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In addition to their central role in quantum information processing, qubits have proven to be useful
tools in a range of other applications such as enhanced quantum sensing and as spectrometers of
quantum noise. Here we show that a superconducting qubit strongly coupled to a nonlinear resonator
can act as a probe of quantum fluctuations of the intra-resonator field. Building on previous work
[M. Boissoneault et al. Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for
the qubit which takes into account squeezing of the resonator field. We show how sidebands in the
qubit excitation spectrum that are predicted by this model can reveal information about squeezing
and quantum heating. The main results of this paper have already been successfully compared to
experimental data [F. R. Ong et al. Phys. Rev. Lett. 110, 047001 (2013)] and we present here the
details of the derivations.

I. INTRODUCTION

Nonlinearity in oscillators was first observed by Huy-
gens who discovered that large oscillations in pendulum
clocks introduced inaccuracies because of the resulting
change in natural oscillation frequency [1]. It is however
most famously Duffing, in the context of combustion en-
gines, who tackled the problem of nonlinear oscillators in
a systematic way [2]. Although they have a long history
in physics, nonlinear oscillators still manage to surprise
and are the focus of intense research [3, 4]. This is par-
ticularly true in optics where optical nonlinearity can be
realized by taking advantage of the change in index of
refraction of certain media with light intensity. This non-
linearity can lead to frequency down- and up-conversion,
and parametric oscillations and amplification [3]. Nonlin-
earities produced in this context are however rather weak,
and nonlinear phenomena at optical frequencies are there-
fore revealed mostly under high pumping intensities.
The situation is quite different with superconducting

circuits where very strong nonlinearities at microwave
frequencies can be achieved [5], revealing nonlinear be-
haviour even at the single-photon level [6–8]. These cir-
cuits are based on Josephson junctions embedded in oth-
erwise linear circuit elements to create superconducting
qubits and nonlinear microwave resonators. These res-
onators can take various forms, ranging from LC-circuits
where the inductance is replaced by a Josephson junc-
tion [9], stripline resonators with an embedded Joseph-
son junction [10], and to metamaterial resonators where
the central resonator conductor is replaced by an array
of Josephson junctions [11].
These superconducting nonlinear resonators have

proven themselves to be valuable tools the context of cir-
cuit quantum electrodynamics (cQED) where one couples

∗
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microwave resonators to superconducting qubits [12, 13].
In this context, nonlinear resonators have for example
been used has parametric [14–16] or bifurcation ampli-
fiers [17–19] in qubit state measurement. There, one is
interested in the information contained about the state
of the qubit in the field at the output of the resonator. In
the present paper we take the converse point of view: we
show how the qubit can be used as a probe of quantum
fluctuations of the field inside the resonator.

The theory presented below was developed in parallel
to, and already tested against, the experimental results
of Ref. [20]. The goal of the present paper is thus to give
the details of the derivation of the model whose main
results can be found in Ref. [20]. Moreover, the present
work is based on the same experimental setup as studied
in Ref. [21] and builds on previous calculations presented
in Ref. [22] – which we will refer to as Paper I from now
on.

In Paper I, we have developed a model describing the
measurement backaction of a driven nonlinear resonator
on a qubit strongly coupled to the resonator. This model
went beyond many approximations that are standard in
the literature. First, we considered a many-level instead
of a two-level Hilbert space for the superconducting qubit.
Second, we took into account the fact that the ac-Stark
shift on the qubit caused by a strong pump on the res-
onator depends on the detuning of the qubit to the pump,
and not the qubit-resonator detuning as is usually as-
sumed [12]. Finally, our model went beyond the stan-
dard linear response theory for the qubit-state depen-
dance of the resonator state. This model was compared
with the experimental results presented in Ref. [21] and
was found to be in quantitative agreement with the mea-
sured qubit’s ac-Stark shift before and after bifurcation of
the resonator. We also found excellent agreement with
the nontrivial dependence of the qubit’s measurement-
induced dephasing on the pump power. From these re-
sults, we have concluded that the system is close to the
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quantum limit for measurement in a parameter range.
The model developed in Paper I however made two

main approximations that we relax here: small separa-
tion between the two pointer states of the resonator cor-
responding to the two qubit states, and weak squeezing
of the resonator field. We still assume that the pointer
state separation and the squeezing are both relatively
small, but take into account first order corrections to
these approximations. As we will show, relaxing the first
approximation leads to combined qubit-resonator transi-
tions, i.e. red and blue sideband transitions. Relaxing
the second approximation allows us to take into account
squeezing of the resonator field and, as predicted by the
theory of quantum heating [23–26], this leads to an ef-
fective temperature of the resonator field. Using side-
band spectroscopy, a standard tool in ion-trapping ex-
periments [27, 28], we then discuss how the qubit can
act as an absolute thermometer of this effective tempera-
ture. In practice and as discussed in more details below,
the main difference between the experimental results of
Ref. [21] and those of Ref. [20] is a drive of increased
amplitude on the qubit.
The production of squeezed light by nonlinear mi-

crowave resonators has of course already been studied
before [29, 30]. While these studies focussed on the light
at the output of the resonator, as mentioned above here
we are focussing on the light inside the resonator. More-
over, our work adds to an already quite extensive lit-
erature concerning nonlinear resonators – see for exam-
ple Refs [3, 4, 23, 31–36]. Here however the usual as-
sumptions, such as very small nonlinearities, small qubit-
resonator dispersive coupling, or strictly two-level qubits
cannot be made when comparing to the experimental re-
sults of Ref. [20], and they are avoided in this paper.
The paper is organized as follow. In section II, we

present the system’s bare Hamiltonian and master equa-
tion, and introduce the notation for the nonlinear res-
onator and the qubit. In section III, we summarize the
calculation presented in Paper I and highlight the main
approximations and results that were obtained. In sec-
tion IV, we relax the small distinguishability and small
squeezing approximations and obtain first order correc-
tions. In section V, we compare our model to experi-
mental results first presented in Ref. [20]. Concluding
remarks are made in section VI while details of some of
the calculations can be found in Appendices A and B.

