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Abstract. We describe a generic theoretical framework, denoted as the
Boltzmann-Ginzburg-Landau approach, to derive continuous equations
for the polar and/or nematic order parameters describing the large
scale behavior of assemblies of point-like active particles interacting
through polar or nematic alignment rules. Our study encompasses three
main classes of dry active systems, namely polar particles with ’ferro-
magnetic’ alignment (like the original Vicsek model), nematic particles
with nematic alignment (”active nematics”), and polar particles with
nematic alignment (”self-propelled rods”). The Boltzmann-Ginzburg-
Landau approach combines a low-density description in the form of a
Boltzmann equation, with a Ginzburg-Landau-type expansion close to
the instability threshold of the disordered state. We provide the generic
form of the continuous equations obtained for each class, and comment
on the relationships and differences with other approaches.

1 Introduction

Active matter is currently a very... active field. Under this vocable one usually has
in mind collections of “active units” able to extract and dissipate energy from their
surrounding to produce systematic and often persistent motion [1]. The far-from-
equilibrium collective dynamics of systems as diverse as vertebrate groups [2], insects
swarms [3], colonies of bacteria [4], motility assays [5,6], as well as driven granular
matter [7,8] are thus nowadays routinely modeled by collections of locally interacting
active particles.

Many such models have now been proposed and studied with various degrees of
sophistication and intended realism, but the Vicsek model stands out for both its sim-
plicity and its historical role in marking the irruption of physicists in collective motion
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studies. In 1995, Vicsek et al. considered constant-speed point particles aligning with
neighbors in the presence of noise. This driven-overdamped, first-order dynamical
rule, in spite of its minimality, bears some relevance in all situations where the fluid
surrounding the particles can be safely neglected, e.g. when the particles are moving
on a substrate acting as a momentum sink. Many of the examples listed above fall
into this category of “dry active matter”.

Even within the seemingly restrictive setting of competition between (effective)
alignment and noise, a wealth of important results has been gathered over the re-
cent years, the most generic ones being the presence of long-range correlations and
anomalously-strong “giant” number fluctuations in homogeneous, orientationally or-
dered, active phases, and the spontaneous emergence of large-scale high-density/high
order structures in the region bordering the onset of order. Furthermore, a picture
of three possible classes of models has been suggested, defined by the symmetries of
particles and alignment rules. The “polar class” is that of the original Vicsek model:
it deals with polar particles aligning ferromagnetically. In “active nematics”, parti-
cle carrying a uniaxial director move back and forth along it and align nematically.
Finally, polar particles aligning nematically can be thought of as self-propelled “rods”.

Continuous theories have been proposed for these three classes, aiming to cap-
ture the long-wavelength behavior of the slow modes of the dynamics. This program
was first carried over by Toner and Tu [9,10] who formulated a phenomenological
hydrodynamic theory for the polar class based on conservation laws and symme-
try considerations. Extension to active nematics was performed in Ref. [11] along
the same lines. While successful at describing fluctuations of homogeneous ordered
phases, this phenomenological approach is of course unable to build accurate connec-
tions to particle-based models, such as the values of the transport coefficients and,
crucially, their dependence on hydrodynamic fields. As a result, they typically miss
the density-segregated regime and its nonlinear structures.

Other approaches, rooted in a direct coarse-graining of the microscopic dynam-
ics [12,13,14,15,40,16,41], on the other hand, are able to determine most transport
coefficients and their functional dependence on the fields. The “Boltzmann-Ginzburg-
Landau” (BGL) framework, which we detail below, stems from the early Boltzmann
approach of [13] to the polar case, and combines it with the traditional Ginzburg-
Landau weakly nonlinear analysis. We argue below that it offers better overall control,
something needed since some confusion remains: the equations obtained by different
methods often differ not only in details but also in structure. For instance, the equa-
tions for rods derived by Baskaran and Marchetti from a Smoluchowski equation
contain more and different terms than those derived in the BGL framework. The
Chapman-Enskog formalism put forward in [16] for the polar case yields many more
terms than those retained in other approaches, and their effect on the dynamics,
especially at the nonlinear level, remains unclear.

Recent work has shown, we believe, that the Boltzmann-Ginzburg-Landau frame-
work is near-ideal for deriving minimal, well-behaved, nonlinear hydrodynamic de-
scriptions from Vicsek-like models, without aiming at a quantitative agreement with
what remains, after all, rather unrealistic starting points. The equations derived for
the three basic classes however have, we believe, universal value and have been shown
to account remarkably well for most features observed, including highly nonlinear
solutions and chaotic regimes.

In the following, we present a unified formulation of the BGL approach which
is applicable to generic dry active matter systems in their dilute limit and encom-
passes both ballistic propagation and positional (anisotropic) diffusion. This allows
one to treat both propagative (polar case, rods) and diffusive (active nematics) active
systems, as well as systems where non-equilibrium activity and “thermal” (random)
agitation compete.
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In Section 2, we define the generalized Vicsek model we start from and derive
the associated Boltzmann kinetic equation. In Section 3, we derive hydrodynamic
equations for the three basic classes. In Section 4, we discuss the BGL framework,
the obtained results, and compare them to other works.

2 Vicsek-like models and their Boltzmann description

In dry systems, motion takes place over a substrate or in a fluid which acts as a
momentum sink, so that overall (active particles plus fluid) momentum conservation
is not a concern and long-ranged hydrodynamic interactions between particles can
be neglected (hence the term dry). Over the elementary dissipative timescale ∆t of
the dynamics, particle motion is coupled to particle orientation, leading either to
self-propulsion or to active diffusion. From a modeling viewpoint, active particles are
represented here by point-like objects interacting locally through alignment ‘forces’ in
the presence of noise. The alignment and the noise are a simple means to model the
(possibly) complicated interactions between active particles in real systems. Due to
the strongly dissipative nature of the substrate/surrounding fluid, our point particles
follow an effective first order dynamics, both positionally and rotationally.

2.1 Definition of a generalized Vicsek model

We consider active particles moving in a two dimensional continuous space. Particles
are described by their position r, and a (unit) heading vector defined by an angle
θ ∈ [−π, π].
In a generalization of the classical VM streaming rule, particles positions are updated
according to

r(t+∆t) = r(t) + v∆t (1)

where v is a random vector drawn from a displacement distribution Φ(v, θv − θ),
with v = |v| and θv being the angle defining the orientation of v. In the absence of
chirality one has Φ(v, θv − θ) = Φ(v, θ − θv). Purely ballistic motion with speed v0

(standard VM dynamics), for instance, is recovered considering the delta distributions
Φ(v, θv − θ) = δ(v − v0)δ(θv − θ). The angular part of the distribution Φ(v, θv − θ)
is obviously 2π-periodic, but higher order symmetries may reflect further symmetries
in particles displacement. Active nematic particles, for instance, are characterized by
π-periodicity (and of course no higher order symmetries). For compactness, we shall
say that Φ is mπ-periodic, with m = 1 in the nematic case and m = 2 in the polar
case.

The heading angle θ of a given particle evolves according to the simple stochastic
dynamics,

θ′ = Ψ (p)(θ, θi1 , θi2 , . . . , θip) + η , (2)

where η is a symmetrically-distributed (zero mean) random angle (delta correlated
in time and between different particles) and θi1 , θi2 , . . . , θip are the angles of the
p interacting particles which, in metric models, are typically defined as the particles
closer than the metric interaction range r0. When no neighbours are present, particles
simply experience self-diffusion events Ψ (0)(θ) = θ + η.

Contrary to the orientational degree of freedom, the modulus of the displacement
vector v has essentially no dynamics, and is assumed to be a hard mode1 with only
fast fluctuations around its constant mean value.

1 However, recent experimental results [17] suggest this may not be the case in starling
flocks.
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2.2 Boltzmann equation

The above generic model can be described in the standard framework of kinetic the-
ory, through the introduction of a (generalized) Boltzmann equation, which describes
the time evolution of the one-particle distribution function f(r, θ, t), namely the prob-
ability to find a particle at position r at time t. We choose the normalization

1

V

∫
V

dr

∫ π

−π
dθf(r, θ, t) = ρ0 (3)

with V the system volume and ρ0 its mean density.
The Boltzmann approach relies on the molecular chaos hypothesis and the bi-

nary collision approximation, which, to a certain extent, are justifiable in low density
systems. We will comment on these approximations in section 4.

2.2.1 Positional part

To obtain the Boltzmann equation, we first consider the (generalized) “streaming”
part of the dynamics, described by Eq. (1). One has

f(r, θ, t+∆t) =

∫
dvΦ(v, θv − θ)f(r− v∆t, θ, t). (4)

On time scales much larger than ∆t, applying Itô calculus [18] to second order, one
obtains the master equation

∂f

∂t
= −〈vα〉∂αf(r, θ, t) +

1

2
〈δvαδvβ〉∆t∂α∂βf(r, θ, t) (5)

where summation over the repeated spatial indices α, β is understood and the brackets
〈. . .〉 denote an average over the distribution Φ(v, θv − θ)

〈vα〉 =

∫ ∞
0

dv

∫ π

−π
dθv vnα(θv)Φ(v, θv − θ) (6)

〈δvαδvβ〉 =

∫ ∞
0

dv

∫ π

−π
dθv δvα(θv)δvβ(θv)Φ(v, θv−θ) (7)

with n(θ) = (cos θ, sin θ)T the unit vector in the direction θ, v = vn(θ) and δvα =
vα − 〈vα〉.

