a two-level system
to a dissipative resonator is not known analytically, and
(ii) the I(V ) characteristic of a Josephson junction cou-
pled to a resonator is not generically known when the
perturbative expansion in EJ is not valid, despite recent
progress along this direction [29]. Although the second
order expansion is valid for the data discussed here since
the Cooper pair current is small (I � I0), higher order
contributions corresponding to the transfer of more than
one Cooper pair emitting several photons were observed
in other experiments [11, 30].

Finally, it was also assumed in the model that the en-
vironment is in its ground state each time a Cooper pair
tunnels. This requires the relaxation time of the excited
environment states to be shorter than the inverse tun-
nel rates. When this is not the case, the environment
modifies the tunneling process. For the harmonic oscilla-
tor bosonic mode, this could lead to stimulated emission

and lasing. For the Andreev two-level system, this could
saturate absorption and reduce the Cooper pair current
through the spectrometer junction. A regime in which
the Andreev two-level system would coherently exchange
an excitation with the Josephson junction can also be
envisioned.
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