II. PRESENTATION OF THE SYSTEM

As discussed in the Introduction, we consider a non-
linear resonator strongly coupled to a superconducting
qubit. An example of such a system is illustrated in
Fig. 1, where a transmon qubit [37] is coupled to a
coplanar transmission-line resonator rendered nonlinear
by Josephson junction embedded in the resonators’ cen-
ter conductor. We introduce in section IIA the notation
used for the nonlinear resonator and in section II B we

FIG. 1. (Color online) Schematic representation of a possible
implementation of the system considered in this paper and
realized in Ref. [20]. This represents a coplanar resonator
(blue) made nonlinear using an embedded Josephson junction
(dark green) and capacitively coupled to a transmon qubit [37]
placed between the central conductor and the ground planes.
The model described in this paper however applies to other
nonlinear resonators and qubits (see text).

focus on the qubit and its coupling to the resonator.

A. Nonlinear resonator

Following the notation of Yurke and Buks [34] and also
used in Paper I, we define the Hamiltonian of the nonlin-
ear resonator as (~ = 1)

Hr = ωra
†a+

K

2
a†a†aa+

K ′

3
a†

3
a3, (2.1)

where ωr, K and K ′ are respectively the resonator’s bare
resonance frequency, its Kerr coefficient and a higher or-
der nonlinearity Kerr coefficient. The operator a(†) anni-
hilates (creates) an excitation in the resonator.
An important aspect of the experiment described in

Ref. [20] is the presence of multiple drives on the res-
onator. We will denote with the subscript d any drive,
of amplitude ǫd and frequency ωd, far detuned from the
qubit transition frequency. We will allow for many such
drives in our description. In addition, we will denote
with the subscript s a spectroscopy drive of amplitude ǫs
and frequency ωs close to the qubit’s transition frequency.
The presence of these drives can be represented by the
usual Hamiltonians [38],

Hd =
∑

d

(

ǫde
−iωdta† + ǫ∗de

iωdta
)

, (2.2a)

Hs = ǫse
−iωsta† + ǫ∗se

iωsta. (2.2b)

The drives d, far from the qubit resonance, are used to
populate the resonator and will not drive transitions of
the qubit. They will result in dispersive shifts of the
qubit frequency. On the other hand, the spectroscopy
drive is aimed specifically at driving the qubit. Because
of their different influence, we treat these various drives
very differently below.

We finally introduce photon loss in the resonator at
the rate κ. Together with the above Hamiltonian, this is
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FIG. 2. (Color online) (a) Amplitude of the resonator in-
ternal field (arbitrary units) in response to a drive of reduced
frequency Ω = 2(ωr − ωd)/κ (ΩC =

√
3) for increasing drive

amplitudes ǫd. (b) Stability diagram of the resonator. In
the region H (above the full line), the resonator is in a high-
amplitude state. In the region L, (below dashed line), it is in
a low-amplitude state. Between the dashed and full lines, the
resonator is bistable. The dashed vertical line corresponds to
the detuning at which the data presented in this paper were
taken.

captured by the Lindblad form master equation

ρ̇r ≡ Lrρr = −i [Hr +Hd +Hs, ρr] + κD[a]ρr, (2.3)

where we have introduced the usual dissipation superop-
erator

D[A]ρ ≡ 1

2
(2AρA† −A†Aρ− ρA†A). (2.4)

Nonlinear resonators in circuit QED typically have a
negative Kerr constantK [5]. As one drives the resonator,
the nonlinearity therefore causes a back-bending of the
resonator’s response as illustrated in Fig. 2 (a). For large
drive amplitudes ǫd, the resonator becomes bistable, with
the two stable solutions denoted L and H , and of respec-
tively low and high amplitude of oscillation. To simplify
the description, it is useful to introduce the reduced de-
tuning Ω = 2(ωr − ωd)/κ [21]. As a function of this
reduced detuning and of the drive amplitude ǫd, the res-
onator’s response is captured by the stablity diagram il-
lustrated in Fig. 2 (b). If Ω is smaller than the critical

detuning ΩC =
√
3 the resonator can be in the L state

at low power and in the H state at high power, with an
intermediate region where both states are stable. Since
both states go from stable to unstable at different powers,
the resonator in this region is hysteretic, and can be used
as a sample-and-hold detector [18, 19, 39].

B. Qubit and qubit-resonator coupling

Most superconducting qubits require a larger Hilbert
space than their logical subspace {|0〉 , |1〉} for an accu-
rate description. This is the case for example for the
transmon [37], the capacitively-shunted flux qubit [40],
the fluxonium [41], the tunable-coupling qubit [42] and
the phase qubits [43]. Here, we consider up to M levels
and write the free qubit Hamiltonian as

Hq =

M−1
∑

i=0

ωiΠi,i ≡ Πω , (2.5)

where ωi is the frequency of the qubit eigenstate |i〉,
Πi,j ≡ |i〉 〈j|, and where we have introduced the short-
handed notation

Πx ≡
M−1
∑

i=0

xiΠi,i. (2.6)

In practice, the values of the eigen-frequencies ωi should
either be extracted from experiments, or computed by
diagonalizing the full qubit Hamiltonian. For the results
presented in this paper, we considered a transmon qubit
and carefully calibrated the qubit frequencies from ex-
perimental spectroscopic data. More details about the
sample and its parameters can be found in Refs. [20, 21]
and in Paper I.
As usual, we consider a dipolar qubit-resonator cou-

pling

HI =

M−2
∑

i=0

gi(a
† + a)(Πi,i+1 +Πi+1,i), (2.7)

where each qubit transition i ↔ j is coupled to the res-
onator if and only if i = j ± 1. This restrictive condition
is often made true either by selection rules or because
the other transitions are too far detuned from the res-
onator frequency to have an impact [37]. We stress that
we use here the full Rabi Hamiltonian rather than its
Jaynes-Cummings counter-part since, as will be seen be-
low, the counter-rotating terms in Eq. (2.7) will play a
predominant role in the sideband transitions.
Taking into account qubit damping and pure dephas-

ing, we finally write the master equation describing the
coupled system as

ρ̇ = −i [H, ρ] + κD[a]ρ

+ γ

M−2
∑

i=0

(

gi
g0

)2

D [Πi,i+1] ρ+ 2γϕD [Πε] ρ,
(2.8)

where the total Hamiltonian is H = Hr+Hq+HI +Hd+
Hs. In this master equation, γ is the qubit |1〉 → |0〉
decay rate and γϕ is the qubit pure dephasing rate for
the same states. With the above form, we have assumed
that qubit decay between two consecutive states scales
as the coupling of this transition to the resonator. This
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assumption is not essential to this work but is conve-
nient and realistic. Moreover, to describe pure dephas-
ing of this multi-level system, we have defined Πε with