For polar particles, the vector 〈v〉 points in the direction defined by θ. One can
then write 〈v〉 = v0n(θ), which defines the average speed of particles v0 = 〈v cos δθ〉
(δθ ≡ θv − θ). For nematic particles 〈v〉 = 0, and one can thus also formally write
〈v〉 = v0n(θ), with v0 = 0. The covariance term 〈δvαδvβ〉 is less straightforward to
evaluate. After some algebra we find

〈δvαδvβ〉 =
1

2
〈v2(1− cos 2δθ)〉δαβ +

(
〈v2 cos 2δθ〉 − v2

0

)
nα(θ)nβ(θ) (8)

which can be recast as the sum of an isotropic (∼ δαβ) and an anisotropic (∼ gαβ =
nαnβ − δαβ/2) term. Here δαβ is a Kronecker delta and gαβ is the nematic tensor
familiar to liquid crystal physics [19]. We write the positional part of the Boltzmann
equation as

∂f

∂t
= −v0nα∂αf +D0∆f +D1 gαβ ∂α∂βf (9)
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where ∆f is the Laplacian of f and

D0 =
1

4

(
〈v2〉 − v2

0

)
∆t (10)

D1 =
1

2

(
〈v2 cos 2δθ〉 − v2

0

)
∆t (11)

are, respectively, the isotropic and anisotropic diffusion constants.
Fluctuations in the displacement vector v, either in modulus or in heading, lead

to a finite isotropic diffusion term D0 > 0. Anisotropic diffusion (D1 6= 0), on the
other hand, is produced by anisotropies in the fluctuations of the displacement vector
v. In this regard, it is instructive to consider the simple “4 directions” case

Φ(v, δθ) = δ(v − vs)
4∑
j=1

pj δ
(
δθ − (j − 1)

π

2

)
(12)

where vs is the speed of the particles, pj ≥ 0, and
∑
j pj = 1. For illustrative reasons,

we can temporarily relax the non-chiral condition and allow p2 6= p4. One then has a
drift term with mean velocity 〈v〉 = v0n(θ + ψ0) where

v0 = vs
√

(p1 − p3)2 + (p2 − p4)2 (13)

and
ψ0 = Arg [(p1 − p3) + i(p2 − p4)] (14)

(i being the imaginary unit).
Diffusion constants can be written as D0 = (D‖ + D⊥)/2 and D1 = (D‖ −D⊥),

where

D‖ =
[
p1 + p3 − (p1 − p3)2

] v2
s

2
∆t (15)

D⊥ =
[
p2 + p4 − (p2 − p4)2

] v2
s

2
∆t

highlighting the proportionality of D1 to the difference between parallel and perpen-
dicular fluctuations (w.r.t. local heading).

2.2.2 Full Boltzmann equation

In the low density limit, interactions between more than two particles are unlikely, and
the heading angle dynamics is captured by self-diffusion events and binary collision-
like events. In self-diffusion events, the heading angle θ is changed by a random amount
η, drawn from a zero-mean, symmetric distribution Pσ(η) with standard deviation
σ. As a slight simplification, we assume that such self-diffusion events occur with
a constant rate λ (typically of the order of 1/∆t), independent of the density. In
binary collisions, the incoming angles θ1 and θ2 of the two particles are changed,
after collision, into

θ′1 = Ψ(θ1, θ2) + η1 , θ′2 = Ψ(θ2, θ1) + η2 (16)

where η1 and η2 are random variables drawn from Pσ(η). In principle, the collision
and self-diffusion noise distributions could be different. To simplify the presentation,
we shall consider in what follows that the two distributions are the same; however
calculations can be easily carried out with distinct distributions.
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The collision rate is encoded in a collision kernel K(∆ = θ2 − θ1) ≥ 0, which de-
pends only on the angle difference due to a global rotational invariance of the problem.
In metric models, where the collision probability can be modeled as a scattering pro-
cess [20], the collision kernel K(∆) inherits the same mπ-symmetries as that of the
displacement distribution Φ.

Interaction symmetries also impose constraints on the interaction rule Ψ(θ1, θ2),
which can typically be either polar or nematic depending on its periodicity with
respect to each angle θ1 and θ2. Formally, Ψ(θ1, θ2) is nπ-periodic, modulo nπ, with
respect to both arguments θ1 and θ2 independently, which defines the symmetry index
n of the interaction rule. In the following, we call “ferromagnetic” such an alignment
rule with 2π-periodicity (n = 2) and nematic an alignment rule with π-periodicity
(n = 1). The interaction rule must also be consistent with the displacement symmetry
of particles (reflected in the periodicity of the displacement distribution Φ and of
kernel K), which implies n ≤ m.

In addition, isotropy imposes that for an arbitrary rotation of angle φ,

Ψ(θ1 + φ, θ2 + φ) = Ψ(θ1, θ2) + φ [nπ]. (17)

Choosing φ = −θ1 and θ2 = θ1 +∆, one obtains

Ψ(θ1, θ1 +∆) = θ1 + Ψ(0, ∆) [nπ]. (18)

Hence the interaction rule Ψ(θ1, θ2) is parameterized by a single variable interaction
function H(∆) ≡ Ψ(0, ∆), which is nπ-periodic. We further assume that there is no
chirality in the problem and that the particle exchange symmetry is respected by
point particles collisions, implying that K(−∆) = K(∆) and H(−∆) = −H(∆) [nπ].
Due to these symmetry properties, we need only define K(∆) and H(∆) over the
positive half of their definition interval.

The full Boltzmann equation is obtained by taking into account the self-diffusion
and binary collision rules (assumed to be valid in the low density regime considered
here),2 under the molecular chaos assumption which approximates the two-particle
distribution f (2) as the product of two one-particle distributions

f (2)(r, θ1, θ2, t) ≈ f(r, θ1, t)f(r, θ2, t). (19)

Physically, this assumption means that the heading angle decorrelates between con-
secutive collisions. One then finds for the Boltzmann equation

∂f

∂t
+ v0nα∂αf = D0∆f +D1 gαβ ∂α∂βf + Idif [f ] + Icol[f ] (20)

where the self-diffusion integral Idif [f ] and the collision integral Icol[f ] are defined as

Idif [f ] = −λf(r, θ, t) + λ

∫ π

−π
dθ′
∫ ∞
−∞

dη Pσ(η)δmπ(θ′ + η − θ)f(r, θ′, t) (21)

Icol[f ] = −f(r, θ, t)

∫ π

−π
dθ′K(θ′ − θ) f(r, θ′, t) (22)

+

∫ π

−π
dθ1

∫ π

−π
dθ2

∫ ∞
−∞

dη Pσ(η)K(θ2 − θ1)f(r, θ1, t)f(r, θ2, t)

× δmπ
(
Ψ(θ1, θ2) + η − θ

)
2 Note that strictly speaking, the Boltzmann equation describes a version of the micro-

scopic model in which interactions takes place only once during a collision, when the in-
terparticle distance reaches the interaction range. No further interaction occurs during the
phase when particles are closer than the interaction range. A new interaction takes place
when particles collide again.
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where δmπ is a generalized Dirac delta imposing that the argument is equal to zero
modulo mπ.

Without any loss of generality, we can set λ = 1 (this amounts to a rescaling
of time). For convenience, we further consider the noise distribution Pσ to be Gaus-
sian. The physics described by the Boltzmann equation is determined by just three
functions encoding the microscopic dynamics: the displacement distribution Φ, the
collision kernel K and the interaction function H.

2.3 Three basic classes

A trivial case for the Boltzmann equation (20) is given by a displacement distribution
Φ with an isotropic angular part, for which one has v0 = 0, D0 ∼ d2

0/4 and D1 = 0.
This corresponds to an isotropic diffusive motion, which can be mapped onto a passive,
equilibrium system. Here displacement is strictly random and completely decoupled
from orientational dynamics.

Anisotropies in Φ, on the other hand, lead to non-equilibrium activity. Although
this does not cover all possible cases, it is relatively easy to identify the three simplest
classes depending on the symmetries of the particles displacement (mπ-periodicity
of the displacement distribution Φ) and of the interactions (nπ-periodicity of the
interaction rule Ψ). These three classes arise from the fact that the symmetry (polar
or nematic) of both the particles and the interaction rule can be varied, with however
the constraint that the interaction rule must obey at least the particle symmetry
(n ≤ m).

2.3.1 Polar particles with ferromagnetic interaction

This class, labeled as m = n = 2, is exemplified by the Vicsek model for self-propelled
particles. Displacement distributions breaking the nematic symmetry θv → θv + π
result in a nonzero drift, v0 6= 0. Such active particles are typically described as
self-propelled. In metric systems dominated by drift, K(∆) is 2π-periodic (polar sym-
metry); for an isotropic interaction range, it is given by the flux of incoming particles
through the cross-section 2r0 of a target particle [13],

K(∆) = 2v0 r0 |n(θ2)− n(θ1)| = 4v0 r0

∣∣∣∣sin ∆2
∣∣∣∣ . (23)

However, more complex forms of K(∆) (typically involving higher harmonics in ∆)
can be used to describe anisotropic interaction ranges (as the one used to model
collisions of elongated objects in a point-like framework [21]).

The interaction functionH(∆) describing ferromagnetic interactions is 2π-periodic.
For the “canonical” Vicsek model studied in [22,23], the function H(∆) is given by
H(∆) = ∆/2 and diffusion terms strictly vanish, with Φ(v, δθ) = δ(v − v0)δ2π(δθ)
implying D0 = D1 = 0. If the displacement distribution is characterized by a finite
variance, non-zero diffusion is added to drift. Isotropic diffusion is characterized by
D0 > 0 and can be interpreted as having a thermal origin. The anisotropic part of dif-
fusion, on the other hand, arises from fluctuation anisotropies and has (in the present
framework of point-like particles) a strictly non-equilibrium origin [11]. Indeed, speed
fluctuations in the presence of drift are enough to generate anisotropic diffusion even
in the absence of heading fluctuations.
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2.3.2 Polar particles with nematic interaction

This class, labeled as m = 2, n = 1, corresponds to self-propelled (v0 6= 0) “rods”,
namely self-propelled particles with an elongated shape making their alignment ne-
matic. The kernel K(∆) is 2π-periodic (to zeroth order in particle anisotropy), and
for metric systems is still given by Eq. (23), but H(∆) is now π-periodic. For the
representative model of this class, studied in [24,25], one has H(∆) = ∆

2 , and
Φ(v, δθ) = δ(v − v0)δ2π(δθ).

