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An efficient parameterized self-consistent tight-binding model for transition metals using s, 
p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-
binding model for pure elements are determined from a fit to bulk ab-initio calculations. 
A very simple procedure that does not necessitate any further fitting is proposed 
to deal with systems made of several chemical elements. This model is extended to 
spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. 
Collinear and non-collinear magnetism as well as spin-spirals are considered. Finally the 
electron–electron intra-atomic interactions are taken into account in the Hartree–Fock 
approximation. This leads to an orbital dependence of these interactions, which is of a 
great importance for low-dimensional systems and for a quantitative description of orbital 
polarization and magneto-crystalline anisotropy. Several examples are discussed.

© 2015 The Authors. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons un modèle de liaisons fortes paramétré et auto-cohérent utilisant une 
base d’orbitales atomiques s, p, et d pour décrire les électrons de valence des métaux 
de transition. Les paramètres du modèle sont déterminés à partir d’un ajustement non 
linéaire sur des résultats de calculs ab initio d’éléments purs en volume. Notre procédure ne 
nécessite aucun paramètre ni ajustement supplémentaire pour l’étendre aux systèmes avec 
plusieurs atomes de natures chimiques différentes. Nous avons généralisé notre modèle 
aux matériaux présentant une polarisation de spin et orbitale à l’aide de termes de Stoner 
et de couplage spin–orbite. Nous traitons aussi bien le magnétisme colinéaire que non 
colinéaire ainsi que les spirales de spin. Enfin nous montrons comment prendre en compte 
l’interaction électron–électron intra-atomique dans l’approximation de Hartree–Fock. Cela 
introduit une dépendance orbitale des interactions qui peut s’avérer importante dans les 
systèmes de basse dimensionalité et pour décrire correctement l’anisotropie magnéto-
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cristalline et la polarisation orbitale. Nous illustrons notre propos à l’aide de plusieurs 
exemples.

© 2015 The Authors. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Even though Density Functional Theory has become an extremely efficient method widely used in many areas of physics, 
chemistry, and material science, the tight-binding (TB) description of the electronic structure remains very popular, since 
it provides a physically transparent interpretation in terms of orbital hybridization and bond formation. In addition, its 
moderate computational cost permits to handle rather large and complex systems, and its straightforward implementation 
allows many generalizations and applications. In addition, in recent years, with the increasing interest in electronic transport 
and the explosion of studies in graphene nanostructures, there has been a renewal of interest for TB calculations.

Historically the TB method was introduced by Slater and Koster [1]. It was originally thought as a semi-empirical model 
to describe the electronic structure of solids with a reasonably small number of parameters that can provide reliable semi-
quantitative results when these parameters are determined from a fit on first-principles calculations. Jacques Friedel in the 
1960s was one of the pioneers in the application of TB to the physics of transition metals [2,3]. These models were essen-
tially based on a physical description of the band structure, but no real arguments about the total energy were developed. 
Qualitative explanations of the trends in the variation of the total energy when some parameters are varied (number of 
d electrons, concentration) were proposed, but only based on the band contribution to the total energy. Jacques Friedel 
was particularly talented in developing simple models with a simplified schematic description of the electronic density of 
states (such as the rectangular band model [4]) that could nevertheless describe surprisingly well many physical properties 
of materials. Later on, physicists started to add a phenomenological repulsive pair-potential to the band energy [5]. It was 
however not very clear what was “hidden” behind this phenomenological term. Over the years, TB methods have acquired 
a more solid fundamental basis. In particular, with the work of Harris and Foulkes [6,7], it was shown how a tight-binding 
formalism can be derived from Density Functional Theory. Nowadays, there exist many electronic structure codes based on 
various versions of TB with different degrees of approximations [8–10].

Very early, TB in combination with a Stoner-like model [11] was recognized as an adequate tool to describe magnetism 
in transition metals, and Jacques Friedel was indeed very active in this field [12,13]. Indeed, magnetism in a crystal is inti-
mately related to its band structure. TB has been applied to a large variety of magnetic systems in various crystallographic 
structures, dimensionalities (from bulk to clusters), ordered alloys or presenting some kind of disorder [14]. It is not the goal 
of this paper to provide an exhaustive presentation of this wealth of research in magnetism. We will rather concentrate on 
the presentation of a TB model that we have developed over the years and that is able to describe accurately and efficiently 
a wide range of magnetic phenomena and materials. It is an empirical TB method with parameters fitted on ab-initio data. 
We will show how, with a limited number of simple and well controlled approximations, we have been able to generalize 
our model to alloys and include non-collinear magnetism, spin-spirals as well as spin–orbit coupling.

The paper is organized as follows: we will present the general concepts of the tight-binding description of electronic 
structure and its implementation in an s, p and d atomic orbital basis set for non-magnetic materials (Section 2). We will pay 
particular attention to describe properly features that are often not discussed thoroughly in publications: non-orthogonality 
of the TB basis set, self-consistent treatment, proper definition of local quantities, etc. Then, in Section 3, we will show 
how, using a simple Stoner model, spin-polarization can be included, first for collinear magnetism (Section 3.1), then for 
non-collinear configurations (Section 3.2). Spin–orbit coupling and magneto-crystalline anisotropy will also be discussed in 
detail. Section 3 will be ended by a discussion of more elaborated Hartree–Fock like Hamiltonians that can play an important 
role in low-dimensional or anisotropic systems. Finally we will draw conclusions in Section 4.

2. The tight-binding method

The tight-binding approximation is a kind of counterpart of the free-electron jellium model of solids. Indeed, while plane 
waves are the natural functions to describe the delocalization of electrons in a jellium, the Bloch functions are expanded over 
a set of atomic-like functions in the TB approach. Therefore, the TB model will in principle apply better to systems where 
the valence electrons originate from well-localized atomic functions that do not overlap too much between neighboring 
atoms. However, its domain of applicability has proved to be larger than expected. For a review of the different aspects 
of the tight-binding method, the reader can refer to the following books or review articles [15–20]. The specificity of our 
approach consists in the derivation of a systematic procedure to determine the parameters of our TB model, which is able 
to describe the electronic, magnetic and energetic properties of transition metals and their alloys with an accuracy close to 
first-principle calculations.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.1. Generalities

2.1.1. The electron potential in a crystal
A good first approximation for the potential seen by an electron in a crystal (or assembly of atoms) is to write it as a 

sum of isolated neutral atomic-like potentials,

V (r) =
∑

n

V at(r − Rn) (1)

where the summation runs over the lattice vectors Rn of the crystal. V at(r) is an atomic-like potential of radial symmetry. 
Note that this decomposition is not unique and moreover the potential is not necessarily a truly atomic potential, but 
could be “modified” to take into account the confinement felt by the electrons in the crystal. In addition, since we are 
only interested in describing the valence electrons, this potential is rather a “pseudo” potential valid in a given range of 
energy for describing the interaction of valence electrons with the ions. Due to the lattice periodicity, the crystal potential 
is periodic. It can also be generalized to the case of several atoms per unit cell. We will then write:

V (r) =
∑
i,n

V at
i (r − Rn − τ i) (2)

The summation over i is running over the Nat atoms in the unit cell. To avoid lengthy notations, we will usually write 
the potential in the following condensed manner by making use of an operator formalism V̂ = ∑

i,n V̂ at
i,n . The one-electron 

Hamiltonian operator is therefore written:

Ĥ = T̂ +
∑
i,n

V̂ at
i,n (3)

T̂ being the kinetic energy operator.

2.1.2. Linear combination of atomic orbitals
Once the potential of the crystal has been written as a sum of atomic-like potentials, we consider the corresponding 

atomic wave functions φat
iλ , solutions of the Schrödinger equation for atom i:

(T̂ + V̂ at
i )φat

iλ = εat
iλφ

at
iλ (4)

As mentioned previously, there is some flexibility in the way potential V̂ at
i is defined. In particular, for practical reasons, 

it is wished that the spatial extension of the associated atomic wave functions is of a smaller range than that of the true 
atomic wave functions. In addition, since the valence wave functions usually include more than one type of atomic orbital, 
the index λ (= 1 . . . Norb) refers to the symmetry of the angular part of the real orbitals s, px, py , pz , dxy , dyz , dxz , dx2−y2 , 
dz2 , etc.,

φat
iλ(r) = Riλ(r)λ̄(r̂) (5)

where Riλ(r) and λ̄(r̂) are respectively the radial and angular parts of the atomic orbital (r̂ being the angular coordinates 
of the vector r with respect to some given x, y, z axes). In the following, for convenience, we will rather use the Dirac 
notations |inλ〉 to denote the ket associated with the atomic orbital φat

iλ(r − Rn − τ i) = 〈r|inλ〉 of atom i in the cell n.
The central approximation of the tight-binding model relies on the assumption that the restricted Hilbert space spanned 

by atomic-like orbitals is sufficient to describe the wave functions solutions of the Schrödinger equation (at least in a 
restricted energy range) in the crystal. The wave functions are therefore written as combinations of atomic-like orbitals:

|�〉 =
∑
inλ

Cinλ|inλ〉 (6)

Note that even though the atomic orbitals form an approximate basis of the restricted “valence” space, this basis has no 
reason to be orthonormal. Indeed, the scalar product of two atomic wave functions located on different atomic sites defines 
the so-called overlap integrals:

Sinλ, jmμ = 〈inλ| jmμ〉 (7)

For convenience, the overlap integrals have often been neglected to build up simplified models where it is assumed that 
the non-orthogonality can be taken into account through a renormalization of the other tight-binding parameters. These 
models can be very efficient and quite precise when one is interested more in the energetics rather than in the electronic 
structure, since energetics is mainly governed by d electrons, for which orthogonality is a good approximation. However, 
this approximation is rather crude if one wants a good description of the band structure, which needs the introduction of s 
and p electrons in the basis set since they are delocalized.
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2.1.3. One-, two-, and three-center integrals
Let us now write the various matrix elements of the Hamiltonian in this atomic basis set. Making use of Eq. (4), the 

diagonal or on-site terms can be written:

εinλ = 〈inλ|Ĥ |inμ〉 = εat
iλδλ,μ + 〈inλ|

∑
jm �=in

V̂ at
jm|inμ〉 (8)

The second term of pure electrostatic character is the so-called crystal-field integral αiλμ . The additional contribution 
αiλ obtained for λ = μ only shifts the value of the atomic level. Off diagonal term will be ignored in the following.

