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We have developed and measured a high-gain quantum-limited microwave parametric amplifier
based on a superconducting lumped LC resonator with the inductor L including an array of 8
superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped
by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz,
a maximum gain of 31 dB, a product amplitude-gain × bandwidth above 60 MHz, and a 1 dB
compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation.
Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a
maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained
with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.

Although superconducting parametric amplifiers based
on Josephson junctions are known and understood for
decades [1, 2], they have recently received an increased
attention [3] because of their ability to measure single
quantum objects and engineer quantum fluctuations of
a microwave field. They are extensively used to readout
superconducting quantum bits [4, 6, 7] or mechanical res-
onators [8] at or near the quantum limit, i.e with mini-
mum back-action imposed by quantum mechanics for the
given amount of information taken on the system. They
permitted for instance the measurement of quantum tra-
jectories [4] and the implementation of quantum feedback
schemes [5, 9]. In the field of quantum microwaves, they
are also used to squeeze quantum noise and produce itin-
erant squeezed states for encoding quantum information
[10, 11] or demonstrating fundamental effects like the re-
duction of the radiative decay of an artificial atom [12].

Compared to the noisier high electron mobility transis-
tor (HEMT) based amplifiers, these Josephson paramet-
ric amplifiers (JPA) suffer from limited bandwidth and
from gain saturation at extremely low input power. A
strong effort is thus made to increase the bandwidth and
to mitigate saturation of JPAs by varying their design
and mode of operation [13–16]. In all cases, parametric
amplification of a signal at angular frequency ωS occurs
by transfer of energy from a pump at frequency ωP to
the signal and to a complementary idler frequency ωI .
For amplifiers based on resonators, one distinguishes the
case of intrinsically nonlinear resonators with bare fre-
quency ωR that are pumped at ωP ' ωS ' ωR directly
on their signal line, from the (possibly linear) resonators
whose frequency ωR is parametrically modulated with a
pump tone at ωP ' 2ωS ' 2ωR on a dedicated line sepa-
rated from the signal port. In the first case the intrinsic
nonlinearity of the resonator is usually obtained by im-
plementing all or part of its inductance by Josephson
junctions (or superconducting weak links). The pump-
ing at ωP at sufficiently high amplitude modulates this
nonlinear inductance at 2ωP , and is responsible for a 4-
wave mixing such that 2ωP = ωS + ωI . In the present
work, we are interested in the second case [17, 18], for

which the nonlinearity is due to an externally imposed
parametric modulation of the frequency and is responsi-
ble for a 3-wave mixing such that ωP = ωS + ωI . The
interest of this 3 wave mixing is that no pump mode
propagates along the input and output signal lines and
can blind a detector or spoil a squeezed field, at a close
frequency. In practice, the true parametric modulation
is usually obtained by embedding in the resonator induc-
tance one or several SQUIDs, the Josephson inductance
of which is modulated by an ac magnetic flux. The non-
linearity of the resonator inherited from the SQUID(s) is
in this case an unwanted feature, which leads to satura-
tion of amplification, and should thus be kept low. So
besides the advantage of getting rid of the pump along
the signal lines, a truly parametrically pumped amplifier
can also be made more robust against saturation by re-
ducing its nonlinearity without having to pump it more
strongly. In this work, we test this idea and demon-
strate a weakly nonlinear JPA with high gain, made of
a lumped LC resonator with the inductor L terminated
by a SQUID array. The manuscript first summarizes the
theoretical description of such a JPA, then describes the
device implemented and its characterization setup, and
finally presents the experimental data and a comparison
between measured and calculated gain, bandwidth, and
saturation.