2.3.3 Nematic particles with nematic interaction

This case m = n = 1 correspond to the “active nematics” class. Here the displacement
distribution is π-symmetric and drift is strictly zero, with the system dominated by
finite isotropic and anisotropic (non-equilibrium) diffusion. Both K(∆) and H(∆) are
π-periodic. In the simple case of isotropic interaction range, the polar kernel (23) can
be modified to account for nematic symmetry

K(∆) = 2v0 r0

∣∣∣∣sin ∆2 + cos
∆

2

∣∣∣∣ . (24)

A representative model of this class studied in the literature [26,27] is defined by
H(∆) = ∆

2 and Φ(v, δθ) = δ(v − v0)δπ(θ).

2.4 Metric-free models

So far, we have mostly discussed models characterized by metric interaction ranges.
Motivated by recent results on the observation of starling flocks [28], and fish schools
[29], models where the interaction range is not defined by a metric distance, but
rather by a typical number of neighbors, are of interest. Metric-free versions of the
Vicsek model, where neighbours are not chosen inside a metric range but rather by
some topological criteria (for instance, making use of Voronoi tessellations) have been
introduced in [30]. From a theoretical perspective, a difficulty with such models is that
a particle always interacts with its neighbors, whatever their metric distance. In order
to make such a situation suitable for a kinetic theory approach, it has been proposed
to introduce a low interaction rate such that at each time step, two neighboring
particles (in a topological sense) have only a small probability to interact [31].

Once two particles have interacted, their velocity angles are updated according
to Eq. (16). The difference with the metric cases appears in the collision kernel K.
Here interactions cannot be described by a scattering process, and the probability
of collision does not depend on the angles of the two interacting particles. In metric
models, K is defined under the implicit assumption that the probability of collision
is proportional to the local particles density ρ(r, t) ≡

∫ π
−π dθf(r, θ, t). On the other

hand, for metric-free models, the probability of interaction is independent of the local
density and to take this crucial effect into account, one uses the framework of metric
models, but with an effective interaction kernel proportional to 1/ρ.

3 Hydrodynamic equations

In order to derive hydrodynamic equations from the Boltzmann equation, we proceed
as follows. First, we expand the Boltzmann equation in angular Fourier modes, yield-
ing an infinite hierarchy of equations for these modes. Second, we look for the first
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linearly unstable angular mode when decreasing the noise and increasing the den-
sity, and truncate the hierarchy of equations in the vicinity of this linear instability.
The continuous description thus includes the (conserved) local density field and the
relevant angular modes (typically the linearly unstable mode).

The specificity of the ”Boltzmann-Ginzburg-Landau” approach is to rely on a
systematic scaling ansatz to truncate and close the hierarchy to a set of minimal
equations.

3.1 Angular Fourier modes expansion

Here we chose to restrict ourselves to two spatial dimensions, where the use of Fourier
transforms and complex notation greatly simplifies calculations. In order to define a
framework consistent with the most general 2π-symmetry, we work with an angular
Fourier expansion defined over the 2π interval:

f(r, θ, t) =
1

2π

∞∑
k=−∞

f̂k(r, t) e−ikθ, (25)

where the Fourier coefficients f̂k are defined as

f̂k(r, t) =

∫ π

−π
dθ f(r, θ, t) eikθ. (26)

Note that f̂0(r, t) is nothing but the local density ρ(r, t). Note also that for all

k, f̂−k = f̂∗k (the star denotes the complex conjugate). An additional π-periocity
of the one particle distribution f then manifests itself by the nullity of odd Fourier

coefficients, f̂2l+1 = 0. In the following, we drop the ’hat’ over the Fourier coefficients
in order to lighten notations.

It is easy to verify that the Fourier modes fk (k ≥ 1) can be interpreted as order
parameter fields associated to specific spontaneous symmetry breakings. In particular,
f1 encodes the momentum field, and f2 the nematic tensorial field:

ρP=

(
Ref1

Imf1

)
, ρQ=

1

2

(
Ref2 Imf2

Imf2 −Ref2

)
, (27)

where P is a polarity field of components Pα = 〈nα〉l, and Q the traceless tensorial
field of components Qαβ = 〈nαnβ〉l − δαβ/2 (here 〈. . .〉l denotes a local average over
the distribution f .)

Introducing the complex derivatives ∇ = ∂x + i∂y and ∇∗ = ∂x − i∂y as well
as the Laplacian ∆ = ∇∇∗ (note that in this notation ∇2 = (∂x + i∂y)2 is not the
Laplacian), the angular Fourier expansion of the Boltzmann equation then yields the
infinite hierarchy of coupled equations

∂fk
∂t

+
v0

2
(∇fk−1 +∇∗fk+1) = −(1− Pk)fk +D0∆fk +

D1

4
(∇2fk−2 +∇∗2fk+2)

+

∞∑
q=−∞

(PkIk,q − I0,q)fqfk−q (28)

where the coefficient Ik,q is defined by the integral

Ik,q =
1

2π

∫ π

−π
d∆K(∆) e−iq∆+ikH(∆) (29)
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and Pk ≡ Pk(σ) =
∫∞
−∞ dη Pσ(η) eikη is the Fourier transform of the noise distribution

(restricted here to integer values of k). One has 0 ≤ Pk(σ) ≤ 1 and Pk(0) = 1 ∀k. For
a Gaussian noise distribution, the Fourier transform has the simple form

Pk(σ) = e−σ
2k2/2. (30)

Note also that due to the parity properties of K(∆) and H(∆), Ik,q is real.
From Eq. (28), we find in particular the continuity equation, obtained for k = 0

∂ρ

∂t
+ v0Re(∇∗f1) = D0∆ρ+

D1

2
Re(∇∗2f2). (31)

Note that this equation is valid without any further assumption, due to the fact that
the Fourier transform of the integral terms in Eq. (20) vanish for k = 0.

3.2 Linear instability of the disordered state

3.2.1 General considerations

The homogeneous disordered isotropic state f0 = ρ0, fk = 0 (k ≥ 1) is a trivial
solution of Eq. (28). Assuming spatial homogeneity, we linearize Eq. (28) around the
isotropic solution, yielding for k > 0

∂fk
∂t

= [−(1− Pk) + ωkρ0] fk (32)

where we have defined

ωk = Pk(Ik,k + Ik,0)− (I0,k + I0,0). (33)

The linear stability of fk is governed by the sign of the linear coefficient,

µk(σ, ρ0) ≡ −(1− Pk) + ωkρ0. (34)

Analyzing the full noise and density dependence of this expression for arbitrary kernel
and interaction rule is a complicated task. One can however notice that at low enough
noise Pk → 1 and the sign of µk is then given by that of ωk, since µk ≈ ωkρ0 in this
limit. By studying ωk instead of µk, one thus gets rid of the ρ0 dependence. Therefore,

the sign of ωk is controled by the zero noise limit ω
(0)
k = (Ik,k + Ik,0)− (I0,k + I0,0):

if ω
(0)
k 6= 0, there exists a finite range of σ, in the vicinity of σ = 0, where ωk has

the same sign as ω
(0)
k . Hence, the study of the quantity ω

(0)
k , which depends only on

the kernel and on the interaction rule (and not on the noise and density) should be
enough to detect an instability of fk. Of course, this simplification imposes several

limitations. First, by construction, the study of ω
(0)
k does not allow in itself for the

identification of an instability line in the parameter plane (σ, ρ0). Second, it provides
no information on which mode is the most unstable close to the instability threshold
in case several modes would be unstable in the high density and low noise limit.
However, if a single mode is found to be unstable in this limit, one is sure that this
mode should be taken as the order parameter of the transition.

An explicit expression of ω
(0)
k is given by

ω
(0)
k =

1

π

∫ π

0

d∆K(∆)
[

cos k(H(∆)−∆) + cos kH(∆)− cos k∆− 1
]
. (35)
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For any given specific kernel and interaction rule, one can compute (analytically or

numerically) the coefficients ω
(0)
k for k = 1, 2, . . . , and evaluate their sign to determine

the first unstable mode. In particular, note that in metric-free models, due to the

dependence of the effective kernel on density one has ω
(0)
k ∼ 1/ρ, resulting in a linear

coefficient µk(σ) independent of density.

3.2.2 First unstable mode: study of generic classes

In the following, we try to determine the sign of ω
(0)
1 and ω

(0)
2 as a function of the

symmetries of the kernel K(∆) and the interaction rule H(∆). The fully general
case is hard to analyze, but we are able to obtain fairly general results for each of
the three classes introduced in Sect. 2.3, under the additional assumption that the
interaction rule is indeed an alignment rule for all values of the angle difference ∆,
which translates in mathematical terms as 0 ≤ H(∆) ≤ ∆ for 0 < ∆ < nπ

2 , with
0 < H(∆) < ∆ over at least a finite subinterval of ∆. The main results can be
summarized as follows.