In the same spirit, the off-diagonal matrix elements of the Hamiltonian obtained for (in) �= ( jm) can be split into two 
types of terms:

〈inλ|Ĥ | jmμ〉 = εat
jμSinλ, jmμ + 〈inλ|V̂ at

in | jmμ〉 + 〈inλ|
∑
kp �=in
kp �= jm

V̂ at
kp| jmμ〉 (9)

where atom of index i = 0 is taken as the origin.
The first two terms [21] involve two-center integrals (the center of the potential is the same as one of the two wave 

functions) and are the only ones that will be retained since their contribution is much larger than the last three-center 
integral term. In the following, the off-diagonal elements of the Hamiltonian (involving two-center integrals only) will 
be denoted βinλ, jmμ . These are the so-called hopping integrals, which are crucial ingredients in the tight-binding model 
since they measure the ability of an electron to “jump” from one atom to the other and decay rapidly with the distance 
between neighboring sites. Therefore, a usual approximation consists in cutting-off the interaction above a certain threshold 
radius Rc . This is a very important point since the rather short-ranged extension of the hopping integrals makes the TB 
Hamiltonian matrix sparse and allows the use of specific efficient algorithms. In addition, due to the spherical symmetry 
of the atomic potentials, the hopping integrals between two sites connected by a vector with an arbitrary orientation can 
be written as a linear combination of a set of hopping integrals βγ = ssσ , spσ , sdσ , ppσ , ppπ , pdσ , pdπ , ddσ , ddπ , ddδ

defined in the case where the orientation is along the z-axis. This set of Slater–Koster integrals are the main ingredients in 
the TB model, and the βγ (R) are decaying functions with distance.

2.1.4. Bloch states and Hamiltonian matrix in the reciprocal space
In a periodic crystal, the Hamiltonian can be diagonalized using the Bloch states written in the form:

|�iλ(k)〉 = 1√
N

∑
n

eik·(Rn+τ i)|inλ〉 (10)

where k is a vector lying in the reciprocal space and N the number of primitive unit cells in the crystal (where we use 
the Born–von Karman periodic boundary conditions). The eigenfunctions |�(α)(k)〉 of the TB Hamiltonian are written as a 
combination of Bloch states:

|�(α)(k)〉 =
∑

iλ

C (α)
iλ (k)|�iλ(k)〉 (11)

The C (α′)
inλ

and C (α)
iλ (k) expansion coefficients are thus related by the expression:

C (α′)
inλ

= 1√
N

C (α)
iλ (k)eik·(Rn+τ i) (12)

Each eigenstate α′ is now labelled by a band index α (running from 1 to Nat Norb) and a wave vector k. The Hamiltonian 
matrix of size (NatNorb × NatNorb) can be written as:

Hiλ, jμ(k) = 〈�iλ(k)|H|� jμ(k)〉 =
∑

m

eik·(Rm+τ j−τ i)〈i0λ|H| jmμ〉 (13)

A similar expression is derived for the overlap matrix

Siλ, jμ(k) = 〈�iλ(k)|� jμ(k)〉 =
∑

m

eik·(Rm+τ j−τ i)〈i0λ| jmμ〉 (14)

2.1.5. Solving the TB Schrödinger equation
In a periodic crystal, writing the Schrödinger equation with a wave function given by Eq. (11) leads to a matrix equation 

of the form:

H(k)Cα(k) = εα(k)S(k)Cα(k) (15)

H(k) and S(k) are the k-dependent Hamiltonian and overlap matrices while Cα(k) is the vector built from the coeffi-
cients Cα

iλ(k). Due to the presence of the definite and positive S(k) matrix, Eq. (15) is called a generalized eigenvalue 
problem that needs to be solved for each k vector in the irreducible Brillouin zone.
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The eigenvalues εα(k) form the so-called band-structure of the crystal when the k vector is spanning the Brillouin zone.
This generalized eigenvalue equation simplifies into a standard one when the overlap integrals are neglected. The pres-

ence of the overlap matrix slightly complicates the formalism, especially when one needs to define local quantities as will 
be seen in the following sections.

2.2. The local quantities in the TB method

2.2.1. Quantum mechanics in a non-orthogonal basis set
When using a non-orthogonal basis in quantum mechanics, many formulae have to be modified. This is the case of the 

so-called closure relation. For the sake of simplicity (and generality), let us drop the i λ and n indexes and consider a 
non-orthogonal basis set |a〉, and its corresponding overlap matrix Sa,b = 〈a|b〉. It is very convenient to introduce the dual 
basis |ã〉 defined as follows [22,23]:

|ã〉 =
∑

b

(S−1)a,b|b〉 (16)

By definition, 〈ã|b〉 = 〈a|b̃〉 = δa,b , and it is possible to define a generalized closure relation:∑
a

|ã〉〈a| =
∑

a

|a〉〈ã| = Îd (17)

where Îd is the identity operator. It is then straightforward to prove that the trace of an operator Â takes the form

Tr( Â) =
∑

a

〈ã| Â|a〉 =
∑

a

〈a| Â|ã〉 (18)

A very useful operator in quantum mechanics is the density operator, which is defined in a condensed way as ρ̂ = f (Ĥ)

where f is the Fermi function. ρ̂ takes a more transparent expression in the eigenfunction basis set |α〉 of the Hamiltonian.

ρ̂ =
∑
α

|α〉 f (εα)〈α| (19)

fα = f (εα) being the occupation factor of the eigenstate of eigenvalue εα . In the case of a periodic system, parameter α
denotes the combination of the discrete index α previously introduced and of the continuous k-vector. Therefore using the 
previous relation of the trace, it comes out that the trace of the density operator that defines the total number of electrons 
in the system can be written as:

Ne = Tr(ρ̂) = Tr(ρ S) (20)

The elements of the density matrix ρ are given by:

ρa,b =
∑
α

Cα
a Cα

b fα = 〈c+
b ca〉 (21)

The Cα
a = 〈ã|α〉 are the expansion coefficients of the eigenfunction |α〉 in the basis set |a〉 and c+

b , ca the creation and 
annihilation operators in the atomic orbitals |b〉 and |a〉, respectively. Finally, a natural way of defining a charge projected 
on orbital |a〉 is to take the real part of the matrix element Na = Re(ρ S)a,a , which can also be written in a more symmetric 
way as 1

2 (〈ã|ρ̂|a〉 + 〈a|ρ̂|ã〉). This compact expression is in fact nothing else than the usual Mulliken charge of a given 
orbital a:

Na = Re

(∑
α

Cα
a C̃α

a fα

)
, C̃α

b =
∑

b

Sa,bCα
b (22)

Obviously, with this definition, the summation over all the orbitals |a〉 allows us to recover the total charge, i.e., Ne =∑
a na . If the overlap integrals are ignored in the expression of the local charge given by Eq. (22) (i.e. by replacing ̃Cα

a by Cα
a ), 

then the conservation of the charge is no longer preserved and we call the corresponding quantity the “net” charge. These 
relations can readily be transcribed to define the local charge of a given orbital symmetry Niλ in the context of the TB 
formalism.

2.2.2. Density of states
The density of states is a fundamental quantity that provides a crucial information about the level distribution of the 

Hamiltonian spectrum. The total density of states is defined as:

n(E) =
∑

δ(E − εα) = Tr(δ(E − Ĥ)) (23)

α
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It simply “counts” the number of states between E and E + dE divided by dE . By definition, an integration up to the 
Fermi level gives the total number of electrons in the system. In a similar way, as done for the Mulliken charge, a local 
density of states projected on a given orbital can be defined:

na(E) = Re

(∑
α

Cα
a C̃α

a δ(E − Eα)

)
(24)

The local charge is then recovered by an integration weighted by the Fermi function:

Na =
∫

na(E) f (E)dE (25)

2.2.3. Band energy
As will be seen in the following, the band energy that can be obtained, at zero temperature, by summing all eigenvalues 

below the Fermi level is an essential component of the total energy of the system. At non-zero temperature, it is easily 
generalized and can be formulated in various ways:

Eband = Tr(ρ̂ Ĥ) =
∑
α

εα fα =
∫

En(E) f (E)dE (26)

In a similar manner, as for the charge or the projected DOS, one can define a local contribution to the band energy:

Eband
a =

∫
Ena(E) f (E)dE (27)

In some cases, it is more convenient to work with the grand-potential �, which is defined at zero temperature as 
Eband − Ne EF:

� =
EF∫
(E − EF)n(E)dE (28)

which can be generalized at finite temperature T [16]. The local contribution from site a is obviously obtained in the same 
way as the local band energy.

2.3. An spd tight-binding Hamiltonian for transition metals and alloys

In the following, we will present the TB model that we have developed over the years and applied to many dif-
ferent systems. The non-magnetic part of this tight-binding Hamiltonian is similar to that of Mehl and Papaconstan-
topoulos. We use a minimal non orthogonal basis set containing s, p, and d orbitals centered at each site i, |i, λ〉
(λ = s, px, py, pz, dxy, dyz, dzx, dx2−y2 , dz2 ). Let us first consider the onsite matrix elements in the case of a system with 
a single chemical element. In a similar way to Mehl and Papaconstantopoulos [8], we assume that at each interatomic dis-
tance the reference energy is chosen in such a manner that the total energy E tot is obtained by summing up the occupied 
one electron energy levels:

Etot =
∑
α

εα fα (29)

Note that in this condition, the total energy can be calculated without introducing an empirical repulsive potential 
as currently done in pure d band calculations. Indeed, the repulsive contribution to the total energy is accounted for by 
the onsite terms, which, consequently, must depend on the local environment (number of neighbors and bond lengths). 
Following Ref. [8], we write:

εiλ = aλ + bλρ
1/3
i + cλρ

2/3
i + dλρ

4/3
i + eλρ

2
i (30)

with:

ρi =
∑
j �=i

exp[−�2 Rij]Fc(Rij) (31)

where Fc(Rij) is a cut-off function and � is a parameter.
Let us consider now the hopping and overlap integrals. In order to reproduce more closely their variation with distance 

on a large scale, we have found useful to use a law somewhat more complicated than a simple exponential, as done in [8]:

βγ (R) = (pγ + fγ R + gγ R2)exp[−h2
γ R]Fc(R) (32)

where γ indicates the type of interaction (e.g., ssσ , spσ , etc.) and Fc(R) is a cut-off function:
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Fc(R) = 1

1 + exp[(R − R0)/l] (33)

In practice, this function fixes the number of neighbors that are taken into account. In the calculations we took R0 equal 
to 14 Bohr and l equal to 0.5 Bohr, the interactions are strictly cut-off for distances above Rc = R0 + 5l = 16.5 Bohr. Let us 
recall that in this parameterization, the band energy is equal to the total energy. Limiting ourselves to s, p, and d orbitals, 
we have introduced 16 parameters in the expression of the on-site terms and four for each expression of the ten hopping 
and ten overlap integrals. Thus, to completely specify our model, we need to determine at most 96 parameters. These 
parameters can be obtained by a fit to ab-initio calculations of the non-magnetic band structure and total energy for several 
distances and simple crystallographic structures.