I. THEORETICAL SUMMARY AND DESIGN
CHOICES

The specificity of the JPA presented here (pure 3 wave-
mixing with spurious nonlinearity) makes the standard
classical description of parametric amplifiers [2] not di-
rectly applicable to it. This is why a comprehensive the-
oretical summary is given here, based on the theoretical
work [21] (note that a similar theoretical treatment can
be found in [19]). The equivalent circuit of the JPA is
shown in the bottom-right corner of Fig. 1b. For a DC
flux bias ΦDC , a parametric modulation δLA cos(ωP t) of
its array inductance LA, and a microwave input signal
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VS cos(ωSt+ χ), the JPA equation of motion at the low-
est nonlinear order in phase ϕ = 1/ϕ0

´
V dt across the

total inductance L = Lg + LA(ΦDC) or the capacitance
CR is

ϕ′′+2Γaϕ
′+ω2

R[1+aP (ΦAC) cos(ωP t)]ϕ+α1ϕ
3 = ϕS cos(ωSt+χ),

(1)

where ϕ0 = ~/2e = Φ0/2π is the reduced flux quantum,
ωR = 2πfR = 1/

√
L(CR + Cc) the frequency of the res-

onator, ωP = 2πfP the pumping frequency, Γa = ωR/2Q
its amplitude decay rate, aP = δLA(ΦAC)/L the relative
pumping amplitude, α1 = −ω2

Rp
3/2N2 the Josephson

nonlinearity coefficient with N the number of SQUIDs
and p = LJ/L the so-called participation ratio of the
total Josephson inductance LJ to the total inductance
L; ϕS is the drive amplitude proportional to VS . Tak-
ing into account the finite ratio β of each SQUID loop
inductance to the inductance LJ1 of a single junction,
the SQUID array inductance is LA = NLJ1β/4 + LJ
with LJ = NLJ1/

{
2
[
cos (x) + β/2 sin2 (x)

]}
[20] and

x = πΦ/Φ0.

Equation (1) contains the parametric nonlinearity
cos(ωP t)ϕ and the intrinsic Josephson nonlinearity α1ϕ

3

mentioned in the introduction. We rewrite it in the
frame rotating at ωP /2 using the slow complex internal
amplitude A(t) defined by ϕ(t) = A(t)

√
ZRe−iωPt/2 +

cc, as well as the constant complex amplitude BS of
the input signal and the slow output amplitude C(t)
related to the input and output voltages Vin,out by
Vin(t) = iϕ0

√
Z0ωSBSe−iωSt/2 + cc and Vout(t) =

iϕ0

√
Z0ωSC(t)e−iωSt/2 + cc. Here, Z0 is the impedance

of the line, ZR =
√
L/(CR + Cc) the characteristic

impedance of the resonator, and cc stands for the com-
plex conjugate of the previous term. Neglecting fast oscil-
lating terms (rotating wave approximation), one obtains
[21]

{
iA′ + (iΓa + δ + α

∣∣A2
∣∣)A+ εA∗ =

√
2ΓaBSe−i∆t

C = −i
√

2ΓaA+BS
,

(2)

where δ = ωP /2 − ωR is the pump to resonator de-
tuning, ∆ = ωS − ωP /2 the signal to pump detuning,
α = −p3ZRωR/16N2 the new nonlinear coefficient, and
ε = ωRaP = 2ωRκΦAC/Φ0 the pumping strength with
κ ∝ pQ the relative frequency change per flux quan-
tum deduced from the slope of the modulation curve
ωR(ΦDC).

Although the most general stationary solution of Eq.
(2) is a sum

∑
k∈Z Ake−ik∆t of all harmonics at frequen-

cies ωP /2 + k∆, only the signal AS = A1 and the idler
AI = A−1 contributions happen to be non negligible at
not too high pumping strength. In this case, they obey



{[
δr + αr

(
|AS |2 + 2 |AI |2

)]
+ ∆r + i

}
AS + εrA

∗
I =

√
2/ΓaBS{[

δr + αr

(
2 |AS |2 + |AI |2

)]
−∆r + i

}
AI + εrA

∗
S = 0

CS = −i
√

2ΓaAS +BS
CI = −i

√
2ΓaAI

(3)
with δr = δ/Γa, ∆r = ∆/Γa, αr = α/Γa =
−p3ZRQ/8N

2 and εr = ε/Γa the dimensionless detun-
ings, nonlinear coefficient, and pumping strength, respec-
tively.