εi ≡ ∂(ωi−ω0)
∂X

×
[

∂(ω1−ω0)
∂X

]−1

the X-dispersion and with

ε0 = 0, ε1 = 1 by definition.. Here, X represents some
control parameter (for example flux or charge) whose fluc-
tuations cause dephasing. The above master equation is
the same as the one used in Paper I, with the exception
that we have set here the resonator’s rate of two-photon
loss [34] to zero for simplicity [44].
Our goal in the next two sections is to obtain a re-

duced qubit model that includes squeezing of the res-
onator field and captures qubit-resonator sideband transi-
tions in the high-power regime of the spectroscopy drive.
In section III, we first summarize the results obtained
in Paper I. In section IV, we then build on these results
and consider first order corrections to two main approx-
imations that were used in Paper I and mentioned in
the Introduction. We will show that in the presence of
strong spectroscopy drive ǫs, these corrections will yield
a qubit spectrum displaying red and blue sidebands in
addition to the main qubit line, and that the amplitude
of these sidebands reveals information about squeezing
of the intra-resonator field.

III. SUMMARY OF PREVIOUS RESULTS

In Paper I, we have performed a series of unitary trans-
formations on the master equation (2.8) and have ob-
tained an effective master equation for the qubit only.
The first step is to transform the master equation using
a polaron transformation [45]

P =

M−1
∑

i=0

Πi,iD(αi), (3.1)

where D(α) = exp[αa† − α∗a] is the displacement opera-
tor [38]. This transformation displaces the resonator field
in a qubit-state-dependent manner, such that a → a+Πα.
If the pointer states αi are chosen properly, the intra-
resonator field in this transformed frame is in — or close
to — the vacuum. In this situation, it is simple to trace
over the resonator states to obtain an effective equation
for the qubit only. This can be done exactly within the
linear dispersive approximation [45], but unfortunately
not when taking into account the full Jaynes-Cummings
coupling such as in Paper I. In this situation, the addi-
tional complexity arises from transforming the operator
Πi,i+1 in Eq. (2.7) which yields

P
†Πi,i+1P = Πi,i+1D(αi+1 − αi)e

−iIm[α∗
i+1αi]. (3.2)

This transformed operator is problematic since it con-
tains all powers of the ladder operators a(†) throught the
displacement operator and these will not leave the res-
onator field in its vacuum state in the transformed frame.

To simplify the situation we assumed in Paper I that
the distinguishability |αi+1 − αi| is very small and took
P

†Πi,i+1P ≈ Πi,i+1. With this approximation, the inter-
action Hamiltonian HI transforms into a detuned drive
acting directly on the qubit.

The second step in Paper I is to remove this effective
detuned qubit driving using what we called a classical
dispersive transformation

DC = exp

[

M−2
∑

i=0

ξ∗i Πi,i+1 − ξiΠi+1,i

]

, (3.3)

where ξi is a classical (scalar) analog of the operator
λia

† = [gi/(ωi+1,i − ωr)]a
† found in the usual disper-

sive transformation of the Jaynes-Cummings Hamilto-
nian [46].

After these two steps, the result is a transformed
master equation containing the ac-Stark shift of the
qubit frequency, dressed-dephasing of the qubit [47] and
measurement-induced dephasing [48]. These various
quantities are related by the nonlinear equations for the
pointer states

0 = (ωr − ωd − iκ2 )αi,d +K|αi|2αi,d

+K ′|αi|4αi,d + ǫd +

(

S
d
i +

1

3!
K

d
i |αi|2

)

αi,d,
(3.4)

where the expressions for S
d
i and K

d
i are given below.

With this formulation of Eq. (3.4) we have assumed that
α can be written as α =

∑

i αi =
∑

d,i αi,de
−iωdt +

αi,se
−iωst. This form assumes that the multiple drives

are spread out enough in frequency such that one drive
does not contribute significantly to the field oscillating at
another drive’s frequency.

In the third step, we apply one last transformation, the
quantum dispersive transformation, which takes here the
form

D = exp

[

M−2
∑

i=0

λia
†Πi,i+1 − λ∗

i aΠi+1,i

]

, (3.5)

with λi = gi/(ωi+1,i − ωr). Since the polaron transfor-
mation moves the system to a frame where the photon
population is small, this transformation can safely be per-
formed to lowest order. The resulting master equation
now contains the Lamb shift of the qubit frequency as
well as Purcell decay.

After these three transformations and projecting the
qubit into its logical subspace {|0〉 , |1〉}, the effective
Hamiltonian takes the form H ′′′ = H ′′′

0 +H ′′′
2 (each prime

indicating a transformation) where

H ′′′
0 =

ω′′′
1,0

2
σz + g0

(

α0,se
−iωstσ+ + h.c.