If we consider now a metallic alloy made of two chemical elements A and B , the following procedure has been car-
ried out with success. A fit for both chemical elements is performed separately, but with the same value of �. Then the 
intra-atomic terms of a given atom in the system will only depend on the nature of the considered atom by the coefficients 
aλ, bλ, cλ, dλ and eλ . The values of the hopping and overlap integrals β A−A

γ (βB−B
γ ) between two identical A (B) atoms are 

the same as in the pure element, while for a mixed couple of neighbors A − B , β A−B
γ is obtained by using the common 

approximation that consists in taking the arithmetic average of the corresponding homonuclear quantities:

β A−B
γ = 1

2
(β A−A

γ + βB−B
γ ) (34)

and therefore does not necessitate additional parameters. Finally, we apply a local charge neutrality procedure such that 
the local Mulliken charge of a given atom i is equal to the number of valence electrons of the specie occupying site i. Its 
practical implementation will be explained in the next section.

The advantage of our approach is that it does not require any further fitting to ab-initio data for the binary systems. This 
procedure works very well for the electronic and magnetic properties of alloys; however, if one is interested in the energetics 
of alloys (mixing energies etc.), it is sometimes necessary to slightly rescale the value of the hetero-nuclear hopping and 
overlap integrals with respect to the arithmetic average. This is the case for the FeCr system, which necessitates a small 
increase in the Fe–Cr hopping and overlap parameters to reproduce accurately quantities such as the mixing or interface 
energies [24].

2.4. Self-consistent corrections

2.4.1. Local charge neutrality and the notion of penalization
When dealing with inhomogeneous systems using this type of semi-empirical TB Hamiltonian, one is usually faced with 

the problem of charge transfer. Indeed, if such a model is applied for example to the case of a surface, or a cluster where 
atoms have very different geometrical environments, unphysically large charge transfers are obtained. In metallic systems in 
which strong screening effects prevent the accumulation of charges, it is important to avoid such effects. A straightforward 
manner to solve this problem is to use a so-called penalization technique that consists in adding a positive term to the 
total energy, which is zero if the charge neutrality is fulfilled, and very large otherwise. Let us start from the expression 
of the total energy of the system written in terms of the expansion (real) coefficients Cα

inλ
on the atomic basis, which for 

simplicity is assumed to be orthogonal (the generalization to the case of a non-orthogonal basis set is presented at the end 
of this section). The total energy of a system described by an Hamiltonian H 0 before penalization is written as:

Etot,0 =
∑
α′occ

inλ, jmμ

Cα′
inλH0

inλ, jmμCα′
jmμ (35)

A minimization of this function with respect to Cα′
inλ

under the normalization constraint 
∑

inλ(Cα′
inλ

)2 = 1 leads to the 
usual eigenvalue Schrödinger equation H 0Cα′ = ε0

α′ Cα′
. Let us now add a penalization term of quadratic form to the total 

energy:

Epen =
∑

in

Ui

2
(Nin − N0

i )2 (36)

where Ui is a large positive quantity and N0
i the charge that one wants to impose on site i. Minimizing the total energy 

Etot,0 to which the penalization term is added leads to a similar eigenvalue equation where the diagonal matrix elements 
of the Hamiltonian have been modified:

Hinλ, jmμ = H0
inλ, jmμ + Ui(Nin − N0

i )δinλ, jmμ (37)

In a periodic crystal, Nin = Ni, ∀n, and the application of the Bloch theorem leads to the corresponding modified Hamil-
tonian in k space:

Hiλ, jμ(k) = H0 (k) + Ui(Ni − N0)δiλ, jμ (38)
iλ, jμ i
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This equation can be generalized to the case of a non-orthogonal basis set. Provided that the charge is defined in the 
Mulliken fashion, the modified Hamiltonian reads:

Hiλ, jμ(k) = H0
iλ, jμ(k) + 1

2
(Ui(Ni − N0

i ) + U j(N j − N0
j ))Siλ, jμ(k) (39)

2.4.2. Self-consistency in the tight-binding method
From Eq. (37) it is clear that this equation must be solved self-consistently, since the Hamiltonian now depends on 

the local charges. A straightforward procedure would be to start from an initial “input” charge distribution, and once the 
corresponding Hamiltonian is diagonalized, the “output” charges are used as new inputs and the process is iterated until 
the input and output charges differ by less than a given threshold number. However, it is well known that such a method 
generally fails to converge. The simplest way to get rid of this problem is to introduce only a portion of the output charge 
by a linear mixing strategy. Unfortunately, this is very uneffective and some more refined mixing techniques are necessary, 
such as Broyden mixing [25], based on a kind of Newton method that greatly improves the convergence. Nevertheless, 
convergence in highly anisotropic systems can still be challenging, especially when magnetism is introduced.

2.4.3. Double-counting corrections
Once the self-consistency has been achieved, total energy can be expressed in terms of the Cα

iλ(k) coefficients; however, 
it is usually more practical to use the band energy of the modified Hamiltonian, which can be written as:

Eband =
∑
αkocc

εα(k) =
∑
αkocc

Cα
iλ(k)H0

iλ, jμ(k)Cα
jμ(k) +

∑
i

U i(Ni − N0
i )Ni (40)

Therefore it comes out that the total (penalized) energy is not solely given by the band energy, but should be corrected 
by a so-called double counting term. Then total energy reads:

Etot =
∑
αkocc

εα(k) −
∑

i

U i

2
(N2

i − (N0
i )2) (41)

This expression also holds for a non-orthogonal TB model as long as the charges are defined in Mulliken’s manner.

2.4.4. Force Theorem
In quantum mechanics, the absolute energies of a system are not meaningful, since they depend on the energy reference. 

Therefore, most of the time, what is really needed is the difference of total energies between cases (or systems) that involve 
changes in the interacting potential. When the modification of the potential is large, a self-consistent calculation is necessary 
to compare the total energies of two systems. However, there are many situations where these changes are relatively small, 
and in these cases a very useful approximation, commonly called the Force Theorem (FT), can be applied. FT is also known 
as Andersen force theorem, since it was first introduced by Andersen [26] (see also a detailed discussion in Ref. [27] by 
V. Heine). A magnetic version of this theorem is presented in Ref. [28] where it is applied to calculate effective exchange 
interactions in metallic ferromagnets. We will now briefly recall its principles, but a more detailed derivation can be found 
in Ref. [29] in the context of a tight-binding scheme. Let us consider a perturbative external potential δV ext, which in 
a tight-binding scheme is often a perturbation of the on-site levels of the Hamiltonian, but could be any other small 
perturbation. Due to self-consistent effects, the external potential slightly modifies the local charges, which consequently 
produces an additional induced potential δV ind. However, it can be easily shown that the variation of total energy brought 
by this induced perturbative potential is exactly compensated (to first order) by its corresponding double counting term. 
Therefore, the change in total energy is equal to the change of band energy induced by the external potential only:

�Etot ≈ δ

[ ∑
αocc

fαεα

]
(42)

calculated by ignoring the self-consistent corrections. This means that the eigenvalues of the perturbed system are obtained 
after a single diagonalization of the “perturbed” TB Hamiltonian (including the external potential only and not the induced 
potential). The Force Theorem, besides saving much computational time, is also often more precise than the brute force 
approach, which consists in performing full self-consistent calculations, therefore requiring an extreme precision.

Let us also add that the first-order variation of the free energy F at fixed number of electrons is equal the variation 
of the grand-potential � at fixed chemical potential [16]. Therefore the Force Theorem can be equivalently applied to the 
grand-potential.

3. Magnetism in the tight-binding method

3.1. Collinear magnetism

Until now, the spin of the electron has been ignored and the two spin orbitals were degenerated since no spin-dependent 
potential was present to remove the degeneracy between “up” and “down” spins. One of the simplest, yet amazingly effi-
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cient, way to introduce magnetism in a TB Hamiltonian is based on a model initially proposed by Stoner [11], which will be 
described below. The wave functions as well as the pseudo-atomic orbitals forming the TB basis |inλσ 〉 now have two spin 
components, and σ = ±1 for up and down spins, respectively. The spin magnetization expressed in unit of Bohr magnetons 
is then defined as the difference between the number of majority (up) and minority (down) electrons, M = N↑ − N↓ .

3.1.1. Stoner model
To remove the degeneracy between the two spins, it is necessary to introduce a potential that generates a band splitting 

between “up” and “down” spins. In the TB model, a natural way of creating this spin splitting is to consider a local (on-site) 
potential that shifts down (up) the majority (minority) spin bands. Moreover, since this potential intrinsicallly originates 
from electron–electron interactions, exchange splitting should depend itself on the magnetization of the system and vice 
versa. The spin-dependent Stoner potential V̂ Stoner

σσ ′ takes the simple form in an orthogonal TB basis with only one type of 
orbitals (d for the transition metals):

V̂ Stoner
σσ ′ = −1

2

∑
inλ

|inλσ 〉(σ Ii Miδσσ ′)〈inλσ ′| (43)

where Ii are the Stoner parameters, and Mi the spin magnetization of atom i (i.e. the difference between the number 
of electrons with up and down spins summed over all the orbitals of same character). The Stoner parameter is usually 
expressed in energy units, while the magnetization is in Bohr magnetons. Ii only depends on the chemical nature of the 
atom sitting at site i. This local term produces a shift �exch

i = Ii Mi , called exchange splitting.
An alternative (but equivalent) manner to introduce the Stoner model is to start from the total energy of the non-

magnetic system Etot,0 to which a negative component is added, − 1
4

∑
i I i M2

i . Then following the same procedure as for 
charge penalization, it comes out that the original non-magnetic Hamiltonian should be corrected by a local potential that 
has exactly the form of the Stoner potential. Then, taking into account the double counting terms, the total energy of the 
magnetic system can be written:

Etot =
∑

ασ ,occ

εα,σ +
∑

i

I i

4
M2

i (44)

where εα,σ are the eigenvalues of the spin-dependent Hamiltonian.