– Polar particles with ferromagnetic alignment

One generically finds that ω
(0)
1 > 0, while the sign of ω

(0)
2 cannot be determined

without further assumptions on the interaction rule. If H(∆) is ‘close enough’ to

the standard rule H(∆) = ∆
2 , one recovers ω

(0)
2 < 0. It is likely that close to the

transition line ω1 = 0 in the noise-density plane, one has ω2 < 0 so that only polar
order is unstable, but checking this for arbitrary rules within this class is a difficult
task. In any case, this result shows that any generic ferromagnetic aligning rule
which respects the particle exchange symmetry H(−∆) = −H(∆) is enough to
make the disordered solution unstable towards the growth of polar order.

– Polar particles with nematic alignment

This case somehow mirrors the previous one, exchanging the roles of ω
(0)
1 and

ω
(0)
2 . Under the generic assumptions of this class, one finds that ω

(0)
2 > 0, pointing

to a nematic instability for generic nematic alignment rules. The sign of ω
(0)
1 is

not completely fixed within the class. However, under the fairly natural assump-
tion that K(∆) is a non-decreasing function in [0, π2 ], as is the case of the kernel

(23), one can show that ω
(0)
1 < 0. This result remains true if K(∆) decreases only

slightly.

– Nematic particles with nematic alignment

Similarly to the case of polar particles with nematic interaction, one finds ω
(0)
2 > 0

for generic nematic alignment rules. The situation is however simpler here, since
f1 = 0 by symmetry, so that its dynamics need not be studied.

Let us emphasize that the ’contracting’ condition on H(∆), namely 0 ≤ H(∆) ≤
∆, is only a sufficient condition allowing for easier calculations, but instabilities of
the disordered state can also occur if H(∆) is not ’contracting’ everywhere. As an
illustrative example of a polar rule that is not ’contracting’ everywhere, let us consider
the function H(∆) defined as H(∆) = 2∆ for 0 < ∆ < aπ and H(∆) = ∆

2 for

aπ < ∆ < π, with 0 < a < 1. One then finds for ω
(0)
1 , assuming for simplicity that

K(∆) is a constant K0, independent of ∆,

ω
(0)
1 =

K0

π

(
4− π +

1

2
sin 2aπ + sin aπ − 4 sin

aπ

2

)
(36)
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which reduces for small a to

ω
(0)
1 ≈ K0

π

(
4− π − 3

4
a3π3

)
. (37)

For small enough a, ω
(0)
1 is thus positive, and the polar order parameter f1 is unstable

at low noise and/or high density.

3.3 Scaling ansatz close to instability threshold

Our goal is to reduce the infinite hierarchy (28) of equations to a small set of min-
imal equations for the relevant hydrodynamic fields. The number of particles being
conserved, the density ρ(r, t) is a relevant field, for which we already have derived the
evolution equation (31). Additional relevant fields correspond to broken symmetries,
and can be identified from the linear instabilities studied above. In order to obtain a
finite number of equations, one needs to truncate the infinite hierarchy of equations,
which requires some truncation criterion. In the spirit of Ginzburg-Landau equations,
we shall use a scaling ansatz close to the instability threshold of the first unstable
mode in which the order parameter fields are small quantities and, being interested
in the long-wavelength long-timescale dynamics, also time and space derivatives of
the fields are smaller than the field themselves.

In the following, we shall first review how to obtain this scaling ansatz in each of
the three basic classes outlined above, and next we will use what we have learned to
formulate a systematic scaling ansatz valid in the general case. The simplest case is
that of active nematics, so we start by considering this case.

3.3.1 Nematic particles with nematic interaction

The only relevant order parameter here is f2. We assume that close to the instability
threshold, f2 is of the order of a small parameter ε, related to the small value of the
linear coefficient µ2 > 0. The continuity equation (31), here with f1 = 0, imposes two
constraints: (i) density fluctuations δρ = ρ−ρ0 with respect to the average density ρ0

are of order ε; (ii) if spatial derivatives ∇ are of order εα, then the time derivative ∂t
scales as ε2α. Nonlinear saturation should result from the interaction between f2 and
the next non zero mode f4. Assuming that the coefficient µ4 is negative, f4 should
be slaved to f2 in the equation for f4 since |∂tf4| � |µ4f4|. Hence the linear term in
f4 should be balanced by the term in f2

2 in the equation for f4, yielding f4 ∼ ε2.
Coming back to the equation for f2, one has to balance (again in a Ginzburg-

Landau spirit) the diffusive term ∆f2 with the nonlinear term f∗2 f4, which fixes
α = 1. In summary, one has:

f2 ∼ ε, f4 ∼ ε2, ρ− ρ0 ∼ ε, ∇ ∼ ε, ∂t ∼ ε2. (38)

Balancing the linear term µ2f2 with the nonlinear term f∗1 f2 also yields µ2 ∼ ε2,
which determines the relation between ε and the distance to the instability threshold.

3.3.2 Polar particles with ferromagnetic interaction

This case is slightly more complicated, as will appear below. Now the relevant order
parameter is f1. We have to balance the following terms in the continuity equation
(31) and in the equation for f1 [see Eq. (28)]

∂tρ ∼ Re∇∗f1, ∂tf1 ∼ ∇ρ (39)
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which implies ρ− ρ0 ∼ f1 ∼ ε and the propagative scaling ∂t ∼ ∇ ∼ εα. If µ2 < 0, f2

is slaved to f1 and the linear term µ2f2 should be balanced by the nonlinear term f2
1 ,

yielding f2 ∼ ε2. Finally, balancing the nonlinear term f∗1 f2 with the diffusive term
∆f1 in the equation for f1 leads to α = 1, resulting in the following scaling relations

f1 ∼ ε, f2 ∼ ε2, ρ− ρ0 ∼ ε, ∇ ∼ ε, ∂t ∼ ε. (40)

In addition, the relation µ1f1 ∼ f∗1 f2 yields µ1 ∼ ε2.
This case is apparently quite similar to active nematics apart from the fact that

the diffusive scaling ∂t ∼ ∇2 is replaced by the propagative one ∂t ∼ ∇, but a major
difference is that the resulting scaling does not allow all “important terms” to be
balanced. This is true both in the continuity equation, where for instance ∆ρ ∼ ε3

while Re∇∗f1 ∼ ε2, and most importantly in the equation for f1, where terms like
µ1f1 and f∗1 f2 are of order ε3 while ∇ρ ∼ ε2. If one neglects the terms µ1f1 and f∗1 f2,
the resulting equation does not lead to collective order, so that one has to keep terms
of different order in the same equation to account for the relevant phenomenology.

Although this unbalance of terms may look surprising at first sight, the situation
is similar for instance to what happens in the simple Fokker-Planck equation describ-
ing a biased random walk. The drift dynamics and the diffusive dynamics occur on
different time scales, which implies that the drift and diffusive terms in the equation
are generically of different order in an expansion in the lattice spacing. In the pres-
ence of a constant drift, one can reabsorb the drift term by going to a moving frame.
In more complicated situations like the ones we are dealing with here, it is not easy
to reabsorb the terms ∇ρ and Re∇∗f1 by a simple transformation. A proper way to
deal with this issue would probably be to perform a multiscale expansion, introducing
fast and slow time variables. Such a derivation however goes beyond the scope of the
present paper.

3.3.3 Polar particles with nematic interaction

This last case shares similarities with both previous cases. The linearly unstable mode
is f2, which is thus the main order parameter of the problem, but one may also wish
to keep f1 as a relevant field because of the polarity of particles. In this case, two
different scalings can to some extent be considered as consistent. The first one starts
from the same reasoning as in the active nematics case (sect. 3.3.1), leading again
to the scaling Eq. (38). Then, to determine the scaling of f1 (which was absent from
the active nematics case), we balance the term ∂tρ with Re∇∗f1, or equivalently ∂tf2

with ∇f1, leading to f1 ∼ ε2. Further, assuming that µ3 and µ4 are negative so that
f3 and f4 are slaved to the nonlinear terms, one has f3 ∼ f1f2 and f4 ∼ f2

2 , yielding
f3 ∼ ε3 and f4 ∼ ε2. Finally, balancing the lowest order nonlinear term coupling to
higher modes, f4f

∗
2 , with the diffusive term ∆f2 in the equation for f2 leads to α = 1.

Altogether, we have

f1 ∼ ε2, f2 ∼ ε, f3 ∼ ε3, f4 ∼ ε2,
ρ− ρ0 ∼ ε, ∇ ∼ ε, ∂t ∼ ε2. (41)

This scaling ansatz then leads to equations of the same form as the active nematics
case. Under this scaling assumption, f1 is purely slaved to f2 (in the sense that ∂tf1

is a higher order term), and can eventually be eliminated from the equations.
An alternative view is to consider that the propagative nature of the particles

suggests a ballistic scaling between time and space, namely ∂t ∼ ∇. To fulfill this
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scaling in the continuity equation, one then needs to assume that f1 ∼ ε, making it a
relevant field. We thus end up with the following scaling ansatz,

f1 ∼ ε, f2 ∼ ε, f3 ∼ ε2, f4 ∼ ε2,
ρ− ρ0 ∼ ε, ∇ ∼ ε, ∂t ∼ ε (42)

leading to a richer set of closed equations, as shown in section 3.4.3.

3.3.4 Systematic general scaling ansatz

The previous examples suggest the definition of a systematic scaling ansatz valid in the
generic case. First of all, density fluctuations are of order ε, as well as all Fourier modes
up to the lowest k relevant order parameters, which we will denote as k = h and which
is typically determined by the alignment symmetry, h = 2/n (n = 1 or 2). The next
h modes then scale as ε2, and so on and so forth. Space derivatives scaling is fixed by
considering the equation for the relevant order parameter(s). Balancing the diffusion
term (of order ε1+2α) with the lowest order nonlinear terms coupling to higher modes
(always of order ε3), leads to α = 1 and∇ ∼ ε, consistently with the typical Ginzburg-
Landau scaling ansatz. Finally, the scaling of time derivatives is fixed by the symmetry
of the displacement distribution Φ, or equivalently, by the dominant propagative mode
in the continuity equation (31). Non zero drift imposes the propagative scaling ∂t ∼ ε,
while zero drift, diffusive dynamics leads to the diffusive scaling ∂t ∼ ε2.