Our goal is to make the nonlinearity αr as small as pos-
sible and benefit from the linear signal and idler complex
gains given by system (3) when αr = 0, i.e.

{
GS = CS

BS
=

δ2r−∆2
r−1−ε2r−2iδr

δ2r−∆2
r+1−ε2r−2i∆r

GI = CI

BS
= 2iεr

δ2r−∆2
r+1−ε2r+2i∆r

ei2χ
, (4)

yielding the power gains

|GS |2 = 1+ |GI |2 = 1+
4ε2r

[1− ε2r + δ2
r −∆2

r]
2

+ 4∆2
r

. (5)

In the degenerate case corresponding to ∆ = 0, the sig-
nal power gain becomes phase χ dependent and is given
by

|GS,deg|2 (χ) = 1+4εr
2 [εr − δr cos(2χ)] + (1 + ε2r − δ2

r) sin(2χ)

(1− ε2r + δ2
r) 2

.

(6)
Equations (4-6) are valid only below the onset of
parametric oscillations, that is of pump-induced auto-
oscillations at zero signal BS for εr > 1+δ2

r . For suffi-
ciently large pumping strength εr > 0.42 the power gain
|GS |2 is larger than 2 at small ∆r and δr, and a gain
bandwidth ∆ω = 2π∆f at −3 dB can be defined. For
the optimal pumping frequency δr = 0 we find

∆ω

2Γa
=

√√√√(1 + ε2r)

(
2εr√

ε4r − 6ε2r − 1
− 1

)
, (7)

which yields a gain bandwidth product

|GS |∆ω/2Γa ' 1 (8)

that is constant within 10% above 7 dB gain. Then, sat-
uration can be evaluated approximately in an easy way
by noticing that as the internal amplitudes of oscillation
AS and AI increase with the pumping strength and gain,
they tend to the same value when |GS |2 ' |GI |2 � 1 (see
Eq. (5)). Consequently, the terms in αr in the first two
equations of system (3) also converge to close values and
play the very same role as the pump to resonator detun-
ing δr, which is itself responsible for a gain drop given
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by Eq. (6). Equating αr
∣∣A2

S + 2A2
I

∣∣ at δr = 0 to the
value δr,sat = 0.35

√
1− ε2r that produces a −1 dB drop

of |GS |2 − 1, leads to the following equivalent values for
AS and BS (so called 1 dB compression point):A2

S,sat ' 0.35
|αR|

√
1−ε2r

1+2ε2r
B2

S,sat

Γa
' 0.17
|αR|

(1−ε2r)
5/2

1+2ε2r

(9)

In addition, saturation at large gain |GS | has to occur
when the peak current i in the junctions is still well below
their critical current ic. Since at δr ∼ 0, i/ic = (1 +
εr) |AS | p

√
Zr/N , keeping i/ic < 0.5 yields the design

rule

pQ > 21/
√
|GS,max|+ 1, (10)

which imposes a minimum p for low Q and wide band-
width JPAs.

In this work, we choose to implement a tunable am-
plifier in the 5-6 GHz range with a quality factor Q of
order 100, which should have a product gain×bandwidth
of ∼ 50 MHz according to Eq. (8). To reduce the
maximum microwave pumping power corresponding to
εr = QaP /2 = 1, i.e. to a modulation aP ∼ 1% of the
total inductance, a high participation ratio p ' 0.5 is
chosen. On the other hand, in order to keep the non-
linearity αr weak and to increase the 1 dB compression
point BS,sat, the tunable inductance is implemented with
N = 8 SQUIDs. In this case, the saturation power is in-
creased by N2 or 18 dB, compared to the case of a single
SQUID with the same total Josephson inductance. Fi-
nally, as Zr plays only a minor role in the nonlinearityαr
(in comparison with p3and N−2), its value will be sim-
ply chosen at the best convenience for implementing the
lumped element resonator.