3.1.2. Stoner criterion
Let us consider the case of a system where all atoms are equivalent (typically a crystal with one atom per unit cell). 

The eigenvalues of the Hamiltonian can be split into up and down spin energies, and the density of states of spin σ , nσ (E)

is simply obtained by a rigid shift of the density of states per spin of the non-magnetic system n0(E) (without exchange 
interaction):

nσ (E) = n0(E + σ

2
I M) (45)

From this unique property of the density of states, a criterion for the existence (or not) of a magnetic solution can be 
derived. Indeed, the equation defining the Fermi level EF from the total number of electrons N and the one defining the 
total spin magnetization M are sufficient to completely define the system (i.e. determine the magnetization) as long as the 
original non-magnetic density of states is known:

N =
EF∫

n0(E + I

2
M)dE +

EF∫
n0(E − I

2
M)dE (46a)

M =
EF∫

n0(E + I

2
M)dE −

EF∫
n0(E − I

2
M)dE (46b)

Eq. (46a) defines the Fermi level provided that the total number of electrons is fixed. It uniquely defines EF(M). Substi-
tuting EF(M) for EF in Eq. (46b) leads to an equation of the type M = F (M) where:

F (M) =
EF(M)∫

(n0(E + I

2
M) − n0(E − I

2
M))dE (47)

F (M) is an odd function that necessarily saturates to a maximum value. A non-zero solution for M exists only when the 
slope of F (M) at M = 0 is larger than one that is equivalent to F ′(0) ≥ 1. It is then easily verified that this is equivalent to 
the inequality:

In0(EF) ≥ 1 (48)

This is the famous Stoner criterion [11], which can be derived in many different manners. For example, it can also be 
obtained by minimizing total energy.
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Table 1
Stoner parameter in eV for various elements obtained from a pro-
cedure of fine tuning of the m(aalat) curve for a given crystallo-
graphic structure as explained in the text. In the case of Fe we 
used the bcc structure, and for Co, Ni and Pt the fcc structure. For 
Pt the equilibrium structure is non-magnetic but this element un-
dergoes a ferromagnetic transition at a given expanded lattice. In 
the case of Cr we used the bcc antiferromagnetic phase and fitted 
the atomic magnetization projected on one the atom of the lattice.

Element Cr Fe Co Ni Pt

Id (eV) 0.82 0.88–0.95 1.10 1.05 0.6

3.1.3. The magnetic spd TB model
We have been able to include magnetism and local charge neutrality corrections within a non-orthogonal spd TB model 

and our Hamiltonian matrix takes the following expression:

H = H TB + V LCN + V Stoner (49)

where H TB is the non-magnetic (diagonal in spin) Hamiltonian matrix described in Section 2.3, V LCN is the local charge 
neutrality correction whose matrix elements are given by:

V LCN
inλσ , jmμσ ′ = 1

2
(Ui(Ni − N0

i ) + U j(N j − N0
j ))Sinλ, jmμδσσ ′ (50)

This contribution does not depend on the spin either since the local charges Ni , N j include a summation over both spin 
components. V Stoner is the Stoner potential:

V Stoner
inλσ , jmμσ ′ = −σ

2
(Ii,λMi,d)δinλ, jmμδσσ ′ (51)

Here we have considered Stoner parameters that depend on the atomic nature of the atom centered at site i, but also on 
the orbital character (s, p, or d). Mi,d is the spin magnetization of atom i summed over the orbitals of d character only. The 
spin polarizations of s and p electrons have been neglected since they are very small (Eq. (2) of [30]). Let us also mention 
that for reasons that will be explained in Section 3.5 presenting the Hartree–Fock interaction in the TB model, the local 
magnetic moment is the “net” magnetic moment (i.e., without including the overlap terms). In practice, since the overlaps 
of d orbitals are rather small, this does not significantly modify the results compared to a case where the Mulliken charges 
are used.

At this point, it is important to note that the Stoner potential is diagonal in spin space, i.e. there are no coupling terms 
involving both spins. In practice, one has to diagonalize separately two Hamiltonians, which leads to two sets of eigenvalues 
corresponding to the “up” εα,↑(k) and “down” εα,↓(k) spins. This procedure should obviously be performed self-consistently 
since, as in the case of the local charge neutrality, the potential depends on the local magnetizations. Therefore similar 
mixing techniques to those explained above are used to reach convergence.

3.1.4. Determination of the Stoner parameter
In transition metals, magnetization is very dominantly borne by d orbitals (which explains the form of our TB potential 

where only Mi,d is taken into account) and the Stoner parameter of d orbitals Id mainly determines the magnetization of 
the material and we have set Is = Ip = Id/10. As seen from the Stoner criterion, the density of states at the Fermi level 
plays a crucial role in the onset of magnetism in a material. In addition, since the width of the DOS gets narrower when 
the interatomic distance increases, this necessarily produces higher DOS, so that normalization is preserved. Consequently, 
a uniform bond stretching is almost always accompanied by an increase of the magnetization. Even non-magnetic materials 
will become magnetic for a large-enough lattice spacing, since most isolated atoms are magnetic. This argument can also 
be applied to the understanding of the general trend of the variation of magnetization with the average coordination of 
a system. Indeed, similarly to the argument put forward to explain the effect of bond stretching, the average DOS width 
is decreasing when the average coordination decreases. This basically explains why low-coordinated systems tend to have 
larger magnetizations.

The onset of magnetism with lattice stretching is usually rather abrupt and this explains why we have chosen to tune 
the Stoner parameter by trying to reproduce this variation as precisely as possible. In practice, the magnetic moment M
is computed as a function of the lattice parameter aalat of a given crystallographic structure for several values of Id. These 
curves are compared with ab-initio data and this very simple procedure allows a precise determination of Id within a rather 
small energy range. A few values are presented in Table 1. For the case of Fe, we give two values 0.88 and 0.95 eV, since 
we found that, even though Id = 0.88 eV leads to spin moments in better agreement with ab-initio data the phase stability 
is better reproduced with Id = 0.95 eV as discussed in the next section.
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Fig. 1. Total energy per atom as a function of the atomic volume for bulk Fe in the body centered cubic (bcc), face centered cubic (fcc), and hexagonal 
closed pack (hcp) structure. For each structure, we have considered the ferromagnetic (FM) and the non-magnetic (NM) configurations.

3.1.5. Total energy and magnetic phase stability
Magnetism being extremely sensitive to the local environment of atoms, in particular the bond-lengths and the coordi-

nation number, it is not surprising that it plays a crucial role on the phase stability of magnetic materials. As an illustrative 
example let us mention the case of small magnetic clusters as well as bulk iron since they are particularly instructive.

Cluster physics is very rich and complex due to the large number of possible geometrical atomic configurations (that 
grows exponentially with the number of atoms in the cluster). This complexity increases when magnetism is entering into 
play since, besides the many metastable geometrical configurations to be considered, there also often exists several magnetic 
solutions [31,32]. In addition the bond-lengths of the relaxed structures are usually depending on the magnetic solution. As 
a general trend it is found that solutions with higher magnetic moments favor larger interatomic spacings, showing once 
again that magnetism and structure are intimately entwined.

The intrication between magnetism and atomic structure is also very important in bulk materials. One of the most 
emblematic example is the case of iron. Indeed, if Fe were not magnetic its crystallographic structure should have been 
hexagonal closed packed as found by standard non spin-polarized Density Functional calculations. Magnetism strongly sta-
bilizes the body centered cubic structure in iron and favors it with respect to more compact structures. This is illustrated in 
Fig. 1 where we present the result of our TB total energy calculations for bulk Fe as a function of the atomic volume. Note 
that for these total energy calculations we have taken Id = 0.95 eV, since this value gives a better description of the phase 
stability while the magnetization is slightly overestimated. The reason for this small inconsistency is due to the fact that 
the energy difference between fcc and bcc is overestimated (compared to ab-initio results) in the non-magnetic phase. As a 
consequence, the stabilization of bcc requires a larger Stoner parameter to gain more magnetic energy.

3.2. Non-collinear magnetism

In the previous section, we have explained how magnetism can be introduced in our TB scheme and we used the terms 
of “up” and “down” spins, which implicitly supposed that the spin quantization axis was taken along the magnetization 
direction that will be denoted as z′′ in the following. However the z′′ axis has no reason to be related to any crystallo-
graphic direction of the crystal, since spin and orbital variables are belonging to different spaces. It will be seen how the 
spin–orbit coupling potential is connecting these two spaces. Before discussing this point, we will first express the magnetic 
TB Hamiltonian in fixed spin coordinate axes, which is more appropriate to deal with non-collinear magnetic configurations, 
since in such systems the spin quantization axes are changing from one site to the other.

When studying non-collinear magnetism, it is necessary to use a spin-orbital function with two-components( |�↑(k)〉
|�↓(k)〉

)
where both components are usually non-zero, in contrast with the collinear case where the wave functions can be separated 
into “up” and “down” spin wave functions corresponding to the two “independent” spin channels. The operators now act 
simultaneously on both components of the spin-orbitals, such as the Pauli matrices:

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
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3.2.1. Local and global spin coordinate axes
We will first introduce global xyz and local x′′ y′′z′′ spin axes. By definition, the local axes are chosen such that z′′ is 

pointing in the direction of the local magnetization. Starting from the global xyz axes of the crystal, a new frame x′ y′z′ is 
obtained by a rotation of an angle φ around z, finally a further rotation of an angle θ around y′ gives the local spin frame 
x′′ y′′z′′ .

The spin one-half rotation matrix [33] permits to change coordinate from local to global (and vice-versa) spin frame:

U (θ,φ) =
(

e−i φ
2 cos θ

2 −e−i φ
2 sin θ

2

ei φ
2 sin θ

2 ei φ
2 cos θ

2

)
= e−i φ

2 σ̂z e−i θ
2 σ̂y (52)

The components of the eigenvectors | ↑〉loc in the global frame are given by the following matrix equation U (θ, φ)
( 1

0

)
so 

that:

| ↑〉loc = e−i φ
2 cos

θ

2
| ↑〉 + ei φ

2 sin
θ

2
| ↓〉 (53)

A similar reasoning gives:

| ↓〉loc = −e−i φ
2 sin

θ

2
| ↑〉 + ei φ

2 cos
θ

2
| ↓〉 (54)

where | ↑〉loc and | ↓〉loc are the spinstates that diagonalize the Pauli matrix σz′′ (local frame), while | ↑〉 and | ↓〉 are the 
spin eigenstates diagonalizing σz (global frame).