To summarize, we have for our systematic ansatz (with h = 2/n)

ρ− ρ0 ∼ ε, fk 6=0 ∼ ε1+b(|k|−1)/hc, ∇ ∼ ε,
and (43)

∂t ∼ ε (ballistic) or ∂t ∼ ε2 (diffusive),

where b. . .c denotes the integer part.

3.4 Truncation and closed hydrodynamic equations

We now discuss the general structure of the closed equations emerging from a trun-
cation of Eqs. (28) by the general scaling ansatz (43).

Independently of the truncation scheme, the dynamics of the density field fluctu-
ations is given by the continuity equation (31), which couples δρ to the polar (drift)
and the nematic (anisotropic diffusion) order parameter fields. The isotropic diffusion
term ∼ ∆ρ, in the absence of anisotropic diffusion, can be interpreted as of pure
thermal origin; otherwise, it carries a contribution from nematic activity. Note that
in ‘pure’ self-propelled models, like the original VM, where displacement fluctuations
are ignored, diffusion contributions (both isotropic and anisotropic) are absent.

Since additional symmetries in the system, and thus in the one-particle distri-
bution f manifest themselves by some zero Fourier coefficients, one can check from
Eq. (31) that global symmetries of higher than nematic order results in both f1 = 0
and f2 = 0, completely decoupling density from order parameter dynamics. This sug-
gests that, at least in two spatial dimensions, no out-of-equilibrium dynamics may
emerge from active particles with global symmetries higher than the nematic one, so
that m = 1, 2 are the only relevant symmetries.

We now turn our attention to the order parameter equations of order k ≥ 1. They
couple the mode fk to terms of order k ± 1, 2 via linear spatial derivatives, and to
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terms of all orders via the nonlinear coupling term

Ck =

∞∑
q=−∞

(PkIk,q − I0,q)fqfk−q . (44)

Terms of order q = 0, k in the sum can be singled out to yield the density dependent
linear coefficient

µk = −(1− Pk) + ωkρ (45)

which controls the local stability of the disordered phase3. In the following we assume
that all linear coefficients µk are negative except mode h = 2/n, associated to the
alignment symmetry and relevant order parameter, which for high density and/or low
noise may turn positive, µh > 0.

We have seen above that the first non-linear terms appearing in the relevant order
parameter equation are typically of order ε3. As a result, we expand all equations to
order ε3. This results in a well-controled truncation close to the instability threshold,
in such a way that equations for additional modes which are not retained as order
parameters provide closure relations for the order parameter equations.

The relevant order parameter equation couples fh to higher order terms via order
ε3 terms of Ch of the kind fh+jf

∗
j , with j = 1, . . . , h. Higher order terms, in turn, are

slaved to order ε modes since µk < 0 and |∂tfk| � |µkfk|. In particular, for k = 2h
(the first higher non-zero mode when m = n) one has to order ε2 (cubic terms may
be ignored since inserting them in the nonlinear coupling term in the equation for fh
would result in terms ∼ ε4)

f2h ≈ −
1

µ2h
(P2hI2h,h − I0,h) f2

h − δh,1
v0

2
∇f1 (46)

with the gradient term appearing only for the polar case h = 1. Substituting the slaved
mode f2h into the k = h equation one obtains the saturating cubic term −ξhfh|fh|2
with the coefficient

ξh =
P2hI2h,h − I0,h

µ2h
[Ph(Ih,2h + Ih,−h)− I0,2h − I0,−h] (47)

being typically positive in the parameter region where µh > 0.
If m = n the hydrodynamic equations have a relatively simple structure, consisting

of the continuity equation (31) and the relevant order parameter equation of the form

∂fh
∂t

=
[
µh(σ, ρ)− ξh|fh|2

]
fh +∇(. . . ) +∇∇(. . . ) (48)

where ∇ and ∇∇ indicate generic spatial derivatives (respectively convective and
diffusive) of the density ρ and order parameter fh fields. ∇ terms appear only for
m = 1 (convective terms are forbidden in a nematic m = 2 or higher symmetry)
and, due to the substitution of the slaved higher order term (46), are both linear and
nonlinear. On the other hand, ∇∇ terms are linear to order ε3. Obviously, all terms
in Eq. (48) need to respect the rotational invariance of the system.

The familiar Ginzburg-Landau term
[
µh(σ, ρ)− ξh|fh|2

]
fh appearing in Eq. (48)

locally describes the spontaneous breaking of a continuous symmetry, with the ordered
solution

|fh| =
√
µh
ξh
. (49)

3 Note that, crucially, density dependence cancels out for metric-free systems.
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On the other hand, if n > m, the order parameter fields k < h are not zero
by symmetry, and by our scaling ansatz (43) their dynamics may be relevant. Their
equations need to be added to the hydrodynamic description. Moreover, the modes fj
with j = 1, . . . , h are now generically coupled to the enslaved modes fh+j . Substituting
the latter in the former, generates a larger number of nonlinear terms, which now also
include different combinations of the fields without spatial derivatives. However, the
local symmetry breaking phenomenon is still described by the Ginzburg-Landau term
appearing in the fh equation.

For completeness, in the following, we derive the simplest well-behaved equations
describing the physics at hand for the three basic classes introduced above.

3.4.1 Nematic particles with nematic interactions

In the case of nematic particles, equations simplify since v0 = 0 and f1 = 0. The
scaling of the different fields is given by Eq. (38). First of all, the continuity equation
(31) reads in this case, given all non-zero terms are of order ε3,

∂ρ

∂t
= D0∆ρ+

D1

2
Re(∇∗2f2). (50)

The equation for f2 reads, to order ε3,

∂f2

∂t
= µ2f2 +D0∆f2 +

D1

4
∇2ρ+ [P2(I2,4 + I2,−2)− I0,4 − I0,−2]f∗2 f4. (51)

Similarly, the equation for f4 up to order ε3 is given by

∂f4

∂t
= µ4f4 +

D1

4
∇2f2 + (P4I4,2 − I0,2)f2

2 . (52)

We recall that the coefficients µk are defined in Eq. (45). Assuming µ4 < 0, which
has to be checked case by case (it is indeed true for the representative member of
the class with H(∆) = ∆

2 [27]), f4 can be slaved to f2. This slaving procedure is
indeed consistent with scaling considerations. Since f4 appears in Eq. (51) only in
the product f∗2 f4, only terms up to order ε2 need to be kept in the expression of f4,
leading to

f4 = − 1

µ4
(P4I4,2 − I0,2)f2

2 . (53)

Injecting this expression of f4 into Eq. (51), one finds the following closed equation
for f2,

∂f2

∂t
= µ2f2 + ν∆f2 + χ∇2ρ− ξ|f2|2f2, (54)

where the coefficients ν, χ and ξ are defined as

ν = D0, χ =
D1

4
(55)

ξ =
P4I4,2−I0,2

µ4
[P2(I2,4+I2,−2)−I0,4−I0,−2].

Note that here, all terms allowed by symmetry4 up to order ε3 have been generated.

4 It is useful to specify how the ”symmetry” of terms is characterized. In the same way as
for vectors and tensors, it describes how a given quantity transforms under a rotation of the
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3.4.2 Polar particles with ferromagnetic interactions

For polar particles, the scaling of the different quantities is given in Eq. (40). Retaining
terms up to order ε3, the continuity equation reads

∂ρ

∂t
+ v0Re(∇∗f1) = D0∆ρ. (56)

Truncating the equation for f1 to order ε3 yields

∂f1

∂t
+
v0

2
(∇ρ+∇∗f2) = µ1f1 +D0∆f1 +

D1

4
∇2f∗1 (57)

+ [P1(I1,−1 + I1,2)− I0,−1 − I0,2]f∗1 f2.

Since f2 appears only in the terms ∇∗f2 and f∗1 f2, only terms of order up to ε2 need
to be retained in the expansion of f2, yielding

v0

2
∇f1 = µ2f2 + (P2I2,1 − I0,1)f2

1 . (58)

Note that the time derivative has been dropped for being of order ε3. As already
outlined in the active nematics case, this procedure is however only consistent when
the linear coefficient µ2 is negative, so that f2 can be slaved to f1.