II. SAMPLE AND MEASUREMENT SETUP

An optical micrograph of the JPA and its equivalent
circuit are shown in Fig. 1a. This JPA is made of an
interdigitated coplanar capacitor to ground (split in two
parts) with capacitance CR = 0.40 pF , in parallel with
an inductance to ground L combining in series a me-
ander of inductance Lg = 0.80 nH with an array of 8
SQUIDs of total Josephson inductanceLJ = 0.88 nH at
zero magnetic flux Φ. Being designed to be operated in
reflection, this LC circuit is coupled to a single input-
output signal line (50 Ω coplanar waveguide - CPW )
through a Cc = 55 fF capacitance yielding a characteris-
tic impedance Zr w 65 Ω and a quality factor Q ' 70 at
Φ = 0. On the other side of the device a 50 Ω CPW line
shorted to ground by two loops coupled inductively to 4
SQUIDS each, serves both for their DC flux biasing and
for parametric pumping. Note that after compensation
of any global DC flux offset, the magnetic fluxes Φ are ex-
actly opposite in the left and right 4 SQUID sub-arrays,
which yields the same inductance modulation.
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Figure 1: Experimental setup. (a) Optical micrograph of the
tested parametric amplifier showing its 50 Ω coplanar waveg-
uide (CPW) signal input port (top), its coupling capacitor Cc,
its capacitor CR (left and right), its inductor Lg (middle) ter-
minated by an 8-SQUID arrays with total inductance LA (Φ),
and its split magnetic flux line coupled to a 50 Ω CPW (bot-
tom). The DC current in the flux line sets the dc flux ΦDC

and the resonance frequency fR of the resonator, whereas the
ac current parametrically pumps the resonator at ωP ' 2ωR.
The black arrow points to the equivalent circuit. (b) Electri-
cal circuit diagram showing (from left to right) the pump line,
the dc flux line added to the pump with a bias tee, an addi-
tional flux line feeding a coil for compensating any flux offsets,
the signal line, a circulator routing the reflected and amplified
signal to a measurement line through an isolator protecting
the sample from the noise of the first amplifier placed at 4 K.
Feeding lines are attenuated and filtered. The output signal
is split after amplification and analyzed both with a spectrum
analyzer and by homodyne demodulation.

The device was fabricated on a thermally oxidized Si
chip by sputtering 170 nm of niobium and patterning
the whole structure (except the SQUID array) by opti-
cal lithography and CF4 −Ar reactive ion etching. The
SQUID array was then fabricated by e-beam lithogra-
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phy and double-angle evaporation of aluminum with ox-
idation of the first Al layer. Each SQUID has a loop
area of 8µm × 15µm and two junctions with nominal
area 2.2µm× 0.7µm and tunnel resistance 141 Ω, yield-
ing β ' 0.1. The active antenna wires of the pump line
are positioned 16µm away from the SQUID centers.

The measurement set-up is schematized in Fig. 1b.
A small superconducting coil is used to compensate
the global DC flux offset. DC flux biasing and AC
pumping of the SQUIDs are obtained by two attenuated
and filtered lines combined with a bias-tee. The input
line includes attenuators at various temperatures and a
4 − 8 GHz bandpass filter. The −71.5 dB and −51 dB
transmissions of the input and pumping lines are cali-
brated with a ±1 dB uncertainty. The reflected and am-
plified signal is routed to the output line by a cryogenic
circulator with −18 dB isolation. This output line in-
cludes an isolator for protecting the sample from higher
temperature noise, a 4 − 8 GHz filter, a cryogenic high
electron mobility transistor (HEMT) amplifier at 4K with
38 dB gain and a calibrated noise temperature of 3.8 K,
as well as additional room temperature amplifiers. The
output signal is finally analyzed using a spectrum ana-
lyzer or a homodyne demodulator followed by a digitizer.
Microwave generators for the input signal and pump are
precisely phase locked.