3.2.2. The Stoner model in the global axes
By construction the Stoner potential matrix is diagonal in spin when expressed in the local spin axes and takes the 

form:

Ṽ Stoner, loc
inλ, jmμ = −1

2
Iiλ(Mi,dσ̂z)δinλ, jmμ (55)

It is straightforward to show, using the transformation Ṽ Stoner, glob = U (θ, φ)Ṽ Stoner, locU −1(θ, φ) that the Stoner potential 
expressed in the global axes is given by:

Ṽ Stoner, glob
inλ, jmμ = −1

2
Iiλ(M i,d.σ̂ )δinλ, jmμ (56)

where M i,d = Mi,d(sin θi cosφi, sin θi sin φi, cos θi) is the magnetization vector in x, y, z coordinates, and σ̂ = (σ̂x, σ̂y, σ̂z) is 
the vector operator built from the Pauli matrices. This is a rather intuitive expression whose simple form comes from the 
fact that the Pauli matrix vector also transforms like a regular three-dimensional space vector under a space rotation matrix.

Note that the Stoner potential is the only one that is spin dependent, since H TB and V LCN are purely diagonal in spin 
space and independent of the spin, while V Stoner is diagonal in real space and non-diagonal in spin-space. The density 
matrix can as well no longer be split into “up” and “down” spin contributions. Its local components are now written:

ρ̃iλ =
(

ρ
↑↑
iλ ρ

↑↓
iλ

ρ
↓↑
iλ ρ

↓↓
iλ

)
(57)

where

ρσσ ′
iλ = Re

(∑
α

Cα
iλσ C̃α

iλσ ′

)
(58)

The local charges and magnetic moments are then expressed as an appropriate trace over the product of density and 
Pauli matrices:

Niλ = Tr(ρ̃iλ) = ρ
↑↑
iλ + ρ

↓↓
iλ (59a)

Mx
iλ = Tr(ρ̃iλσ̂x) = ρ

↑↓
iλ + ρ

↓↑
iλ (59b)

M y
iλ = Tr(ρ̃iλσ̂y) = i(ρ↑↓

iλ − ρ
↓↑
iλ ) (59c)

Mz
iλ = Tr(ρ̃iλσ̂z) = ρ

↑↑
iλ − ρ

↓↓
iλ (59d)

Finally an important point has to be mentioned before closing this section: in the absence of spin–orbit coupling, even 
for a non-collinear configuration, a global rotation of the spin magnetization does not affect the total energy of the system. 
The system is said to be invariant by rotation.
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Fig. 2. Left: Non collinear Néel magnetic structure of a triangular chromium lattice obtained from a TB calculation. Right: Total energy per atom of the 
non-magnetic (NM), ferromagnetic (FM), row-wise antiferromagnetic order (AF) and non-collinear Néel phase as a function of the first-neighbor distance of 
the free standing Cr triangular lattice.

3.2.3. An example of non-collinear magnetic configuration
Non-collinear configurations usually show up in two cases: in very inhomogeneous systems, or in frustrated systems. 

The first situation typically occurs in small clusters. Even in strongly ferromagnetic materials such as iron, one can observe 
departures from collinearity which however remain small [34]. The second situation generally leads to more obvious non-
collinear configurations. To illustrate this situation, let us consider a very simple system where strong antagonist interactions 
are present: the triangular lattice of chromium.

Chromium is a material with a clear antiferromagnetic (AF) first-neighbor interactions. In bulk bcc chromium, the mag-
netic groundstate is antiferromagnetic [35]. When Cr atoms are located on a triangular lattice, a perfect AF order cannot be 
established, since it is not possible that all first-neighbor pairs have magnetic moments pointing into opposite directions in 
a triangular network. We have carried out a series of magnetic TB calculations on the Cr triangular lattice for lattice param-
eters ranging from 2.1 Å to 3 Å. The magnetic groundstate is actually non collinear, forming a well-known Néel structure 
as the one shown in Fig. 2 resulting from our non-collinear TB calculation. A row-wise collinear anti-ferromagnetic order 
(see Fig. 1b of reference [36]) does exist in this system, but at a higher energy. In addition, above a given lattice spacing, 
a ferromagnetic order can also develop, but its energy is even higher than the AF one. This is in perfect agreement with 
ab-initio results [36].

3.2.4. Generalized Bloch theorem and spin spirals
Some systems have another type of non-collinear magnetic groundstates called spin spirals. In these magnetic structures, 

the magnetization is rotated by a constant angle from a unit cell to the next one, this angle being defined by some spin 
spiral vector q. Since there is no spin–orbit coupling, a global rotation of the spin can always bring the spin spiral structure 
to the case where q is the axis of rotation. The spiral is then fully characterized by its axis direction, the azimuthal angle 
that evolves linearly along the rotation axis and can be written at a given atom φ = φ0 + q·R , and the constant polar angle 
θ = θ0. For convenience, the direction of the q vector is taken as the z axis and the spin spiral looks like the one presented 
in Fig. 3 for a monatomic linear chain with a single atom per unit cell. The magnetization vector can be written: M(R) =
M(cos(φ0 + q·R) sin θ0, sin(φ0 + q·R) sin θ0, cos θ0). The z axis has no reason to be related to any specific crystallographic 
axis, but to avoid lengthy notations, we will keep the same notation xyz to denote the crystallographic axes and the spin 
spiral axes. The following demonstration will be done in the global spin framework and we can check that the final result 
does not depend on the chosen axes. A brute force strategy to describe this type of systems would consist in considering 
a large super-cell containing an entire period of the spiral. However, this would be very time consuming and inefficient 
since small q vectors would necessitate extremely long super-cells. In addition, with this approach the spiral should be 
commensurate with the lattice. Fortunately it is possible to use the so-called generalized Bloch theorem [37].Considering 
that a lattice translation of R accompanied with a rotation q·R leaves the system invariant, a generalized Bloch wave 
function must verify the relation:

U (0,q·R)

(
�

↑
k,q(r + R)

�
↑
k,q(r + R)

)
= eik·R

(
�

↑
k,q(r)

�
↓
k,q(r)

)
(60)

so that it can be written as

|�σ (k)〉 =
∑

eik·Rn U−1(0,q·Rn)|nλσ 〉 (61)

n
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Fig. 3. An example of a spin spiral in a monatomic wire of lattice spacing a. The z axis is taken along the wire. In that particular geometry the “space” and 
spin axes coincide. The rotation angle φ along the wire is equal to φ0 + nqza in that case.

According to Eq. (52), the rotation matrix U (0, φ) is extremely simple, since it is diagonal when it involves only a φ
angle.

U (0,q·R) =
(

e−i q·R
2 0

0 ei q·R
2

)
= e−i q·R

2 σ̂z (62)

Writing the Hamiltonian in this Bloch-wave basis leads to a TB matrix:

Hλσ ,μσ ′(k) =
∑

m

ei(k+ σ ′
2 q)·Rn H0λσ ,mμσ ′(θ0, φ0) (63)

where H0λσ ,mμσ ′ (θ0, φ0) is a sum of three terms HTB, V LCN and V Stoner. Since HTB and V LCN are diagonal in spin-
space and V Stoner consist only of (spin-dependent) onsite elements, they are invariant under the U (0, q·R) transformation. 
H0λσ ,mμσ ′ (θ0, φ0) are matrix elements of an Hamiltonian identical to the one of a truly periodic system with a fixed spin 
magnetization of orientation given by the Euler angles (θ0, φ0). For a spin-spiral of wave vector q, the k vector is simply 
replaced by a k + 1

2 σq for the spin orbital of component σ . It should be noted that the result obviously does not depend 
on the spin axis introduced for the demonstration. For the case of several atoms per unit cell we can introduce a set of θ i

0
angles for each atom of the unit cell and the generalization of Eq. (63) is straightforward.

Summing up over the k vector gives the total energy (per unit cell) of a spin-spiral defined by any vector q in the 
irreducible Brillouin zone.

Etot(q, θ0) =
∑

α,kocc

εα(k,q) − Edc (64)

This total energy depends on the q vector and also on the polar angle θ0. A minimum of the energy curve at a q vector 
different from zero will demonstrate the existence of a spin spiral solution. In addition, the curve often presents accidents 
since by varying q over the whole Brillouin zone we explore magnetic configurations ranging from the ferromagnetic case 
q = 0 to cases where the q vector is at the border of the Brillouin zone. It can happen that some magnetic situations are 
not stable and either do not “converge” or lead to non-magnetic solutions [38]. Note that in the case θ0 = 0, there is no 
spiral and the system is simply ferromagnetic. This can be seen from Eqs. (63) and (64), since when θ0 = 0 the Hamiltonian 
matrix H0λσ ,mμσ ′ (θ0, φ0) becomes diagonal relative to spin indices and one recovers the situation where the spin space can 
be split into up and down sub-spaces. Indeed, each independent summation over k + σ

2 q vectors (for σ = ±1), where k
spans the whole irreducible Brillouin zone becomes independent of the q vector. Let us stress again that the generalized 
Bloch theorem is only applicable in the absence of SOC. In case of moderate spin–orbit coupling, it is still possible to apply 
this theorem and then treat SOC as a perturbation of the system as in Ref. [39].

Let us illustrate the concept of spin spiral on a very simple yet instructive system made of a monatomic Fe wire of lattice 
spacing a (see Fig. 3). We have calculated the total energy of spin spirals for q wave vectors along � − X (� = (0, 0, 0) X =
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Fig. 4. Total energy of spin spirals as a function of the spiral vector q in a monatomic Fe wire at various lattice spacings and θ0 = π/2.

π
a (0, 0, 1)) for θ0 = π/2 at different lattice spacings. q = � and q = X correspond to ferromagnetic and antiferromagnetic 

orders, respectively. The results of our calculations are shown in Fig. 4. Interestingly a clear minimum appears in the total 
energy curve at approximately q = X

2 for a = 2.1 Å. A shallow minimum still persists at a = 2.15 Å, but disappears at larger 
lattice spacings. This shows that a spin spiral corresponding to a π/2 rotation of the magnetization between adjacent atoms 
is the most stable structure. This structure is replaced by a simple ferromagnetic solution for lattice spacings above 2.15 Å.