)

, (3.6a)

H ′′′
2 =

[

ω′
r(α) + ΠS(α)

]

a†a+Υa†
2
+Υ∗a2. (3.6b)
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In these expressions, the ac-Stark and Lamb shifted qubit
frequencies are given by

ω′′′
i (α) ≡ ω′′

i (α) + Li(α),

ω′′
i (α) ≡ ωi +

∑

d

S
d
i |αd|2 +

1

4

∑

d

K
d
i |αd|4 (3.7)

where

S
d
i ≡ −(Xd

i −Xd
i−1),

K
d
i ≡ −4Sdi (|Λd

i |2 + |Λd
i−1|2)

− (3Xd
i+1|Λd

i |2 −Xd
i |Λd

i+1|2)
+ (3Xd

i−2|Λd
i−1|2 −Xd

i−1|Λd
i−2|2),

(3.8)

are the classical Stark shift coefficients, with Λd
i ≡

−gi/(ωi+1,i − ωd) and Xd
i ≡ −giΛ

d
i , and where

Li(α) ≡ χi−1(α), (3.9a)

Si(α) ≡ −(χi(α) − χi−1(α)), (3.9b)

are the Lamb shift and the cavity-pull, with χi(α) ≡
−giλi(α) and λi(α) ≡ −gi/[ω

′′
i+1,i(α)− ω′

r(α)]. We have
also defined

Υ ≡
(

K

2
+K ′|Πα|2

)

Π2
α. (3.10)

Because of its a(†)2 dependence, the term proportional to
Υ in the transformed Hamiltonian leads to squeezing of
the resonator field. This contribution was assumed to be
small in Paper I and dropped.
Putting all of this together, the resulting transformed

qubit-resonator master equation is then given by

ρ̇′′′ = −i [H ′′′
0 +H ′′′

2 , ρ′′′] + κD[a]ρ′′′

+ γ′′′
↓ D[σ−]ρ

′′′ +
γ′′′
ϕ

2
D[σz ]ρ

′′′,
(3.11)

where

γ′′′
↓ = γ + λ2

0(α)κ, (3.12a)

γ′′′
ϕ = γϕ + Γϕm, (3.12b)

Γϕm =
κ|α1 − α0|2

2
, (3.12c)

are the modified rates having neglected dressed dephas-
ing as well as two-photon losses, both of which were in-
cluded in Paper I.
Using this master equation, we have showed in Pa-

per I that the measurement-induced dephasing rate given
by Eq. (3.12c), with the pointer states given by Eq. (3.4),
is in quantitative agreement with measured qubit spectro-
scopic linewidth within the limits of the approximations
that were made. There are few key points behind this
good agreement between theory and experiments. First,
contrary to what is usually used in circuit QED, our ex-
pression for the ac-Stark shift depends on the pump drive

frequency rather than the resonator frequency. Our treat-
ment moreover goes beyond linear response theory for the
resonator state. Indeed, in Paper I we show that for typi-
cal circuit QED parameters, describing the measurement-
induced dephasing quantitatively with a nonlinear res-
onator always requires going beyond a linear response.
That is, whenever the gain of the resonator is large, the
susceptibility of the resonator response to a shift in its
resonance frequency is large. Because of this large suscep-
tibility, the qubit cannot be treated as a simple pertur-
bation causing a small shift of the resonator frequency.

IV. SQUEEZING AND SIDEBANDS

In this section, we relax the two main approxima-
tions that are discussed above (small distinguishability
and negligible squeezing) and include first order cor-
rections. First, instead of approximating Eq. (3.2) as
P

†Πi,i+1P ≈ Πi,i+1, we now take

P
†Πi,i+1P ≈ Πi,i+1

(

1 + βia
† − β∗

i a
)

, (4.1)

where βi ≡ αi+1 − αi is assumed to be small. Taking
these terms into account when transforming HI yields a
term in the Hamiltonian that was neglected in Paper I
and that is given by

H ′
SB ≡

M−2
∑

i=0

gi (Π
∗
α +Πα)

[(

βia
† − β∗

i a
)

Πi,i+1 + h.c.
]

.

(4.2)
This Hamiltonian generates multi-photon qubit-
resonator sideband transitions that will appear in
the qubit spectrum.
With the proper choice of polaron frame (i.e. of pointer

states αi), the average field 〈a〉 is small. Assuming that βi

is also small, we consider H ′
SB to be itself a correction to

the transformed system Hamiltonian. We therefore omit
to apply the classical and quantum dispersive transfor-
mations on H ′

SB since this would only yield even smaller
corrections.
Taking into account this correction, the master equa-

tion (3.11) describing the system in the three-times trans-
formed frame now reads

ρ̇′′′ = −i [H ′′′
0 +H ′′′

2 +H ′′′
SB, ρ

′′′] + κD[a]ρ′′′

+ γ′′′
↓ D[σ−]ρ

′′′ +
γ′′′
ϕ

2
D[σz ]ρ

′′′,
(4.3)

where H ′′′
SB = H ′

SB.

A. Bogoliubov transformation

In Paper I, we had only H ′′′
0 + H ′′′

2 as the Hamilto-
nian in the transformed frame and assumed that H ′′′

2

was a perturbation small enough that the state of the
resonator was the vacuum and could be readily traced
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out. In practice however the terms proportional to a(†)2

in H ′′′
2 lead to squeezing of the stationary state of the

resonator. Here, we do not drop these terms and take
care of them using a Bogoliubov transformation before
adiabatically eliminating the resonator.

Indeed, assuming Hamiltonian H ′′′
2 of Eq. (3.6b) de-

pends only weakly on the qubit state, it can be diagonal-
ized using a Bogoliubov transformation, which takes the
form

S = e
1
2 ξ

∗a2−
1
2 ξa

†2

(4.4)

and whose action on the field operator a is [38]

S
†aS = cosh(r)a − ei2θ sinh(r)a†, (4.5)

where ξ = re2iθ is the squeezing parameter.

To keep the analytical calculations tractable, we will
keep in this transformation only the time-dependance of
θ with θ(t) ≡ −ωpt + Θ. This implies that the field has
reached a steady state in a frame rotating at ωp. We
show in Appendix A that under transformation by S the
qubit-resonator master equation now takes the form

ρ̇(4) = −i
[

H(4)
s , ρ(4)

]

+ γ′′′
↓ D [σ−] ρ

(4) +
γ′′′
ϕ

2
D[σz ]ρ

(4)

+ κ
[

sinh2(r) + 1
]

D[a]ρ(4) + κ sinh2(r)D[a†]ρ(4),

(4.6)

where H
(4)
s = H

(4)
0 +H

(4)
2 +H

(4)
SB , with

H
(4)
0 = g0

(

αs,0σ+e
iδt + h.c.