From Eq. (58), f2 can be expressed as a function of f1 and ∇f1. Injecting the
resulting expression for f2 in Eq. (57), one eventually finds

∂f1

∂t
= −v0

2
∇ρ+ µ1f1 − ξ|f1|2f1 + ν∆f1 + χ∇2f∗1 + κ1f1∇∗f1 + κ2f

∗
1∇f1 (59)

where the coefficients are given by

ν = D0 +
v2

0

4 |µ2|
, χ =

D1

4

κ1 =
v0

µ2
(P2I2,1 − I0,1) (60)

κ2 =
v0

2µ2
[P1(I1,−1 + I1,2)− I0,−1 − I0,2]

ξ =
P2I2,1−I0,1

µ2
[P1(I1,−1+I1,2)−I0,−1−I0,2]

the coefficient µ2 being given by Eq. (45) with k = 2.
Note that contrary to the case of particles with continuous time ballistic motion

along their polarity vector, as studied in [13,31], the presence of diffusion at the
microscopic level of the dynamics generates an anisotropic diffusion term ∇2f∗1 . Only
the term f1∇f∗1 , that would be allowed by symmetry, is not present here, and can
thus not be obtained from point-like particles with (purely local) binary interactions.

frame axis. Under a rotation of angle θ0 of the frame axis, the distribution f(θ) is changed
into f(θ − θ0), so that in turn the Fourier coefficients fk are changed into eikθ0fk. More
generally, if a quantity is multiplied by a factor eisθ0 under a rotation of axis of angle θ0, we
shall call ’spin’ the integer s. Hence fk has a spin s = k (note that s can be negative). As
expected, the polar order parameter f1 has spin 1 and maps to a vector, while the nematic
order parameter has spin 2 and maps to a tensor. The derivation operator ∇ has a spin
s = 1, and complex conjugation reverses the sign of s. The total spin of a product of factors
is the sum of the spin of each factor. In the evolution equation for fk, the only terms allowed
by symmetry are thus those with a total spin equal to k.
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3.4.3 Polar particles with nematic interactions

For polar particles with nematic interactions (“rods”), the scaling of the different
quantities is given in Eq. (42). From this scaling, one sees that all terms in the
continuity equation (31) have to be kept. After truncation to order ε3, the equation
for f1 reads, using Eq. (28),

∂f1

∂t
+
v0

2
(∇ρ+∇∗f2) = µ1f1 +D0∆f1 + χ∇2f∗1

+ [P1(I1,−1 + I1,2)− I0,−1 − I0,2]f∗1 f2 + [P1(I1,−2 + I1,3)− I0,−2 − I0,3]f∗2 f3(61)

with χ = D1

4 as above. Similarly, one finds for f2

∂f2

∂t
+
v0

2
(∇f1 +∇∗f3) = µ2f2 +D0∆f2 + χ∇2ρ+ (P2I2,1 − I0,1)f2

1

+ [P2(I2,−1 + I2,3)− I0,−1 − I0,3]f∗1 f3 + [P2(I2,−2 + I2,4)− I0,−2 − I0,4]f∗2 f4 .(62)

One also needs to consider the equations for f3 and f4. Since f3 and f4 appear
combined with f1, f2 or derivative operators, we only need to expand these two
modes to order ε2, leading to

f3 =
v0

2µ3
∇f2−

1

µ3
[P3(I3,1+I3,2)−I0,1−I0,2]f1f2 (63)

f4 = − 1

µ4
(P4I4,2 − I0,2)f2

2 . (64)

Note that, here again, enslaving f3 and f4 to f1 and f2 is only consistent if µ3 and
µ4 are negative. Injecting these expressions of f3 and f4 in Eqs. (61) and (62) for f1

and f2, we end up with

∂f1

∂t
= −v0

2
(∇ρ+∇∗f2) + µ1f1 + β|f2|2f1 + ζf∗1 f2 (65)

+ν1∆f1 + χ∇2f∗1 + γf∗2∇f2

∂f2

∂t
= −v0

2
∇f1 + (µ2 − ξ|f2|2)f2 + ωf2

1 + τ |f1|2f2

+ν2∆f2 + χ∇2ρ+ κ1f
∗
1∇f2 + κ2∇∗(f1f2) (66)
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where the coefficients are given by

γ =
v0

2µ3
[P1(I1,−2 + I1,3)− I0,−2 − I0,3]

β = −2γ

v0
[P3(I3,1 + I3,2)− I0,1 − I0,2]

ζ = P1(I1,−1 + I1,2)− I0,−1 − I0,2

ν1 = D0, χ =
D1

4

ν2 = D0 +
v2

0

4 |µ3|
, ω = P2I2,1 − I0,1 (67)

κ1 =
v0

2µ3
[P2(I2,−1 + I2,3)− I0,−1 − I0,3]

κ2 =
v0

2µ3
[P3(I3,1 + I3,2)− I0,1 − I0,2]

ξ =
P4I4,2−I0,2

µ4
[P2(I2,−2+I2,4)−I0,−2−I0,4]

τ = −2κ1

v0
[P3(I3,1 + I3,2)− I0,1 − I0,2] .

Although Eqs. (65) and (66) already contain many terms, not all terms allowed by
symmetry are present, especially in the equation for f1. Note however that if one
further enslaves f1 to f2, new terms will be generated in the equation for f2.

4 Discussion

4.1 ρ-dependence

In Section 3, we derived a number of transport coefficients appearing in the hydro-
dynamic equations for the three main classes of models. Although this was not made
explicit, most of the coefficients we have derived actually depend on the local density
ρ, through the linear coefficients µk. A natural question is then that of the quali-
tative influence of this dependence of the transport coefficients on the density field.
Indeed, it would be more convenient to have constant coefficients, depending only on
microscopic parameters of the model and on the mean density. As we will see below,
the ρ dependence of the linear term governing the instability of the order parameter
is at the origin of the linear instability of the homogeneous ordered state ultimately
leading to the emergence of the inhomogeneous solutions in the transition region. It
is thus essential and must be kept. The density-dependence of the other linear terms
µkfk, in contrast, is only felt indirectly in the definition of the coefficients of the other
terms. It is tempting to expand them around the mean density ρ0, setting ρ = ρ0 +δρ.
For terms of order ε3, corrections in δρ of the coefficients lead to terms of order ε4 or
higher, and can thus a priori be discarded.

The question however becomes more subtle if one wishes to assess the qualita-
tive validity of the derived hydrodynamic equations further away from the threshold.
Strictly speaking, these equations are of course not expected to be valid away from
the threshold, which could in a sense close the debate. Yet, the example of Ginzburg-
Landau equations shows that in many cases the qualitative behavior away from the
linear instability threshold remains well described by the obtained equations. Un-
fortunately, there is no well-defined general procedure to discriminate between dif-
ferent formulations of the same terms, if these formulations become equivalent close
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Fig. 1. Phase diagram of the homogeneous solutions of the hydrodynamic equations for
polar particles with ferromagnetic interactions in the noise-density plane, in the absence
of microscopic positional diffusion (D0 = D1 = 0), and without the ρ dependence of the
transport coefficients of nonlinear terms. The full black line σt indicates the stability limit of
the homogeneous disordered state (upper white area). The lower white area corresponds to
the stability domain of the homogeneous ordered state, delimited from above by the line σs
and from below by the line σu. In colored regions, the homogeneous ordered state is unstable.
The color codes for the angle between the most unstable wavevector and the direction of
order. The line σ|| indicates the limit above which longitudinal (i.e., with wavevector parallel
to order) perturbations are unstable (the upper limit being σt). The line σ⊥ indicates the
limit below which transverse (i.e., with wavevector perpendicular to order) perturbations
are unstable.

to threshold. This is the case in particular for the density-expansion of the trans-
port coefficients, and one has to rely on numerical integrations of the hydrodynamic
equations to check the effect of the ρ dependence of the different terms.

For the coefficient ξ of the cubic term, some theoretical justifications of the ne-
cessity to keep the full ρ-dependence of ξ (as opposed to a dependence on the mean
density ρ0) close to threshold can also be provided. For instance, the role of the
density-dependence of ξ appears in the dynamical system analysis of the shape of
non-linear patterns arising for polar particles interacting ferromagnetically [33]. Note
also that the dependence of ξ over the average density ρ0, that we keep when doing
the expansion of the density field around the mean density value, is crucial for the

value f
(0)
k /ρ = ρ−1

√
µk/ξ of the polarity (in the homogeneous phase) to increase

with mean density and to saturate to a finite value at large mean density. Finally,
when studying the linear instability of the homogeneous ordered state, one finds that
the term in dξ/dρ (obtained from a density expansion of ξ(ρ)) is not negligible (with
respect to other terms that have to be kept) in the computation of the growth rates,
and may lead to significant difference in the linear stability diagrams. We illustrate
this in the next section.
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Fig. 2. Phase diagram of the linear stability analysis of the homogeneous solutions to the
hydrodynamic equations with and without the ρ-dependence of the transport coefficients of
the nonlinear terms (see text). Left column: polar particles aligning nematically, without
and with ρ dependence (top and bottom panel respectively). Top right: nematic particles
aligning nematically (no discernible influence of ρ dependence). Bottom right: polar particle
aligning ferromagnetically with ρ dependence (compare with Fig. 1). No positional diffusion
(D0 = D1 = 0). Same colormap, same legends as in Fig. 1.

4.2 Linear stability of homogeneous solutions

Denoting as fh the relevant order parameter, either polar (h = 1) or nematic (h = 2),
an ordered solution generically exists in the region where the disordered state becomes
unstable (µh > 0). We denote this line σt(ρ) in the basic noise-density phase diagram
in which we performed a systematic study of the linear instability of the homogeneous
ordered solution, not restricting ourselves to modes longitudinal or transversal to
order. Results below illustrate this analysis.

In previous studies of the cases without positional diffusion, which in the case of
polar particles yield slightly simpler equations (anisotropic diffusion terms like ∇2f∗1
are absent due to a continuous time microscopic dynamics), a generic qualitative
scenario was found in all cases, irrespective of the symmetries of the particles and of
the interactions [13,25,27]. We first illustrate it in the case of polar particles aligning
ferromagnetically where only the ρ dependence of the linear term has been kept
(Fig. 1).

4.2.1 General scenario

Close to the line σt corresponding to the onset of order, the homogeneous ordered state
is unstable with respect to long-wavelength perturbations, leading to the formation
of non-linear patterns (see next section). This instability is generically related to
the density-dependence of the linear coefficient µh, the latter generically being an
increasing function of the local density ρ (only in the metric-free case, where µh



22 Will be inserted by the editor

becomes independent of the density, does one recover a stable homogeneous phase
close to the transition line [31]).