3.3. Spin–orbit coupling

The spin–orbit coupling (SOC) interaction originates from relativistic effects. Starting from the Dirac equation and ex-
panding the four-component wave functions in the small v/c limit allows one to recover the non-relativistic Hamiltonian to 
which several terms are added. One of these terms is the so-called spin–orbit interaction, which plays a very important role 
in magnetic systems since it couples the orbital and spin moments and breaks the global rotational invariance. The strength 
of the spin–orbit potential is the strongest close to the nucleus and it can be very well approximated by a spherical potential 
which takes the simple form in real space:

V̂ SO = ξ(r)
L̂

h̄
· Ŝ

h̄
(65)

where L̂ = r̂ ∧ p̂ = h̄l̂ and Ŝ = h̄ σ̂
2 are, respectively, the orbital and spin moment operators, and the function ξ(r) is ex-

pressed in terms of the spherical electrostatic potential V (r)

ξ(r) = h̄2

2m2c2

1

r

dV

dr
(66)

3.3.1. Spin–orbit coupling interaction
The matrix elements of V SO in a crystal built from a sum of atomic-like potentials with spherical symmetry, written in 

the basis of atomic spin orbitals |iλσ 〉 takes the form:

〈iλσ |V̂ SO| jμσ ′〉 = ξiλμ
1

2
〈λ̄σ |l̂·σ̂ |μ̄σ ′〉δi, j (67)

Only diagonal elements of the SOC potential at each site i are retained since ξi(r) is localized near r = 0. In addition, 
since the angular moment operator does not couple orbitals of different natures (s, p or d) and is zero for s, the spin–orbit 
coefficients ξiλ are determined by only two parameters, namely ξp and ξd:

ξiλ =
∞∫

0

R2
iλ(r)r

2ξi(r)dr , λ = p or d (68)

We recall that λ̄ denotes the angular part of the atomic orbital. Since l̂ acts only on the orbital and σ̂ on the spin, the 
matrix elements of each component can be written as a product:

〈λ̄σ |̂lησ̂η|μ̄σ ′〉 = 〈λ̄|̂lη|μ̄〉〈σ |σ̂η|σ ′〉 (69)

where η = x, y, z are the components of the operators in a global (space and spin) framework. The matrix elements of the 
angular moment lηλμ = 〈λ̄|̂lη|μ̄〉 are better known in the spherical harmonics basis, but are easily derived in real spherical 
harmonics by simple linear algebra transformations, these formula can be found for p and d orbitals in Ref. [40]. Note that 
all the matrix elements of l̂η in the real harmonics are purely imaginary.
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Table 2
SOC parameters of d orbitals in eV for various elements obtained 
from a comparison with ab-initio band structures.

element Cr Fe Co Ni Pt Au

ξd (eV) 0.035 0.06 0.08 0.1 0.45 0.65

3.3.2. Determination of the spin–orbit coupling constant
The d component of the spin–orbit coupling constant ξd can easily be determined by comparison with the band structure 

calculated from ab-initio codes including spin–orbit coupling effects. Since the SOC potential is very localized near r = 0, it 
is not sensitive to the atomic structure, therefore a band structure calculation for any simple crystallographic structure can 
give an excellent evaluation of the SOC parameter. We have checked on different elements and for many different crystal 
lattices, including low-dimensional systems, that the value extracted by this simple procedure is perfectly transferable. In 
Table 2, we give a few values of ξd for various elements. In contrast, the p component cannot be obtained in the same way, 
since the p orbitals are much more dispersive and well above the Fermi level; therefore, the effect on the band structure is 
difficult to quantify. However from ab-initio calculations, it is possible to evaluate ξp by a direct integration of Eq. (68). In 
practice, it is found that ξp is about three to five times larger than ξd. For example, in Fe it is found that ξp = 0.18 eV [40]. 
However, despite this large value, the effect of ξp is almost negligible on most physical phenomena.

3.3.3. An effect of SOC in non-magnetic systems: Rashba splitting of gold
The clearest evidence of spin–orbit coupling in atoms, molecules or extended solids is the removal of degeneracies of 

the one-electron levels. Let us illustrate the effect of SOC on two cases: a bulk non-magnetic cubic material and a surface.
The effect of SOC is to remove degeneracies of degenerate levels when matrix elements of V̂ SO exist between the eigen-

states of the corresponding levels. For example, in a non-magnetic cubic material the t2g orbitals are sixfold degenerate 
at the � point (this is the �25′ irreducible group representation). When SOC is switched on the sixfold degenerate levels 
(including spin variable) split into fourfold and doubly degenerate levels [41]. In the limit of small ξd, perturbation theory 
can be applied and it is easy to show that the splitting is equal to 3

2 ξd. This result provides a simple way to determine the 
ξd parameter at least in systems with sufficiently small SOC. This typically applies to 3d and 4d but not to 5d transitions 
metals.

In a non-magnetic system the time reversal symmetry imposes that εα,↑(k) = εα,↓(−k). In addition, if the crystal has an 
inversion symmetry, it comes out that εα,↑(k) = εα,↑(−k) and εα,↓(k) = εα,↓(−k). Therefore, in a system with both time 
reversal and inversion symmetries, the band structure must satisfy εα,↑(k) = εα,↓(k) and there is no possible spin splitting. 
At the surface of a crystal, the inversion symmetry is broken and then spin splitting is allowed; however, when the crystal 
is non-magnetic, this splitting should not produce any spin unbalance. Such a splitting occurs in particular at the (111)

surface of face centered cubic crystals where the inversion symmetry in a direction perpendicular to the surface is broken 
and therefore εα,σ (k‖) �= εα,σ (−k‖) (where k‖ is the component of the wave vector parallel to the surface). This leads to 
the so-called Rashba effect. A very obvious manifestation of this effect can be evidenced on the splitting of the Shockley 
surface state that appears at the (111) surface of noble metals. This is particularly significant at the (111) surface of gold 
for which the surface state exhibits a doublet as evidenced in the pioneering Angular-Resolved Photoelectron Spectroscopy 
(ARPES) measurements by Lashell et al. [42]. In Fig. 5, we present the dispersion of the Shockley state obtained from a TB 
calculation including SOC with ξd = 0.65 eV and ξp = 1.5 eV. This curve is in surprisingly good quantitative agreement with 
the one obtained from ab-initio calculations for example in Ref. [44]. Interestingly, even though the Shockley state has a 
strong pz character (10 times larger than the one of dz character), the Rashba splitting is essentially governed by the value 
of ξd. More precisely, as pointed out in Ref. [45], ξd and ξp play in opposite directions. If ξp is set to zero, the Rashba 
splitting obtained is slightly larger than when both ξp and ξd are taken into account. However, the correction due to the p 
component of the SOC is much smaller than the one originating from the d orbitals. The Shockley state can be described by 
an effective two-dimensional Rashba Hamiltonian with the following dispersion curve [43,44]:

E± = E0 + h̄2

2m
k2‖ ± γ SOk‖ (70)

where k‖ is the modulus of the component of the wave vector in the surface plane, m is an effective mass, γ SO an effective 
SO parameter that quantifies the Rashba splitting and E0 is the energy at which the two curves cross at the �̄ point. Our 
results are well fitted by m/me = 0.24, γ SO = 4.2·10−9 eV·cm and E0 = −0.33 eV. The dispersion relation and the Rashba 
splitting agree extremely well with ab-initio calculations [44]. The position of the Shockley state is found slightly above the 
experimental value (E0 = −0.42 eV [42] or E0 = −0.49 eV [46]), but in the energy range of the ab-initio results.
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Fig. 5. Rashba splitting of the Shockley state at the (111) surface of gold. The origin of energy is set to the Fermi level.

3.3.4. SOC effect in magnetic systems: orbital moment
In a magnetic system, the magnetization has two origins: the spin and the orbital moments. The total magnetization 

being given by the expectation value of −μB(l̂ + σ̂ ). In a non-orthogonal atomic basis, we can define a Mulliken-like 
component of the orbital magnetization on a given site i:

Li = Re

(∑
αk

f (εα(k))
∑
λμσ

Cα
iλσ (k)lλμC̃α

iμσ (k)

)
(71)

When SOC is neglected, the expansion coefficients can be taken as real, and since the matrix elements lλμ are imaginary, 
the orbital moment Li is necessarily zero. Therefore in magnetic systems the SOC is at the origin of the non-vanishing 
expectation-values of the orbital moment. In bulk the value of the orbital moment is usually small, since it is quenched by 
crystal-field effects. In low-dimensional systems or when the symmetry is broken, the orbital moment is less quenched and 
can reach larger values. Finally, let us point out that, except along high-symmetry directions, the orbital and spin moments 
have no reason to be aligned. This is indeed the case for a magnetization along an arbitrary direction of a crystal for which 
one can observe a small misalignment between spin and orbital magnetizations.

In magnetic systems, another important consequence of SOC is also that not only degeneracies are removed in the band 
structure, but they also depend on the orientation of the magnetization. Therefore, the band structure itself will be different 
depending on the magnetization vector. This is at the origin of the magnetocrystalline anisotropy discussed in the following 
section.

At this point let us note that this dependence on the orientation (θ, φ) of the magnetic moment does not show up in 
the expression of the SOC matrix elements itself when it is expressed in the global basis. The θ and φ dependence appears 
only in the Stoner potential. If we had adopted the local spin axes by construction, the magnetic potential would have been 
diagonal in the spin-space, but then the spin–orbit-coupling Hamiltonian ξ

2 (l̂xσ̂x + l̂ yσ̂y + l̂zσ̂z) takes a more complicated 
form (expressed in terms of the Euler angles θ and φ) since the operators σ̂η should now be written in the local spin basis. 
Such an expression can be found in Refs. [41,30]. This alternative point of view is more convenient if one wants to make 
use of a perturbative formula with respect to the SOC.

3.4. Magnetic anisotropy

Magnetic anisotropy denotes the dependence of the total energy of a magnetic system on the orientation of its average 
magnetization. The orientation that corresponds to the minimum of energy defines the so-called easy axis, the hard axis 
being the one of maximum energy. The magnetic stability of a system crucially depends on its magnetic energy distribution.

Magnetic anisotropy can formally be written as a sum of two terms with very different physical origins: the so-called 
shape anisotropy and the magneto-crystalline anisotropy. The shape anisotropy originates from classical dipole–dipole inter-
actions and essentially depends on the global shape of the sample and not very much on the local atomic environment. It 
usually favors magnetization along elongated directions of the sample. For example, in films, it favors in-plane anisotropy. 
The magneto-crystalline anisotropy energy (MAE) is a purely quantum effect intrinsically related to the spin–orbit coupling 
and extremely dependent on the dimensionality and symmetry of the system, since it is sensitive to tiny details of the 
electronic structure. As a general trend, low dimensionality and anisotropic geometrical configurations favor larger MAE, but 
it can change sign depending on small variations of the local density of states.