)

,

H
(4)
2 = ∆̃r(α)

(

a†a+ 1
2

)

,

H
(4)
SB = F (4)σ+e

iδt + h.c.,

(4.7)

and

F (4) = g0αs,0(ca
† − c∗a),

c ≡ β cosh(r) + β∗ei2θ sinh(r),

∆̃r(α) ≡ [ω′
r(α) + ΠS(α) − ωp]/ cosh(2r),

δ = ω′′′
1,0 − ωs.

(4.8)

In obtaining this master equation, we have moved to a
frame rotating at ω′′′

1,0 for the qubit and at ωp for the res-
onator. We have also neglected rapidly oscillating terms

in H
(4)
SB using the rotating wave approximation.

Finally and as presented in more details in Appendix A,
we have assumed that the photon population in the trans-
formed frame is small. As can be seen from the term
sinh2(r)D[a†]ρ responsible for heating in Eq. (4.6), this
assumption will only be true in the limit of small squeez-
ing. The squeezing coefficient r is given by the solution

of the equations

cos [arg(Υp)− 2θ] =
ω′
r(α) + ΠS(α) − ωp

2|Υp|
tanh 2r,

(4.9a)

sin [arg(Υp)− 2θ] =
κ

4|Υp|
sinh(2r). (4.9b)

While complicated and not reproduced here, the solution
of these equations is analytical, and yields a maximum
squeezing coefficient

rmax =
1

2
arcsinh

(

4|Υp|
κ

)

. (4.10)

Maximal squeezing is reached for ωp = ω′
r(α)+ΠS(α). For

the parameters of interest here and in Ref. [20], rmax ∼
0.5 for all qubit states corresponding to sinh2 rmax ∼ 0.3.
Although we would have prefered to have sinh2 r ≪ 1
to justify our approximation, we will see below that this
model nevertheless semi-quantitatively compares with ex-
perimental results.

B. Adiabatic elimination of the resonator

We now adiabatically eliminate the resonator to obtain
a master equation for the qubit only. As described in
Appendix B, we use the projector formalism [38, 49] to
obtain the following reduced master equation:

ρ̇q = −i
[

H̃, ρq

]

+ γ̃↓D[σ−]ρq + γ̃↑D[σ+]ρq +
γ̃ϕ
2
D[σz ]ρq.

(4.11)
In this expression, we have defined the rates

γ̃↓ = γ′′′
↓ + |g0αs,0c|2

{

[L(−δ) + L(δ)] sinh2 r + L(−δ)
}

,

(4.12a)

γ̃↑ = |g0αs,0c|2
{

[L(−δ) + L(δ)] sinh2 r + L(δ)
}

,

(4.12b)

γ̃ϕ = γ′′′
ϕ , (4.12c)

and the Hamiltonian

H̃ =
δ̃

2
σz + g0(αs,0σ+ + α∗

s,0σ−), (4.13)

where L(δ) = Re[f(δ)] is a Lorentzian with

f(ω) =
κ/2 + i[∆̃r(α) + ω]

κ2/4 + [∆̃r(α) + ω]2
. (4.14)

Moreover, δ̃ = ω′′′
1,0(α) − ωs + Im[S↓(δ) − S↑(−δ)] where

S↓(δ) and S↑(−δ) are defined in Appendix B. The above
master equation is one of the central results of this pa-
per and the significance of the various terms is discussed
below.
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C. Steady state qubit population

We are now almost ready to compare the above model
to the experiments presented in Ref. [20]. It is however
useful to give some more details of the experiment so as
to compute the appropriate qubit observable for compari-
son with theory. In the experiment presented in Ref. [20],
a transmon qubit [37] is coupled to a nonlinear transmis-
sion resonator. The nonlinearity is provided by a Joseph-
son junction embedded in the central conductor of the
resonator. The resonator is first driven with a pump drive
of frequency ωp and power Pp pushing the resonator field
out of its ground state. The drive is chosen to be long
enough for the coupled resonator-qubit system to reach
its steady state. Under this steady state resonator field,
the qubit is ac-Stark shifted as described in Eq. (3.7).
This frequency shift is then measured in order to reveal
information about the internal resonator field.
For this, a second (spectroscopy) drive at frequency

ωs close to the qubit frequency is turned on while the
pump field is still present. This spectroscopy drive ex-
cites the qubit only if ωs matches the shifted qubit tran-
sition frequency. Both drives are then turned off for a
time longer than the resonator decay time, but shorter
than the qubit’s relaxation time. The qubit state is then
measured using the standard bifurcation readout proce-
dure [19]. This process is then repeated multiple times
for different spectroscopy frequency ωs and pump power
Pp to extract the probability P (|1〉) of the qubit to be in
its excited state.
To compare our model to experimental results, we

therefore compute from Eq. (4.11) the steady state prob-
ability of the qubit to be in its excited state. We find:

P (|1〉) =
〈Π1,1〉eq

(

γ̃2
2 + δ̃2

)

+ 2γ̃2 |g0αs,0|2 /(γ̃↑ + γ̃↓)
[(

γ̃2
2 + 4γ̃2 |g0αs,0|2 /(γ̃↑ + γ̃↓)

)

+ δ̃2
] ,

(4.15)
where we have defined

γ̃2 ≡ γ̃ϕ +
γ̃↑ + γ̃↓

2
,

〈Π1,1〉eq ≡ γ̃↑
γ̃↑ + γ̃↓

.
(4.16)

The above expression for P (|1〉) can be understood
by focussing on three different contributions, leading to
three peaks in P (|1〉) versus pump power Pp and spec-
troscopy frequency ωs. The first peak is obtained for
γ̃↓ ≫ γ̃↑ such that 〈Π1,1〉eq ∼ 0. In this regime, P (|1〉)
reduces to

P (|1〉) ≈ 2γ̃2 |g0αs,0|2 /γ̃↓
[(

γ̃2
2 + 4γ̃2 |g0αs,0|2 /γ̃↓

)

+ δ̃2
] . (4.17)

That is, we find a Lorentzian centered at δ̃ = 0 with width
γ̃2 in the absence of power broadening. This Lorentzian
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FIG. 3. Qubit spectrum for a strong spectroscopy ampli-
tude ǫs as a function of the pump amplitude ǫp, in loga-
rithmic scale. Experimental results (left) are compared to
the analytical spectrum (right). Results are for pump fre-
quency ωp/2π = 6439 MHz, corresponding to Ω/ΩC = 1.74
and spectroscopy power Ps = −4 dBm, corresponding to
ǫs/2π ≈ 25 MHz. All other system parameters can be found
in Ref. [20].

is the main qubit line and is power-broadened by the
spectroscopy field αs,0.
The two other contributions are found when γ̃↑ is large.