III. EXPERIMENTAL RESULTS

Measurements were performed in a dilution refriger-
ator at the temperature of 30 − 40 mK. As a prelimi-
nary characterization, the resonance was measured with
a vectorial network analyzer by recording the phase of
the reflected signal at zero pumping and at a nominal
input power PS,n = −126 dBm small enough to avoid
any nonlinear effects (all nominal powers mentioned here
and below refer to powers at the sample ports given the
calibration of the lines). Inset of Fig. 2 shows this reso-
nance at zero flux with a fit of the curve yielding a maxi-
mum frequency of fR0 = 5.97 GHz. The comparison with
the fR1 = 8.06 GHz resonance frequency of a similar res-
onator with shorted junctions yields p = 1−(fR0/fR1)2 =
0.45, close to the 0.42 design value. Fitting the expres-
sion −2 arctan[2Q(fS/fR−1)] to the measured resonance
curve also gives the quality factor Q0 ' 70, with how-
ever limited accuracy due to a setup imperfection yield-
ing spurious multiple wave interferences (see shoulders
in inset of Fig. 2). The main graph of Fig. 2 shows
the variation of fR as a function of the applied flux Φ
and its comparison with the theoretical prediction from
section I. The agreement is only qualitative especially
above 0.35 Φ0 where fR decreases faster than predicted
by our simple model that does not include either the flux
inhomogeneity in the different SQUIDs or the possible
penetration of the flux through the junctions.

For characterizing amplification, the input and out-
put lines are then connected as shown in Fig. 1. The
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Figure 2: DC flux modulation. Experimental (dots) and
calculated (line) resonator frequency fR as a function of the
DC current in the on-chip flux line (see Fig.1a) measured by
fitting the phase of a weak signal reflected on the resonator
in absence of parametric pumping, as shown in the inset for
zero flux bias (point A). We attribute the two shoulders on
the sides of the measured resonance to multiple wave interfer-
ences due to an imperfect impedance matching somewhere in
the setup. Parameters used for calculation of the modulation
curve are fR0, p = 0.45, and β = 0.1 . Full characterization
in the next figures are done at working point B.

signal and idler gains are measured with the spectrum
analyzer by comparing the output powers of the sig-
nal and idler without and with parametric pumping at
fP = 2fR. The gains increase with |ΦDC | and the slope
of the modulation curve at fixed absolute pumping power.
In the following measurement, signal amplification is fully
characterized at the working point (Φ1/Φ0 = −0.32,
fR1 = 5.17 GHz), i.e. point B on Fig. 2, where the
slope κ1 = 1.62 is at the same time large and in agree-
ment with the predicted value. At this point the SQUID
array model predicts a participation ratio p1 = 0.59 and
a quality factor Q1 = 81.

The non-degenerate (∆ 6= 0) signal power gain |GS |2 is
measured with the pump frequency fP = 2fR (δ = 0) as a
function of the signal frequency fS for increasing nominal
pump power PP,n, at an input power PS,n = −142.5 dBm
sufficiently low to avoid the saturation at the highest
gain. Close to the resonance, a minimum detuning
δ/2π = 5 kHz is used to avoid operation in the degen-
erate mode. Figure 3a shows the gain increase up to
31.8 dB (dashed top curve, for which parametric oscil-
lations are about to start) and the corresponding band-
width decrease. The maximum power gain |GS |2 and the
corresponding −3 dB bandwidth ∆f deduced from Fig. 3
are plotted on Fig. 4b together with the amplitude-gain
× bandwidth product |GS |∆f . This product happens
to be almost constant around 61 MHz over the whole
7 dB − 30 dB gain range. Besides, the idler gain (data
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Figure 3: Signal power gain |GS |2 at working point B of Fig.
2 for a nominal input power PS,n = −142.5 dBm. (left) Non-
degenerate gain as a function of the signal frequency fS at
different nominal pumping powers PP,n between −58.7 dBm
and −54.4 dBm (top dashed curve just before the onset of
parametric oscillation in the absence of incident signal). (b)
Phase sensitive degenerate gain for PP,n = −54.4 dBm and
−55.4 dBm. (inset) Demodulated signal in the IQ plane at
maximum gain (PP,n = −54.4 dBm) filtered at 1 MHz. I and
Q voltages are digitized at 1 MSample/s during 2 s, and the
color encodes the density of samples from 0 (dark blue) to
maximum (red).