3.4.1. The magnetocrystalline anisotropy
The MAE is obtained as the energy difference between two magnetization directions. The numerical values of MAE are 

usually extremely small, typically ranging from a few μeV per atom in the bulk to fractions of meV at a surface. A brute 
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force method that consists in performing two self-consistent calculations to extract a very small energy difference is often 
not the best strategy, since it is very computationally demanding and furthermore often not more precise than the Force 
Theorem. In contrast, the Force Theorem is particularly well suited to this kind of calculation. Within this approximation, the 
MAE is obtained by the difference of band energy between two magnetic orientations, but ignoring self-consistent effects. 
The calculation proceeds in three steps: i) a first self-consistent collinear TB calculation (without SOC), ii) a spin rotation 
of the density matrix to align the magnetization along a given direction, and iii) a single-step (i.e. non-self-consistent) 
non-collinear TB calculation including SOC. Note that if the SOC were not included, the energy would not depend on the 
magnetization direction and the MAE would be zero. The MAE corresponding to the difference of energy between two spin 
orientations of unit vectors u1 and u2 can be written:

MAE ≈
E1

F∫
En1(E)dE −

E2
F∫
En2(E)dE (72)

where n1(E) and n2(E) are the densities of states and E1
F , E2

F the Fermi levels of the spin orientations u1 and u2, respec-
tively.

3.4.2. The local picture
Starting from Eq. (72), it is tempting to decompose the MAE into a sum over the atomic sites by introducing the pro-

jected density of states on each site ni(E) such that n(E) = ∑
i ni(E). However, the atom-resolved MAE obtained from such 

a procedure is inappropriate, since it suffers from long-range (Friedel-like) charge oscillations (due to the neglect of self-
consistency in the Force Theorem approach) that affects the value of the local energy. However, due to the conservation of 
the total charge, these oscillating terms cancel out when summed up over the whole system. A more appropriate way to 
define the local MAE is to work within the grand-canonical ensemble, which allows us to get rid of these oscillations that 
produce spurious contributions to the local MAE [29]. The atom resolved MAE is then written:

MAEi ≈
EF∫
(E − EF)�ni(E)dE (73)

where �ni(E) = n1
i (E) −n2

i (E) is the difference of DOS at site i between the two magnetic orientations, and EF is the Fermi 
level obtained from the self-consistent collinear TB calculation without SOC. A straightforward generalization of this formula 
can be applied to define an atom and orbital-resolved MAE. This approach based on the grand-canonical ensemble has been 
used in many different contexts, since it is also particularly well suited to a perturbative development [16].

We have applied our method to analyze the MAE of iron and cobalt slabs and nanocrystals [29,47] or the magnetic prop-
erties of FePt clusters [48]. However, to illustrate the strength of this local picture analysis, let us consider the interesting 
case of an ultrathin film of cobalt deposited on a gold (111) surface. It is known that above five layers, cobalt grows in a 
hcp stacking with its bulk lattice parameter. Although the first neighbor distance in Au (dAu) is about 15% larger than in Co 
(dCo), the system adopts a configuration that allows an almost perfect strain relaxation [49].

If we note that dAu/dCo ≈ 8/7, an almost perfectly commensurate structure can been obtained since every eight Co atom 
falls in perfect registry with every seven Au atom along a dense (first-neighbor) atomic row. Consequently, we have built up 
a plausible interface structure from an 8 × 8 super-cell of Co hcp(0001) in contact with an 7 × 7 super-cell of Au fcc(111). 
We have adopted a finite slab geometry, i.e., with a limited number of atomic layers. In practice, we took five layers of Au in 
fcc stacking in contact with five layers of Co in hcp stacking, the separation between the two slabs is equal to the average 
inter-layer distance between Co and Au. The total slab therefore possesses two free surfaces (one of Au and one of Co) and 
an interface (see inset of Fig. 6). Our aim is to compare this system with a slab made of 10 layers of Co to evaluate the 
influence of the gold interface.

The MAE is defined as the difference between energies of in-plane and out-of-plane magnetic configurations MAE =
E‖ − E⊥ and, for the sake of simplicity, we have chosen the most symmetric in plane orientation. By definition, a positive 
MAE means that out-of-plane configurations are energetically favorable. We have calculated the atom-resolved MAE of the 
Au/Co system and compared it with the 10 layers of pure cobalt. The result of our calculations is presented in Fig. 6. It 
shows a very erratic behavior for the Au/Co system in the vicinity of the interface. The MAE of atoms belonging to the same 
atomic plane can change by more than 0.3 meV. Moreover, from the comparison with the pure cobalt system, it appears that 
the contact with gold strongly favors out-of-plane anisotropy of the cobalt film and furthermore, even though gold presents 
a very small magnetization at its interface layer, it still contributes significantly to the total MAE (favoring out-of-plane 
anisotropy). Let us add that if the SOC parameter of gold is set to zero (not shown on the graph), then the MAE of the gold 
interface layer vanishes.

3.4.3. Perturbation theory and Bruno Formula
The application of the Force Theorem to calculate the MAE is based on the assumption that the variation of the SOC 

potential is small and that any self-consistent correction can be ignored in the energy difference. We can go a step further 
by carrying out a perturbation expansion with respect to the SOC potential itself. Second-order perturbation theory predicts 
that the MAE is a quadratic function of the direction cosines (sin θ cosφ, sin θ sinφ, cos θ ) of the spin quantization axis with 
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Fig. 6. Atomically resolved MAE (Ei,‖ − Ei,⊥) of the system made of five atomic layers of Co(0001) in hcp stacking in contact with five layers of fcc stacking 
Au(111) (full red line), compared with a 10-layer hcp(0001) slab of pure cobalt (full black line). Each atomic layer of the Au/Co unit cell is made of 64 
atoms in the case of Co and 49 in the case of Au, since we have considered a super cell built from a 8 × 8 cobalt unit cell in contact with a 7 × 7 Au unit 
cell which gives an almost perfect lattice coincidence. (The super cell is presented in the inset, periodic boundary conditions are applied in the plane of 
the surface.) The total number of atoms per unit cell is 565 for the Au/Co system and 640 for the pure Co system. Note that the pure Co system could have 
been modelled with a (1 × 1) surface unit cell but for the sake of comparison of the two systems we have preferred to use a much larger 8 × 8 slab with 
ten layers. We have only shown the gold interface layer and the 5 outermost layers of Cobalt. Layer 5LCo corresponding to the surface.

respect to the crystal axis. The coefficient of the expansion are written as complicated integrals over products of density 
matrices whose physical interpretation is not easy [30]. At this point, let us note that it is more convenient to work in the 
local spin axes to derive this formula.

Starting from this second-order perturbation expansion, Bruno [50] went a step further. By neglecting spin-flip terms 
(provided that the exchange splitting is large enough), he derived the following linear relation between the MAE and the 
variation of the orbital magnetization:

MAEi = −ξi

4

(
L1

i ·u1 − L2
i ·u2) (74)

where L1
i ·u1 (L2

i ·u2) is the orbital moment of site i projected along the spin magnetization direction u1 (u2). This formula 
first derived for fcc monolayers [50] has been generalized by Cinal et al. [51] to periodic systems with several atoms per unit 
cell. It shows that the direction corresponding to the minimum of energy (easy axis) is also the one with the largest orbital 
magnetization. This is almost always true and Eq. (74) gives the right trend. However, from a quantitative point of view, the 
linear relation between the MAE and the orbital moment variation is not perfectly fulfilled in many cases. Therefore it is 
safer to use the local definition of the MAE that we have presented.

3.5. Hartree–Fock in the tight-binding method: TB+U

In the TB model presented above, it is assumed that the on-site elements depend only on the spin population at each 
site and not on their repartition between the orbital states. However, it is well known that this charge redistribution is 
determined mainly by intra-atomic Coulomb interactions. Thus we will now introduce the corresponding potential, which 
can be written in the second quantization formalism, where c†

iλσ
(ciλσ ) denotes the creation (annihilation) operators of an 

electron at site i in the atomic spin orbital λσ :

V int = 1

2

∑
iλ1λ2λ3λ4

σσ ′

U i
λ1λ2λ3λ4

c†
iλ1σ

c†
iλ2σ ′ciλ4σ ′ciλ3σ (75)

where:

U i
λ1λ2λ3λ4

= 〈φat
iλ1

(r),φat
iλ2

(r′)| e2

|r − r′| |φ
at
iλ3

(r),φat
iλ4

(r′)〉 (76)

In the standard Hartree–Fock decoupling, this interaction becomes [52]:

V HF
int =

∑
iλ1λ2λ3λ4′

U i
λ1λ2λ3λ4

(
< c†

iλ1σ
ciλ3σ > c†

iλ2σ ′ciλ4σ ′− < c†
iλ1σ

ciλ4σ ′ > c†
iλ2σ

ciλ3σ ′
)

(77)
σσ
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In the following we will limit ourselves to a monatomic system and the interactions are restricted to d orbitals since they 
are much less extended than the s and p ones. In this case, the matrix elements (Eq. (76)) that involve at most four different 
orbitals can be expressed as linear functions of three Racah parameters A, B, C , (or else three Slater integrals F0, F2, F4, 
[54]). If cubic harmonics (real combination of spherical harmonics) are used, the terms with three and four orbitals are all 
proportional to B and the non-vanishing terms with two orbitals are of two types: Coulomb integrals Uλ1,λ2 = Uλ1λ2λ1λ2

and exchange integrals Jλ1λ2 = Uλ1λ2λ2λ1 = Uλ1λ1λ2λ2 , and the following relationship is verified Jλ1λ2 = (Uλ1λ1 − Uλ1λ2 )/2. 
It is customary to use an other set of parameters that simplifies the expression of the Coulomb and exchange integrals, i.e., 
the average values of these integrals, which are independent of λ indices:

U = 1

4

∑
λ1λ2

λ1 �=λ2

Uλ1λ2 = A − B + C ; J = 1

4

∑
λ1λ2

λ1 �=λ2

Jλ1λ2 = 5

2
B + C (78)

Moreover, the parameters U , J , B are more physically transparent than A, B and C , since U is linked to the Coulomb 
integral, J to the exchange integral and B to the orbital dependence of the electronic interactions [55]. Let us now comment 
on the choice of the basis set. Obviously, if all the matrix elements of U are included (U , J , B model), the results do not 
depend on this choice. This is also the case if we set B = 0 (U , J model), which in the real basis set amounts to neglect 
the terms involving three and four orbital since they are relatively small due to the angular dependence of the atomic 
orbitals that point in different directions of space. However, they should be kept to study orbital magnetism. When using 
a spherical harmonics basis set denoted by the value of the quantum number m, these terms are functions of B and C . 
Thus if they are neglected without changing the terms involving one and two atomic orbitals, the rotational invariance 
is destroyed unless we set B = C = 0, in which case the Coulomb integral U = A is completely isotropic and J vanishes. 
Thus the corresponding Hamiltonian is probably oversimplified to study orbital magnetism, but could be sufficient for a 
description of spin magnetism.