From the definition of γ̃↑ in Eq. (4.12b), this requires that

±δ̃ ∼ ∆̃r(α) which corresponds to L(±δ) taking its max-
imal value. If |δ| is sufficiently large and if the undriven
decay rate γ′′′

↓ is negligible compared to the effective rates

arising from squeezing [∝ |g0αs,0c|2/κ in Eqs. (4.12a) and
(4.12b)], then the dominant contribution is 〈Π1,1〉eq

P (|1〉) ≈ 〈Π1,1〉eq ≈ L(−δ) sinh2 r + L(δ)(sinh2 r + 1)

[L(−δ) + L(δ)](2 sinh2 r + 1)
.

(4.18)
In this situation, corresponding to the resolved sideband
limit, P (|1〉) takes the form of red and blue sidebands
on either side of the main qubit line. Interestingly these
two sidebands depend on the squeezing parameter r. In
the next section, we compare this three-peak excitation
spectra to experimental data and analyze the amplitude,
width and position of the peaks to extract information
about the internal resonator state and in particular about
the squeezing parameter.

V. COMPARISON TO EXPERIMENTS

As discussed in Paper I and in Ref. [21], only the centre
qubit line is observed under low spectroscopy power Ps.
This can be understood from the expressions (4.12a) and
(4.12b) for γ̃↑ and γ̃↓. Indeed, for negligible spectroscopy
power |αs,0|2 → 0 and γ̃↓ ≫ γ̃↑ such that as discussed
above only the centre line is apparent. The position and
width of this peak were analyzed in details in Paper I
and in Ref. [21].
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FIG. 4. Line cuts of Fig. 3 for four pump powers. Black
lines are theoretical predictions. Dots are experimental data.

Here we focus on the situation where the spectroscopy
power Ps is important such that γ̃↑ cannot be neglected
with respect to γ̃↓. The experimental results in this sit-
uation for P (|1〉) versus pump power and spectroscopy
frequency – first presented in Ref. [20] – are reproduced
in Fig. 3a). On the right side of Fig. 3, we show the re-
sult of P (|1〉) as given by the fully analytical expression
of Eq. (4.15). In both cases, we see a sudden jump in the
qubit transition frequency. This corresponds to switching
of the resonator state from its L to its H state and was
discussed in details in Ref. [21]. At larger pump power,
sidebands are clearly resolved and the agreement between
experiments and theory is excellent. In producing this
figure, all parameters except one have been extracted in-
dependently and are given in Ref. [20] and Paper I. The
adjustable parameter is an ad-hoc multiplicative coeffi-
cient to the effective sideband driving amplitude F (4) de-
fined in Eq. (4.8). This parameter accounts for the large
dependence of the coefficient c in F (4) on the squeezing
coefficient ξ = re2iθ . For our model to reproduce the
experimental sideband amplitudes, we have multiplied c
by 2. Considering the number of approximations that are
done in obtaining the model, we consider such a factor to
be an acceptable correction. It is important to stress that
this correction does not affect the position (frequency) of
any of the linesmadeMoreover, while it changes the abso-
lute amplitude of the sidebands relative to the main line,
it does not change their width nor does it change the ra-
tio of their amplitude since both sidebands are affected
in the same way by this correction.

For a more quantitative comparison, we show in Fig. 4
four linecuts of Fig. 3 (a) and (b), for increasing pump
power Pp. In these plots, the dots correspond to the ex-
perimental data, while the lines are the analytical predic-
tions. With the above single correction, the agreement is
almost quantitative at all powers. We note however that
at Pp = −5 dBm (top left panel) the analytical results
predict two peaks while a single one is observed exper-
imentally [50]. In fact, in all cases the sidebands are
better resolved in the analytical model than is observed
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FIG. 5. Sideband splitting fi − fc (a), width wi (b) and
ratio of amplitude Ab/Ar (c) as a function of the pump am-
plitude ǫp, in logarithmic scale. In (a) and (b), red circles (full
red lines), blue crosses (dotted blue lines) and black squares
(dashed black lines) are experimental data (theoretical pre-
dictions) for the red sideband (i = r), blue sideband (i = b)
and main line (i = c), respectively. In (c), black squares
(orange double-dotted line) are extracted from fits to the ex-
perimental (analytical) spectrum, while the dotted grey line
and dashed-dotted green line correspond to Eq. (5.1a) and
Eq. (5.1b), respectively.

experimentally, especially close to the bifurcation thresh-
old. We attribute this discrepancy to the rotating wave
approximation made in Appendix B where we neglected
terms oscillating at the sideband-detuning frequency. As
is discussed there and observed in Fig. 4, making this
approximation corresponds to considering the resolved-
sideband limit.

While the analytical expression for P (|1〉) in terms of
ωs is not simply that of three superposed Lorentzians,
it is useful to compare fits of both the analytical ex-
pressions and the experimental data to such a simpli-
fied model. The position, amplitude and widths of the
three peaks were therefore extracted by fitting the sum
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of three Lorentzian curves both to the experimental and
analytical spectra. We plot the results of these fits in
Fig. 5, where we show the sideband detuning from the
main line [panel (a)], the width of the three peaks [panel
(b)], and the ratio of amplitude of the blue to the red side-
bands [panel (c)]. Due to the breakdown of the resolved-
sideband approximation and as mentioned above, we see
in (a) that the sidebands are slightly more separated
in the analytical model (lines) than in the experimen-
tal data (dots). We see from panel (b) that the width
of the red sideband (full line and circles) and the centre
peak (dashed line and squares) are in quantitative agree-
ment. The model however shows a blue sideband that is
much wider than obtained experimentally. We attribute
this discrepancy to the small signal-to-noise ratio of the
blue sideband (i.e. it is not very distinguishable from the
noise). In fact, the statistical error on the fit parameters
of the blue sidebands are about 30%.
In panel (c), we show the ratio of the amplitude

of the blue sideband to that of the red sideband. In
addition to the data from the fit to the experimental
data (black squares) and to the analytical expression
(orange double-dotted line), we have extracted this ra-
tio directly from the analytical expression for P (|1〉),
i.e. without assuming a Lorentzian profile. Since the
blue (red) sideband is at a frequency corresponding to