not shown) approaches the signal gain at large values.
In order to check that the amplifier operates close to

the quantum limit, i.e. with a noise temperature of or-
der TN = hfR/2kB ' 125 mK [22], the variation of the
signal and noise powers are compared when switching on
and off the pump: from the 2.9 dB increase of the noise
when switching on a 18.4 dB gain, from the calibrated
3.8 ± 0.3 K noise temperature of the HEMT amplifier
alone in a separate run, and from the 1.7 ± 0.2 dB at-
tenuation of elements placed below 250 mK between the
sample and the HEMT amplifier, we deduce an appar-
ent noise temperature of only 80 ± 10 mK. This value
is smaller than the expected quantum limit of 125 mK,
a discrepancy that shows that modeling the line by a
simple attenuator is not sufficient, as supported by our
observation of the setup imperfection already mentioned.
This result nevertheless indicates that our JPA is not far
from the quantum limit. A more precise determination
of TN would require a much more precise control and cal-
ibration of the low temperature part of the measurement
line, as well as a switch to connect the detection chain
either to the JPA or to a low temperature reference noise
source [10].

The phase dependent gain in the degenerate case (δ =
0 ) was then measured with fS = 5.17 GHz by varying
the phase χ of the signal with respect to the pump; it
is shown on Fig. 3b for the two values of the pump
power that correspond to a 20 dB gain and to the maxi-
mum gain in the non-degenerate mode. As expected the

maximum degenerate gain is 6 dB larger than the non-
degenerate gain at almost the same frequency. At the
highest degenerate gain of 36.9 dB, it was checked using
the IQ demodulator (see inset of Fig. 3b) that the phase
of the amplified signal is stable over minutes and that
the output signal drops down to zero (no parametric os-
cillation) when the input signal is switched off. As the
phase χ is varied, the measured degenerate gain varies as
expected, the lowest value of −25 dB resulting from the
uncontrolled interference between the deamplified signal
and the ∼ −18 dB leak of input signal through the cir-
culator (see Fig. 1). This strong deamplification and
the low noise temperature indicate that our JPA could
also be used as a vacuum squeezer. In the inset of Fig.
3 the elongation of the Gaussian spot along the ampli-
fied quadrature shows that after parametric amplification
the noise coming from the sample at fS = 5.17 GHz over-
comes the noise of the cryogenic amplifier placed at 4 K,
the size of which is given by the spot size in the perpen-
dicular direction. In this latter direction we observe that
the spot size is reduced by 1.1% when switching on the
parametric pumping. This reduction is twice as small as
the 2.2% expected from deamplification of vacuum noise,
which is again related to the difficulty to determine the
noise temperature of the whole setup.