If in the expression of the full Hartree–Fock Hamiltonian (U , J , B model), we make now the following approximations:

(i) the intra-atomic density matrix is assumed to be diagonal with respect to both orbital and spin indices,
(ii) for each spin and at each site, the exact population of the λσ spin orbital is replaced by its average value over all 

orbitals of spin σ , i.e., niλσ → (1/5) 
∑

λ niλσ = Nidσ /5

then knowing that Uλ1λ2λ3λ4 vanishes when three indices are equal and that the elements involving three different orbitals 
obey the relations 

∑
λ2

Uλ2λ1λ2λ3 = 0 and 
∑

λ2
Uλ2λ1λ3λ2 = 0, it is easy to show that:

V iλ1σ ,iλ1σ =
(∑

λ2

(
Uλ2λ1 − Jλ2λ1

2

)) Ni,d

5
− σ

(∑
λ2

Uλ2λ1

)
Mi,d

10
(79)

where Ni,d = Nid ↑ +Nid ↓ (Mi,d = Nid ↑ −Nid ↓) are the net d population (spin moment) at site i and σ = +1(−1) for 
majority (minority) spin. Carrying out the summation over λ2 leads to:

V iλσ ,λσ = 9U − 2 J

10
Ni,d − σ

2

U + 6 J

5
Mi,d (80)

We recognize the Stoner-like potential, where I = (U + 6 J )/5 is the Stoner parameter and (9U − 2 J )/10 is an effective 
Coulomb integral. To summarize starting from the full Hartree–Fock (U , J , B model) interaction terms that accounts for 
orbital and spin magnetisms, we have derived the (U , J ) model Hamiltonian that correctly describes spin magnetism. Then 
using further approximations, we recovered the Stoner model [52]. Actually at the origin of DFT+U (see below), Anisimov 
and collaborators [56] claim that the standard local spin density approximation (LSDA) is controlled by a kind of effective 
Stoner parameter and adding a Hubbard-type interaction allows one to solve some of the known weaknesses of DFT.

In all these models, a double counting term Edc =< V int > /2 must be subtracted from the sum of occupied one-electron 
energies in order not to count twice electron–electron interactions in the total energy and the determination of the average 
intraorbital and interorbital elements of the density matrix should be done self-consistently. Finally, we must not forget 
that some electronic interactions are already included in the tight-binding Hamiltonian since this Hamiltonian has been 
parameterized by fitting the results of LDA or GGA calculations. Following the treatment done in the “atomic-limit” theory, 
we must subtract from V int(ρσσ ′

iλμ ) the quantity V int( 1
5 Ni,dδλ1λ2δσσ ′ ), ρ being the matrix density and Ni,d the average charge 

on site i.
Let us point out the similarities that hold between our TB+U theory in its formulation and the LSDA+U one, i.e. the 

density functional theory in the local spin density approximation [57] to which an intra-atomic Hubbard U has been added. 
In this approach, a set of localized orbitals can be identified. The electronic interaction between these orbitals are treated 
in a self-consistent Hartree–Fock (mean-field) manner. The modified one-electron Hamiltonian can therefore be written as:

HLSDA+U = HLSDA + HHF − Hdc (81)
int
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where HLSDA is the usual local spin-density functional HHF
int is the electronic interaction between the localized orbitals 

and Hdc is a double counting term that accounts as far as possible for the electron–electron interaction already included 
in HLSDA. The expression of HHF

int is the same as in TB+U (see Eq. (77)) and is treated as in the UJB or UJ model [58,59] in 
order to have a rotationally invariant formulation [60]. Several expressions of Hdc can be found in the literature, but the 
closest to our TB+U approach is the so-called atomic limit expression [58] since Hdc can be obtained by considering the 
energy of an isolated atomic shell with N = N↑ + N↓ electrons. If the exchange interaction is included, it is then written 
as:

Edc = U

2
N(N − 1) − J

2
[N↑(N↑ − 1) + N↓(N↓ − 1)] (82)

Let us finally point out that the reference system in our TB theory is the non-magnetic system, since the determination of 
the parameters is done by a fit on the band structures (and total energies) on the non-magnetic system, whereas in LSDA+U 
the reference system, i.e. HLSDA, is the magnetic one.

3.6. Interatomic Coulomb interaction: TB+U+V

Let us now show how the tight-binding model can be generalized to take into account the influence of the interatomic 
Coulomb interactions. For the sake of simplicity, we first consider the case of a narrow s band all atoms being of the same 
chemical species. Moreover we assume that the set of atomic orbitals centered at each site i is orthogonal. Following Hirsch 
[62], we consider the following Hamiltonian in which the intersite interactions are limited to the first nearest neighbor:

H inter
s = −t

∑
i, j �=i,σ

c†
iσ c jσ + U

2

∑
i,σ

niσ ni−σ + V

2

∑
i, j �=i,σ ,σ ′

c†
iσ c†

jσ ′c jσ ′ciσ

+ J inter

2

∑
i, j �=i,σ ,σ ′

c†
iσ c†

jσ ′ciσ ′c jσ + J ′
inter

2

∑
i, j �=i,σ

c†
iσ c†

i−σ c j−σ c jσ (83)

where niσ = c†
iσ ciσ , and −t is the hopping integral between nearest neighbors. The Coulomb interactions are described by 

the on-site term ∝ U , and the two-site terms: charge–charge interactions ∝ V , exchange interactions ∝ J inter, and the “pair 
hopping” term ∝ J ′

inter.
Applying the Hartree–Fock decoupling to the two body term leads to:

H inter, HF
s = −

∑
i, j �=i,σ

tσ c†
iσ c jσ +

∑
iσ

εσ niσ − Edc (84)

with the following spin-dependent hopping integrals and orbital energies,

tσ = t + (V − J inter)Bσ − ( J inter + J ′
inter)B−σ (85)

εσ = Z(V − J inter)n + (U + Z J inter)n−σ (86)

Edc stands for the double counting energy terms, Z is the number of nearest neighbors, nσ the occupation number for 
electrons of spin σ , n = ∑

σ nσ is the total band filling and Bσ = ρiσ , jσ = 〈c†
jσ ciσ 〉 is the intersite density matrix between 

two first neighbors. It can be seen on Eq. (85) that the hopping integrals are renormalized, this renormalization depending 
not only on the spin polarization but also on the atomic lattice, as pointed out by Hirsch [62]. Consequently, the Stoner 
criterion is changed and becomes:

Ieffn0(E0
F ) > 1 (87)

with:

Ieff = U + Z J inter + Z(V + J ′
inter)

( E0
F

Zt

)2
(88)

where n0(E0
F) is the density of states per spin in the PM state at the Fermi level E0

F . This generalizes the criterion derived by 
Hirsch [63] for the particular case of a constant density of states. Thus the influence of the inter-site exchange integral J inter
is to act in favor of the FM state for any band filling, since it increases Ieff and decreases the bandwidth of the PM state (see 
Eqs. (85) and (88)). Let us now examine the effect of V and J ′

inter. At low and high band fillings, the renormalization of the 
hopping integral in the PM state tends to zero since B0 = B(n/2) vanishes. As a consequence, due to the term proportional 
to V + J ′

inter in Ieff , the PM state is more easily destabilized for low values of n since, in this case, the ratio (E0
F/Zt)2 is close 

to unity, the bottom of the band being at E = −Zt . This is also true when n approaches n = 2 for simple and body-centered 
cubic lattices and this tendency is weakened for the face-centered cubic lattice since (E0/Zt)2 = 1/9.
F
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We have generalized this analysis to an s, p, d tight-binding model [63], but keeping only the most important Coulomb 
interactions since the intersite exchange integrals are much smaller. The calculations that we have done on the electronic 
structure (band structure, densities of states, magnetic moment) of ferromagnetic Fe, Co, and Ni are in excellent agreement 
with the calculations performed by the ab-initio method. In particular, the modifications of the hopping integrals lead to a 
width of the majority spin band smaller than that of the minority spin one (see for example Fig. 6 of reference [63]). Note 
that recently an extension of DFT+U (so-called DFT+U+V) has also been proposed to include inter-site electronic interactions 
[64].

4. Conclusion

We have presented a parameterized magnetic s, p and d tight-binding model. Its initial form was introduced by 
Mehl and Papaconstantopoulos [8] to describe non-magnetic and monatomic systems. We have successfully extended it 
to multi-component systems and introduced spin polarization by adding a Stoner-like term. Spin–orbit coupling as well 
as non-collinear magnetism have also been included into our model. In practice, our method only requires a careful fit 
on bulk monatomic band structures and total energies obtained from non-magnetic ab-initio calculations to describe the 
distance dependence of the usual hopping integrals, overlap integrals, and onsite terms. A single Stoner parameter and a 
spin–orbit coupling constant per chemical element are sufficient to entirely determine the magnetic properties of a mate-
rial. It can also be further refined into a TB+U-like method by taking into account an intra-atomic Coulomb interaction with 
orbital-dependent Coulomb and exchange integrals, which can be important when dealing with low-dimensional or strongly 
asymetric systems. We finally briefly discuss inter-site Coulomb interactions leading to a so-called TB+U+V model.

Our model has been applied to a wide range of magnetic materials and atomic structures. It is able to reproduce accu-
rately the magnetic phase stability of materials as well as the magneto-crystalline anisotropy of complex systems containing 
thousands of atoms, or non-collinear magnetic configurations in quantitative agreement with ab-initio results. Let us fi-
nally mention that our TB Hamiltonian has also been incorporated into an electronic transport code based on a Landauer 
approach within a standard Green function formalism [65,66].
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