δ = ∆̃r (δ = −∆̃r), the ratio of amplitudes is given by
Ab/Ar = P (|1〉)|δ=−∆̃r

/P (|1〉)|δ=∆̃r
. Using the simpli-

fied expression Eq. (4.18) for the amplitude of the side-
bands, we find

Ab

Ar

≈ [L(∆̃r) + L(−∆̃r)] sinh
2 r + L(−∆̃r)

[L(−∆̃r) + L(∆̃r)] sinh
2 r + L(∆̃r)

(5.1a)

≈ sinh2 r

sinh2 r + 1
, (5.1b)

where in the last approximation, we have assumed that
L(−∆̃r) ≫ L(∆̃r), which is valid in the limit ∆̃r ≫ κ,
i.e. in the resolved-sideband limit. Eq. (5.1a) above corre-
sponds to the dotted grey line in panel (c) and Eq. (5.1b)
to the dashed-dotted green line. Because of space con-
strains, only the simpler expression Eq. (5.1b) was used
for comparison to the experimental data in Ref. [20].
We emphasize once more that the correction factor ap-

plied to the theoretical results does not affect any of the
results showed in Fig. 5. As a result, given the quanti-
tative agreement displayed in panel c, it is possible to
accurately determine the squeezing coefficient r of the
intra-resonator field. As already mentioned above, we
find a maximal value of sinh2 rmax ∼ 0.3 corresponding
to rmax ∼ 0.5.
Alternatively, the ratio of the two sidebands also allows

us to extract the effective temperature of the oscillator
as described in the quadruply transformed frame by the
master equation (4.6). Indeed, the last line of this master
equation takes the standard form

κ(nth + 1)D[a]ρ(4) + κnthD[a†]ρ(4), (5.2)

where we have identified sinh2(r) with an effective ther-
mal occupation number of the oscillator, nth = sinh2(r).
Using the Bose-Einstein distribution for nth then allows
us to define an effective temperature Teff for the system
due to squeezing of the resonator field. This corresponds
to the essential prediction of the quantum heating the-
ory [23–26]. As discussed in more details in Ref. [20], Teff

corresponds to a few tenths of quanta, much larger than
the temperature expected from the base temperature of
the dilution refrigerator and filtering of the lines. More-
over, the non-monotonic dependence with pump power,
especially the decrease of the effective temperature with
increasing pump power above bifurcation exclude a classi-
cal heating effect (due to the contacts for example) from
being the cause of this effective temperature.

VI. CONCLUSION

We have developed a theoretical model for a multi-
level qubit coupled to a pumped nonlinear resonator.
The model holds within the dispersive regime of circuit
QED and for pumping powers well above the bifurca-
tion threshold of the resonator. The reduced qubit mas-
ter equation that we have obtained contains Purcell de-
cay, measurement-induced dephasing, dressed dephasing,
quadratic ac-Stark shift, Lamb shift, as well as the first
order correction of the resonator’s squeezing on the qubit.
This allows us to obtain quantitative agreement with ex-
perimental data in a wide range of parameters, without
adjustable parameters. In this way, we show how the
qubit can be used as a probe of squeezing of the intra-
resonator field. By comparing the ratio of the red and
blue sidebands in the qubit excitation spectrum, we have
extracted the squeezing coefficient of the field or equiv-
alently the effective temperature of the so-called quasi-
oscillator, providing a direct demonstration of quantum
heating.

Interesting extensions to this model include a finer
treatment of the intra-resonator squeezing, especially the
squeezing angle, as well as a qubit-dependent squeezing.
This latter aspect could provide insights on how to im-
prove dispersive qubit measurement using squeezing, or
on how measurement-induced dephasing is changed by
squeezing of the intra-resonator field.

Note added.– After this work was completed, we be-
came aware of related work [51].
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Appendix A: Squeezon transformation

In this Appendix, we diagonalise the sideband Hamil-
tonian by applying the transformation S of Eq. (4.4) on
the master equation (4.3). Given the action of S on a

[see Eq. (4.5)], we find for the transformed dissipator

D[a]ρ → cosh rD[a]ρ + sinh rD[a†]ρ

− i
sinh(2r)

4

[

−i(e−i2θa2 − e2iθa†
2
), ρ

]

− cosh r sinh r
{

e−i2θa [ρ, a] +
[

a†, ρ
]

a†e2iθ
}

.

(A1)

As we can see in the first line, what was pure damping
in the original frame now sees heating in the transformed
frame. The second line of the above expression takes the
form of a commutator and can be added to the Hamilto-
nian part of the master equation. Finally, we will neglect
the last line because it vanishes if the resonator is in
its ground state. Because of the presence of the heating
term, this is an approximation that restricts this theory
to low squeezing (i.e. low effective temperature).
Taking into account the above contribution from the

dissipation, we can then transform the system Hamilto-
nian H ′′′

s = H ′′′
0 +H ′′′

2 +H ′′′
SB, yielding

H(4)
s = H ′′′

0 +
(

F (4)†σ− + F (4)σ+

)

+ ω′
r(α)a

†a+ΠS(α)a
†a+

[

2 sinh2 r
(

ω′
r(α) + ΠS(α) − ωp

)

− sinh(2r)
(

Υpe
−i2θ + h.c.