This instability region bordering the line σt(ρ) closes at the line σs(ρ) below which
the homogeneous ordered solution is linearly stable (Fig. 1). However, there exists a
second instability region below a line σu(ρ). Preliminary studies of the stability of
the Boltzmann equation in the case of ferromagnetic interactions indicate that this
second instability region does not exist at the Boltzmann level. We thus conclude
that this second instability region is an artifact of the truncation procedure.

For the unstable region between σt and σs, the unstable modes have long wave-
lengths and are oriented mostly along order, but not perfectly so. The line marking
the limit of stability of purely longitudinal modes is marked in magenta. The second,
”spurious” instability region below σu has large growth rates and unstable wavevec-
tors mostly transversal to order, although again not perfectly so (the line marking
the onset of purely transversal unstable modes is marked in green inside this region).

For the case of particles aligning nematically, the unstable modes are almost
transversal in the first region. The second region does not exist for active nemat-
ics, while its most unstable mode is at k = 0 for the self-propelled rods case (Fig. 2,
top panels).

4.2.2 Influence of the ρ-dependence of transport coefficients

We now illustrate the influence of keeping the local density dependence in the trans-
port coefficients, and notably in the cubic nonlinear term. For polar particles aligning
ferromagnetically, this widens the region of stability of the homogeneous ordered
state, and reduces the extent of the second instability region (compare Fig. 1 and
Fig. 2, bottom right).

For the self-propelled rods case, keeping the ρ dependence has a dramatic effect:
the second region now ”invades” the first one near the origin, becoming dominant
(compare top left and bottom left panels in Fig. 2).

For active nematics, the ρ dependence has a very weak effect, not discernable on
the scale of Fig. 2 (see top right panel).

4.2.3 Influence of positional diffusion

We finally illustrate the influence of positional diffusion (coefficients D0 and D1) on
the linear stability diagram. As expected, the general effect of diffusion is to stabilize
the homogeneous ordered solution. The extent of the first instability region (between
lines σt and σs) varies only weakly, whereas the second, spurious, region can be made
very small under the influence of strong diffusion. We now illustrate these findings
for the case of polar particles aligning ferromagnetically.

A positive D0 shrinks a bit the first instability region while making its unstable
modes more clearly longitudinal (see Fig. 3, top right, where D1 = 0). For any fixed
positive D0, the extent of the second region varies greatly with D1: it can be made
smaller for positive D1 values (Fig. 3, bottom left), and larger for negative D1 values
(Fig. 3, top left). We find that the size of the second region, as measured by the
location of the point ρzero

u where σu intersects the horizontal axis, actually scales
exactly like 1/D0 (Fig. 3, bottom right).

4.3 Inhomogeneous solutions and dynamics

The linear stability analysis recalled above revealed, for metric models, the existence
of a region bordering the linear onset of order inside which the homogeneous ordered
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Fig. 3. Phase diagram of the linear stability analysis of the homogeneous solutions to
the hydrodynamic equations for the case of polar particles aligning ferromagnetically in the
presence of positional diffusion: D1 = −0.5 (top left), D1 = 0 (top right), D1 = 0.5 (bottom
left); D0 = 0.25 in all three cases, same colormap as in Fig. 1. Bottom right: intersection
ρzerou of the line σu with the horizontal axis, as a function of D0 for different cases (see
legends), showing that ρzerou ∝ 1/D0.

solution is unstable. Our hydrodynamic equations then exhibit nonlinear, inhomoge-
neous, phase-separated solutions, which are faithful to those observed in microscopic
simulations. In our opinion, this makes a strong case in favor of our approach, which
appears to yield an overall very good qualitative agreement with relevant active par-
ticle models.

The inhomogeneous solutions take different form depending on the case consid-
ered: in the polar case, the hydrodynamic equations typically show trains of propa-
gating “bands”, as explained recently in [13,33] and observed in microscopic models.
The stability and selection mechanisms at work in these smectic arrangements is
still under study. In the active nematics and self-propelled rods cases, a dominating
solution was observed and found analytically, which takes the form of a stationary
ordered domain elongated along nematic order, and occupying a well-defined fraction
of space [27,25]. For active nematics, it was recently shown that this band solution
is actually itself always linearly unstable, and leads to a large-scale spatiotemporally
chaotic regime [32].

Even though the phase-separated solutions take different forms depending on the
case considered, we find that they exist, and are observed, in a parameter region
wider than the linear instability domain of the homogeneous state. This important
observation immediately implies that there exist two coexistence regions (in the sense
that two different solutions may exist for the same values of the parameters) at the
level of the deterministic hydrodynamic equations. In particular the nonlinear phase-
separated solutions coexist with the disordered phase, which explains the discontin-
uous character of the transition, and points to the “irrelevance” of linear stability
thresholds in the presence of fluctuations. Indeed, they are much like spinodal lines
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in usual phase separation phenomena, i.e. they are not the transition points observed
in systems with fluctuations.

4.4 On the Boltzmann-Ginzburg-Landau approximation

4.4.1 Boltzmann equation

The Boltzmann approach is based on the binary collision approximation and the
molecular chaos hypothesis. Under these conditions, the Boltzmann equation (20)
faithfully describes our microscopic dynamics on timescales τB much larger than the
microscopic dissipative scale ∆t and the collision timescale τcoll, and on lengthscales
`B much larger than the different microscopic scales, namely the elementary displace-
ment d0 = vs∆t (where vs is the characteristic speed of particles), the interaction
range r0, and the typical distance between particles ` ∼ 1/

√
ρ0. Metric-free models

are briefly discussed in Section 2.4, so that here we will only discuss metric models.
In metric models, binary collisions dominate the dynamics when (i) the interac-

tion range r0 is much smaller then the mean particle interdistance ` ∼ 1/
√
ρ0 (in

two spatial dimensions) and (ii) the intercollision time τfree is much larger than the
collision timescale τcoll.

In self-propelled systems, dominated by drift, one has

τ
(b)
free ≈

1

v0
√
ρ0

(68)

while in purely diffusive systems we get

τ
(d)
free ≈

1

Dρ0
(69)

where v0 is the drift speed and D a positional diffusion constant (either isotropic
or anisotropic). The collision time, on the other hand, is given by the time needed
by two interacting particles to separate; since interacting particles are aligned up to
some noise, it is always diffusion dominated

τcoll ≈
r2
0

D
. (70)

In general the condition τcoll � τfree (as well as r0 � 1/
√
ρ0) can be fulfilled at low

densities in both ballistic and diffusive systems, thus justifying the binary collision
approximation in drift-diffusion dry active systems.

It should be noted, however, that in a ballistic system like the original VM, po-
sitional diffusion is strictly zero, and interacting particles may be only separated by
angular noise, with an effective diffusion constant

Deff ∼
d2

0η
2

∆t
. (71)

Since in metric systems the critical noise amplitude ηc corresponding to the onset
of order decreases with density, this casts some doubts on the applicability range of
the binary collision approximation for the original VM in the absence of positional
diffusion. In particular, using a mean-field estimate [23] of the critical noise ηc ∼
d0
√
ρ0, Eq. (71) becomes

τ
(VM)
coll ≈ ∆t r2

0

d4
0ρ0

(72)
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so that, with v0 = d0/∆t, the condition τcoll � τfree would imply

r2
0

d3
0

√
ρ0
� 1 (73)

to be satisfied simultaneously with condition (i)

r0 �
1
√
ρ0
. (74)

Eqs. (73)-(74) can only be satisfied simultaneously if (r0/d0)3 � 1, so that one expects
that for the classic VM, as well as for other ballistic models, higher-order collisions
will become relevant even at low densities for moderate to low speeds.

The molecular chaos hypothesis, which allows one to decompose many-particle
distributions into products of single-particle ones, on the other hand, is a rather deli-
cate issue. It was investigated in Refs. [34], using a binary collision VM, through the
chaos propagation property: if the latter holds, initially decorrelated particles will
stay decorrelated at future times, and thus the molecular chaos assumption will be
justified. The analysis of [34] is however inconclusive. While at the kinetic timescale
chaos propagation holds in the thermodynamic limit, longer time behavior remains
out of reach of exact methods (while preliminary numerical simulations seem to indi-
cate a violation of the molecular chaos hypothesis). See also [38] for related discussions
using a numerical analysis.

4.4.2 Convergence issues in the hydrodynamic expansion

The second approximation involved in the BGL approach is the small ε expansion
used to close the hierarchy (28) in order to derive hydrodynamic equations. While
this expansion is ‘exact’ at the onset of order, one can wonder whether the obtained
hydrodynamic equations remain valid away from the transition line, in particular for
what regards linear stability results.

For polar particles, in the explicit examples where the stability analysis of the
ordered phase has been performed in detail, we have found an additional instability
deeper in the ordered phase, further away from the linear instability threshold of the
disordered phase (see sect. 4.2.1) [31,25]. Such an additional instability was however
not found for active nematics [27].

This instability is considered as spurious in the sense that it is not observed in
the corresponding microscopic models. It typically occurs with very large growth
rates, raising doubts as to its physical meaning. It is likely to be an artifact of the
truncation procedure. Though we have not performed a detailed analysis of all three
possible classes, results obtained for polar particles with ferromagnetic interactions
indicate that this spurious instability is not present at the Boltzmann level [35].

The convergence of the ε-expansion of the Boltzmann equation at a finite distance
from the instability threshold is a complicated issue. A first guess is that going to
higher orders in the ε-expansion could improve the description further away from
threshold, e.g. by removing, or at least shrinking, the region of the additional, “spu-
rious” instability.