Finally, the saturation of the JPA is measured by
recording the non-degenerate signal power gain as a func-
tion of the signal input power PS,n for the same series of
pump powers PP,n as before (see Fig. 4a). The signal
gain is almost constant at low input power and then de-
creases above a PP,n dependent threshold in PS,n (how-
ever with a small bump of up to 1 dB just before sat-
uration possibly due to higher orders in non-linearity).
In practice, the 1 dB compression point is defined as the
input power PS,sat at which the gain is 1 dB lower than
at PS,n = −150 dBm; it is plotted on Fig. 4c. The
set of measurements of Figs. 4b-c is then compared to
the linear model of section I: the power gain, bandwidth,
product amplitude-gain × bandwidth, as well as the 1 dB
compression point of Eqs. (6-9) are calculated by using
the values of fR1, p1, κ1 and Q1 indicated above and
are plotted on Fig. 4. Given the ±1 dB uncertainty on
the calibration of the signal and pump lines, the nom-
inal input and pump powers were shifted by +0.8 dB
and −1.0 dB to match the theory at the lowest pump-
ing power. The agreement between the overall measured
data and the model is surprisingly good given the crude-
ness of the linear model. This fair agreement validates
the idea of increasing the number N of SQUIDs to in-
crease the saturation power that scales with N2. With
a single SQUID having the same total inductance as the
array implemented here (about 1.7 nH), the saturation
would have been N2 = 18 dB lower, as indicated by the
dashed line of Fig. 4c. The discrepancy between ex-
perimental data and the model increases with Pp as the
nonlinearity plays a more important role, and the ac-
tual parametric amplification region extends a bit over
the theoretical parametric oscillation region of the linear
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Figure 4: Amplifier characterization at the working point B
of Fig. 2 for non-degenerate pumping. (a) Signal power gain
as a function of the nominal input power PS,n showing the
saturation at the same nominal pumping powers PP,n as in
Fig. 3a (top dashed line corresponds again to the onset of
parametric oscillation). Vertical dashed and dotted line cor-
respond to the input powers where gain was measured in Fig.
3 and where reference gain for saturation was defined, respec-
tively. (b) Power gain |GS |2, bandwidth BW , and product
|GS | × BW deduced from measurements (dots) of Fig. 3a
at PS,n = −142.0 dBm, and calculated (solid lines) from the
model with the parameters indicated in the text. (c) 1 dB
compression point deduced from (a) (dots), calculated from
the model (solid line), and calculated with the sames param-
eters but only one SQUID (dashed line). Note that given the
±1 dB precision on the calibration of the pumping and signal
lines, +0.8 dB and −1.0 dB were added to the nominal PP,n

and PS,n values to match the data to the theoretical curves
at low pumping strength. The vertical dotted line indicates
the frontier between parametric amplification and parametric
oscillation (infinite gain) for the linear model.

model (dotted line of Fig. 4).
The performances of the present device are compara-

ble to those of other truly parametric amplifiers recently
made. Due to our choice of a rather large Q ∼ 70,
the gain bandwidth product is smaller than what was
obtained for instance in [23] with Q ∼ 10. In [15],
the direct coupling of the resonator to a cleverly engi-
neered frequency dependent external impedance yielded
an even lower Q and a bandwidth above 500 MHz. De-
spite the use of N = 8 SQUIDs, the 1dB compression

point obtained here is not very high due to its scaling
as N2Q−2p−3 and to the large participation ratio and
quality factors chosen to minimize the pump power: it is
however about 12 dB above a similar amplifier made of
a single SQUID with about the same critical current [18]
and only a few dB below another one [23] with smaller
participation ratio p (three times larger critical current
Ic) and Q.

In terms of perspectives, equations (8-10) predict that
with a similar geometry N∼ 10, a smaller Q ∼ 10, and
higher critical currents yielding p ∼ 0.25, a bandwidth of
∼ 50 MHz, and a compression point ∼ −100 dBm should
be obtained at 20 dB gain. This would require a larger
pump power, i.e. a larger flux modulation ΦAC ∝ 1/pQ
at constant gain, which would reach 0.1Φ0. Such a large
modulation could be technically difficult to achieve. In-
creasing the number of SQUIDs is also an obvious opti-
mization axis: If theoretically the array length has just
to be kept much smaller than the pump wavelength so
that all SQUIDS are pumped in phase, the practical dif-
ficulty is to DC flux bias and homogeneously modulate
all the SQUIDs.

In summary, a lumped element truly parametric
Josephson amplifier has been designed and character-
ized. Its inductance is implemented by a SQUID array
to limit its nonlinearity and increase the maximum al-
lowed input power. With a quality factor of 70 - 80, this
simple device provides a gain of up to 30 dB, a product
amplitude-gain×bandwidth of 61 MHz, and a 1 dB com-
pression point of −123 dBm at 20 dB gain. Although its
behavior is in agreement with theory and demonstrates
the advantage of using a SQUID array, it can still be opti-
mized by reducing both its quality factor and its Joseph-
son participation ratio to the inductance and/or by in-
creasing the number of SQUIDs in the array. Operated
close to the quantum limit, this truly parametric ampli-
fier could also be used as a quiet and strong squeezer in
degenerate mode or as the first stage of amplification in
a superconducting quantum bit readout.
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