)]

(a†a+ 1
2 )

−
[

sinh(2r)

2

(

ω′
r(α) + ΠS(α) − ωp

)

−Υpe
−2iθ sinh2 r −Υ∗

p cosh
2 rei2θ + i

κ sinh(2r)

4

]

e−i2θa2 + h.c.,

(A2)

where F (4) is

F (4) = g0αs,0

[(

β cosh r + β∗ei2θ sinh r
)

a† − h.c.
]

.
(A3)

We see that choosing r and θ such that

−(ω′
r(α) + ΠS(α) − ωp)

sinh(2r)

2
+ i

κ sinh(2r)

4

+Υpe
−2iθ cosh2 r +Υ∗

pe
2iθ sinh2 r = 0,

(A4)

yields vanishing squeezing terms, leaving only a renormal-
ized harmonic oscillator and a driven qubit. The solution
to this equation can be expressed in the simpler form of
Eq. (4.9) when considering the real and imaginary parts
separately.
Assuming that the squeezing coefficient does not de-

pend on the qubit state, and moving to a frame rotating
at ωp for the resonator and ω′′′

1,0 for the qubit, we then
obtain the master equation (4.6).

Appendix B: Adiabatic elimination through the

projector formalism

In this Appendix we use the projector formalism [38,
49] to adiabatically eliminate the resonator’s degrees of
freedom. We first note that the master equation (4.6)

can be expressed as

ρ̇ = Lrρ+ Lc(t)ρ+ Lqρ, (B1)

where to simplify the notation used in this Appendix we
have dropped the index on ρ and defined the resonator,
qubit and coupling Lindbladians as

Lqρq ≡ −i
[

H
(4)
0 , ρq

]

+ γ′′′
↓ D[σ−]ρq +

γ′′′
ϕ

2
D[σ0]ρq,

Lrρr ≡ −i
[

H
(4)
2 , ρr

]

+ κ
[

1 + sinh2(r)
]

D[a]ρr

+ κ sinh2(r)D[a†]ρr,

Lc(t)ρ ≡ −i
[

H
(4)
SB , ρ

]

,

(B2)

respectively. We then assume that the resonator relaxes
much faster than the qubit (i.e. κ ≫ γ, γϕ). This allows
us to assume a stationary state for the resonator given
by ρ̇sr = Lrρ

s
r = 0. In the same way, we also assume that

the qubit-resonator state can be written as

ρ(t) = ρsr ⊗ ρq(t), (B3)

where ρq(t) is the reduced qubit density matrix. In order
to find the evolution equation for ρq(t), we define the
projector on the qubit subspace Q:

Qρ ≡ ρsr ⊗ Trr (ρ) , (B4)
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and the complementary projector R ≡ I − Q, where I
is the identity. There are a number of useful identities
that one can prove with these projectors. Among these
are LrQ = QLr = 0, LqQ = QLq, RLr = LrR and
RLq = LqR. The first property arises from the adia-
batic approximation and the trace-preserving nature of
Lindbladians, while the three others are consequences of
the definition of Q and R [38].
Using the above properties, and assuming — without

loss of generality — thatQLc(t)Q = 0, we then search for
the evolution equations of v(t) = Qρ(t) and w(t) = Rρ(t).
We obtain

v̇(t) = QLc(t)w(t) + Lqv(t),

ẇ(t) = (Lr +RLc(t) + Lq)w(t) +RLc(t)v(t).
(B5)

Assuming that Lr contains the dominant dynamic and
that the integration time is long compared to 1/κ yet
short compared to 1/γ, 1/γϕ, we obtain the approximate
solution for w(t)

w(t) ≈
∫ ∞

0

dt̄ exp [Lr t̄]RLc(t− t̄)v(t). (B6)

We can then replace this solution into the equation for
v(t) and, using the definition of Q, obtain an equation
for ρ̇q

ρ̇q = Lqρq(t) +

∫ ∞

0

dt′Trr

(

Lc(t)e
Lrt

′Lc(t− t′)ρ(t)
)

.

(B7)
Given the form of Lc(t), one can then show that the qubit

reduced master equation can be written as

ρ̇q = Lqρq − i [δH, ρq]

+ Re[S↑(−δ)]D[σ+]ρq +Re[S↓(δ)]D[σ−]ρq,
(B8)

where we have defined the spectra

S↑(ω) =

∫ ∞

0

dt′eiωt′
〈

F (4)†(t′)F (4)(0)
〉

s
,

S↓(ω) =

∫ ∞

0

dt′eiωt′
〈

F (4)(t′)F (4)†(0)
〉

s
,

(B9)

with 〈·〉s = Trr (·ρsr) and where

δH = Im[S↑(−δ)]σ−σ+ + Im[S↓(δ)]σ+σ−. (B10)

Importantly, in obtaining the above master equation, we
have assumed that we could neglect terms oscillating at
a frequency 2δ. As discussed in section V, this approxi-
mation corresponds to the well resolved sideband limit.
Finally, we use the quantum regression theorem [38] to

obtain

S↑(ω) = |g0αs,0c|2
[

f(ω) sinh2 r + f∗(−ω)(1 + sinh2 r)
]

,
(B11)

where we have defined the complex function

f(ω) =
κ/2 + i[∆̃r(α) + ω]

κ2/4 + [∆̃r(α) + ω]2
, (B12)

and S↓(ω) = S↑(ω). With this spectrum, we easily get
the reduced master equation (4.11) for the qubit only.

[1] I. Kovacic and M. J. Brennan,
The Duffing Equation: Nonlinear Oscillators and their Behaviour ,
1st ed. (Wiley, 2011).

[2] G. Duffing, Erzwungene Schwingungen bei

Veränderlicher Eigenfrequenz (F. Vieweg & Sohn,
1918).

[3] R. W. Boyd, Nonlinear Optics, Second Edition, 2nd ed.
(Academic Press, 2003).

[4] M. Dykman, ed., Fluctuating Nonlinear Oscillators (Ox-
ford University Press, 2012).

[5] J. Bourassa, F. Beaudoin, J. M. Gambetta, and A. Blais,
Phys. Rev. A 86, 013814 (2012).

[6] C. Lang, D. Bozyigit, C. Eichler, L. Steffen,
J. M. Fink, A. A. Abdumalikov, M. Baur, S. Fil-
ipp, M. P. da Silva, A. Blais, and A. Wallraff,
Phys. Rev. Lett. 106, 243601 (2011).

[7] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spi-
etz, J. Aumentado, H. E. Türeci, and A. A. Houck,
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