We have derived the hydrodynamic equations up to order 7 in ε for the canonical
case of polar particles aligning ferromagnetically (Vicsek model) [36]. It is relatively
easy to see that only odd orders in ε need to be considered, and that even orders yield
intrinsically unbalanced equations. For example, at order 4, one keeps the equation
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for f2, while f3 is slaved and expressed as a function of f1 and f2, yielding equations
of the form:

∂tf1 = a1f1 + a21f2f
∗
1 (75)

∂tf2 = b2f2 + b11f
2
1 + b211f2|f1|2 (76)

(for clarity, terms involving space derivatives are not shown). The last term of the
second equation is the only new, fourth-order one. It can be shown to render the
homogeneous ordered solution linearly unstable everywhere.

At order 5, we obtain 3 equations of the form:

∂tf1 = a1f1 + a21f2f
∗
1 + a23f

∗
2 f3 (77)

∂tf2 = b2f2 + b11f
2
1 + b211f2|f1|2 (78)

∂tf3 = c3f3 + c12f1f2 + c113|f1|2f3 + c122f
∗
1 f

2
2 (79)

in which several order 5 terms appear. The homogeneous ordered solution now has
to be determined numerically. We find that it exists only for a limited range of noise
values, whereas no such limitation occurs at order 3. Thus order 5 is “worse” than
order 3.

At order 7, we now have 5 equations of the form:

∂tf1 = a1f1 + a21f2f
∗
1 + a23f

∗
2 f3 + a34f

∗
3 f4 (80)

∂tf2 = b2f2 + b11f
2
1 + b211f2|f1|2 + b24f

∗
2 f4 (81)

∂tf3 = c3f3 + c12f1f2 + c14f
∗
1 f4 + c25f

∗
2 f5 (82)

∂tf4 = d4f4 + d22f
2
2 + d13f1f3 + d15f

∗
1 f5 (83)

∂tf5 = e5f5 + e14f1f4 + e23f2f3 + e115|f1|2f5 + e133f
∗
1 f

2
3 + e124f

∗
1 f2f4 . (84)

Now the homogeneous solution exists over the whole noise range again. The maximal
value of polarization (|f1|/ρ) reached at zero noise is higher than at order 3, which
is an improvement. However, the linear stability study of the homogeneous ordered
solution shows that it is linearly unstable everywhere: even at order 7, the situation
is less satisfactory than at order 3.

Even though these results would need to be completed by a similar study per-
formed on the altogether slightly better-behaved case of active nematics, they indicate
already that the BGL approach only makes sense at the usual, third-order, Ginzburg-
Landau level. Exploring higher orders seems to only reveal that an angular Fourier
expansion is not suited far from the onset of order, calling for more sophisticated
expansion schemes, possibly along the lines of the “reductive perturbation theory”
approach introduced by Chen et al. [37].

4.4.3 Extended Particles

Our framework here has been restricted to interactions that respect the particle ex-
change symmetry. However, it has been pointed out that ‘more realistic’ extended
particles may show a more complicated collision dynamics [39]. In particular, col-
lisions may locally violate the particle exchange symmetry which, in a Boltzmann
approach, can only be restored in a statistical sense. In particular, Ref. [39] computes
the effective Boltzmann level collision dynamics for two different extended particles
models: self-propelled hard rods and a bead-spring model. In both cases, it is claimed
that binary collisions do not lead to a positive linear coefficient µ1 for the polar order
parameter. Contrary to the conclusions of Ref. [39], we do not find these results sig-
nificative to the point of constituting ”a critical assessment” of the BGL approach,
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as there is no indication that the two microscopic models studied give rise to polar
order on the mesoscopic scale. On the other hand, our discussion in Sec. 3.2.2 clearly
shows that at sufficiently low noise, any interaction rule being indeed an alignment
rule results, at the Boltzmann level, in the linear instability of the disordered solution
towards the order parameter associated to the interaction symmetry.

4.5 Comparison with other approaches

Other statistical physics approaches have also been proposed to derive hydrodynamic
equations for active particles, mainly the mean-field Fokker-Planck equation approach
[14,40,41,42] and the Enskog-like approach [16].

4.5.1 Mean-field Fokker-Planck equation

In the mean-field Fokker-Planck equation case, one starts from interacting active
particles described by a set of Langevin equations, from which a N -body Fokker-
Planck equation is derived. This N -body equation is then treated in a mean-field
way, meaning that the force experienced by a given particle is replaced by a local
statistical average of the force. The N -body linear Fokker-Planck equation is then
turned into a one-body nonlinear Fokker-Planck equation, under an assumption of
factorization of the N -body distribution as a product of one-body distributions [14,
40,41,42]. If the active particles are described by underdamped Langevin equations,
some approximation scheme is further needed to eliminate the velocity degrees of
freedom, then reducing the mean-field Fokker-Planck to a Smoluchowski equation
[14].

Although the starting points are significantly different, the resulting Smoluchowski
(or Fokker-Planck in the overdamped case) equation bears some formal similarities
with the Boltzmann equation. It also describes the evolution of the one-body distri-
bution f(r, θ, t), and takes the form of a bilinear integral equation. As a result, the
angular Fourier expansion takes a form close to that obtained from the Boltzmann
equation, and the same approximation scheme can be used close to the instability
threshold of the disordered solution (though most papers following this approach use
truncations at some lower order than we do in the BGL approach).

For point-like self-propelled polar particles with overdamped Langevin dynamics
and ferromagnetic interactions, the resulting hydrodynamic equations are very similar
to the ones obtained from the Boltzmann equation [42].

For rods, the hydrodynamic equations derived from a Smoluchowski equation
in [14] are different from the ones we obtain here for polar particles with nematic
interactions, for two main reasons. First, in [14], only f1 and f2 have been retained in
the truncation, while we have kept modes up to f4, and used f3 and f4, once enslaved
to f1 and f2, to close the hierarchy of equations. We thus have more terms (and in
particular more non-linear terms, including the cubic term saturating the instability
of the state f2 = 0) in our equations. Second, the spatial extension of the rods has
been explicitly taken into account in [14], leading to the emergence of new terms
coupling the polar order parameter f1 to its gradient, in the equation for f1, while we
have considered point-like particles in our Boltzmann equation. Additional terms are
thus obtained in [14] with respect to our results. More generally, the Fokker-Planck
(or Smoluchowski) equations constitute a well-suited framework to include position-
and/or orientation-dependent forces, as done in [14] for extended rods, or in [43] for
forces depending on the relative orientation of particles. Although we have not done
it explicitly up to now, such extensions should also be possible in the context of the
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Boltzmann equation, and are expected to yield the same type of additional terms into
the resulting hydrodynamic equations.

On the other hand, one of the drawbacks of the Fokker-Planck approach is its
sensitivity to some details of the dynamics. Indeed, in the case of point-like self-
propelled particles with overdamped Langevin dynamics considered in [42], it can
be seen rather easily that normalizing or not the local force (exerted by neighboring
particles) by the number of neighbors results in significantly different macroscopic
dynamics at the level of the hydrodynamic equations, since the linear term in the
equation for the polar order parameter becomes independent of the density if the
force is normalized –recall that, in this case, the basic instability of the homogeneous
ordered state is suppressed (as in metric-free models).

4.5.2 Enskog equation approach

An alternative method has been proposed, based on an Enskog-like equation, in or-
der to deal with multiple collisions in the semi-dilute regime [16]. Its main advantage,
with respect to the Boltzmann approach, is that it is not limited to binary interac-
tions; all multiple interactions are taken into account. However, it also relies, like the
other methods, on a factorization assumption of the N -body distribution fonction,
or in other words, on a ’molecular chaos’ assumption. From the Enskog equation, an
angular Fourier expansion can also be performed. In principle, an ε-expansion close to
the instability threshold could be performed, in the same way as for the Boltzmann
equation. The derivation made in [16] is presented in a slightly different way. In par-
ticular the truncation and closure performed leads to hydrodynamic equations with
many more (higher-order) terms than those retained in the BGL approach. At the
level of the linear stability of the homogeneous solutions, these equations yield more
quantitatively accurate thresholds than BGL, as compared to numerical simulations
of the VM. This is satisfactory in principle, but in view of the generic presence of
the long-wavelength instability of the ordered state leading to bands, and of the exis-
tence and stability domains of these nonlinear solutions extending beyond the linear
thresholds, the transition lines observed in the presence of fluctuations (and firstly
in the microscopic VM) cannot be the linear thresholds found in the (deterministic)
hydrodynamic equations. Moreover, at the nonlinear level, the many terms retained
in [16] seem to lead to unbounded solutions: the obtained hydrodynamic equations
are ill-behaved.

5 Conclusion

In this paper, we have presented a generic Boltzmann-Ginzburg-Landau framework
allowing us to derive, in a controlled way, continuous equations describing the large-
scale behavior of assemblies of point-like active particles interacting through polar or
nematic alignment rules. Also varying the symmetry properties (polar or nematic) of
the interactions between particles, we have identified three main classes of dry active
systems, and derived for each class the corresponding continuous equations for the
relevant order parameters. One of the main advantages of our approach is that the
truncation and closure of the infinite hierarchy is well-controlled, using standard scal-
ing arguments close to the linear instability threshold of the disordered state. As often
the case for Ginzburg-Landau-type equations, the resulting minimal equations actu-
ally also describe, in a qualitative manner, the behavior of the system further away
from the linear instability threshold, when nonlinear structures appear and possibly
have a complicated spatiotemporal dynamics. We thus believe that on the one hand,
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our truncation method to derive continuous hydrodynamic equations is quite general,
and can be applied to other starting points like Fokker-Planck or Smoluchowski equa-
tions [42,43], and on the other hand that the resulting equations are, for each class,
the minimal well-behaved equations accounting for the relevant phenomenology.
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