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ABSTRACT

The polarization modes of the cosmological microwave background are an invaluable source of information for cosmology and a
unique window to probe the energy scale of inflation. Extracting this information from microwave surveys requires distinguishing
between foreground emissions and the cosmological signal, which means solving a component separation problem. Component sep-
aration techniques have been widely studied for the recovery of cosmic microwave background (CMB) temperature anisotropies,
but very rarely for the polarization modes. In this case, most component separation techniques make use of second-order statistics
to distinguish between the various components. More recent methods, which instead emphasize the sparsity of the components in
the wavelet domain, have been shown to provide low-foreground, full-sky estimates of the CMB temperature anisotropies. Building
on sparsity, we here introduce a new component separation technique dubbed the polarized generalized morphological component
analysis (PolGMCA), which refines previous work to specifically work on the estimation of the polarized CMB maps: i) it benefits
from a recently introduced sparsity-based mechanism to cope with partially correlated components; ii) it builds upon estimator aggre-
gation techniques to further yield a better noise contamination/non-Gaussian foreground residual trade-off. The PolGMCA algorithm
is evaluated on simulations of full-sky polarized microwave sky simulations using the Planck Sky Model (PSM). The simulations
show that the proposed method achieves a precise recovery of the CMB map in polarization with low-noise and foreground contam-
ination residuals. It provides improvements over standard methods, especially on the Galactic center, where estimating the CMB is
challenging.

Key words. methods: data analysis – cosmic background radiation – methods: statistical

1. Introduction

The cosmic microwave background (CMB) provides a snap-
shot of the state of the Universe at the time of recombina-
tion. It therefore carries invaluable information about the in-
fancy of the Universe and its evolution to the current state.
After a series of full-sky measurements of the microwave sky
(COBE, Bennett et al. 1996; WMAP, Bennett 2013), Planck
(Planck Collaboration XII 2014) has recently released an accu-
rate estimate of the CMB temperature map. Studying the sta-
tistical properties of the CMB temperature maps already pro-
vides a huge amount of information about the primordial state
of the Universe. Additionally, the CMB map is a radiation with
linear polarization that is described by the three polarization
modes T, E, and B (Hu & White 1997); these three modes are
observed through the Stokes parameters T,Q, and U. The in-
formation carried by CMB polarization is crucial for i) improv-
ing the estimation of the cosmological parameters and break-
ing some of their degeneracies; and it ii) provides privileged
access to probe the energy scale of inflation through estimat-
ing the scalar-to-tensor ratio r and the tensor spectral index nt.
Indeed, inflationary models predict the presence of tensor pertur-
bations, which would be traced by the presence of specific CMB
B-modes.

From the first full-sky observations of CMB temper-
ature anisotropies by the Cosmic Background Explorer
(COBE – see Bennett et al. 1996) to the Planck 2013 results
(Planck Collaboration XII 2014), much attention has been paid
to the estimation of temperature anisotropies by component

separation and little to the polarization signal. In contrast to tem-
perature, polarization anisotropies are more challenging to mea-
sure as their level is about five orders of magnitude lower than
the temperature anisotropy level.

Polarization anisotropies have first been measured by bal-
loon (Masi et al. 2006) and ground-based experiments such
as Cosmic Background Imager (CBI; Readhead 2004). The
Wilkinson Microwave Anisotropy Probe (WMAP) experiments
more recently provided full-sky observations of the polariza-
tion anisotropies (Bennett 2013). The BICEP2 (Background
Imaging of Cosmic Extragalactic Polarization) collaboration ini-
tially announced the detection of inflationary B-modes and a
measurement of the scale-to-tensor ratio r = 0.2, which would
be slightly different from the Planck 2013 and 2015 results
(Planck Collaboration XIII 2015), which derived a stronger con-
straint r < 0.11 (95% confidence interval). If this discrepancy
could have found various cosmological explanations, a polar-
ized foregrounds origin was soon advocated (see Flauger et al.
2014; Mortonson & Seljak 2014). This point was later supported
by a study of dust polarization made available by the Planck
consortium (Planck Collaboration Int. XXXII 2014) and joint
BICEP2/Planck investigations (BICEP2/Keck 2015). This con-
troversy highlights the central role played by foreground clean-
ing and component separation to provide an accurate estimation
of polarized CMB maps.

Component separation methods have lately mainly fo-
cused on temperature analysis (Leach et al. 2008; Basak
& Delabrouille 2012b; Bobin et al. 2013a,b, 2014b). Most
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component separation techniques rely on a linear mixture model.
According to this model, each observation of the sky xi at wave-
length νi is modeled as the linear combination of n components
{s j} j=1,...,n:

∀i = 1, . . . ,M; xi =
∑

j=1,...,n

ai js j + ni, (1)

where ai j stands for the contribution of component s j in obser-
vation xi and ni models instrumental noise. In this model, the
data are assumed to be at the same resolution. This model can be
more conveniently recast in matrix form:

X = AS + N, (2)

where each observation xi is stored in the ith row of the obser-
vation matrix X, S is the source matrix, A is the mixing ma-
trix, and N models instrumental noise. From a physical point of
view, the jth column of A, which we denote by a j, contains the
electromagnetic spectrum of the source s j.

Better known as blind source separation (BSS) in statistics
and signal processing (Comon & Jutten 2010), component sepa-
ration aims at estimating the mixing matrix A and the sources S
from the knowledge of the observations X. This is a classical
ill-posed inverse problem, which admits an infinite number of
solutions. Distinguishing physically relevant components from
erroneous estimates furthermore requires imposing some desired
properties on the components to be retrieved. In the framework
of BSS, component separation methods generally enforce some
diversity or contrast to distinguish between distinct components.
To the best of our knowledge, all standard component separation
methods for polarized CMB observations build upon second-
order statistics (Eriksen et al. 2004; Bennett 2013; Kim et al.
2009; Aumont & Macías-Pérez 2007).

Lately, building on different grounds, a novel component
separation technique, the local-generalized morphological com-
ponent analysis (LGMCA), see Bobin et al. (2013a), has been
introduced. In contrast to standard component separation tech-
niques, the LGMCA algorithm relies on the sparse representa-
tion of Galactic foregrounds, which makes it more sensitive to
the higher-order statistics of these components. Using GMCA, a
joint WMAP-Planck high-quality full-sky CMB map has been
reconstructed. Additionally, this map has been shown to be
free of detectable thermal Sunyaev-Zel’Dovich (SZ) emission
(Sunyaev & Zeldovich 1970) and to have only low foreground
contamination (Bobin et al. 2014b). The resulting CMB temper-
ature map has been used to analyze the large-scale anomalies of
the CMB radiation. Thanks to its low level of foregrounds, mask-
ing of the Galactic center was not necessary for CMB large-scale
studies (Rassat et al. 2014; Ben-David & Kovetz 2014; Aiola
et al. 2015; Lanusse et al. 2014).

Contributions

Building upon the concept of sparse signal representation, we
here introduce an extension of the LGMCA algorithm to com-
pute an accurate estimate of the CMB polarized maps with anim-
proved noise/non-Gaussian foreground contamination trade-off.
In contrast to the processing of CMB temperature data, estimat-
ing the CMB polarization anisotropies is an even more challeng-
ing task since the polarization signal is weak and dominated by
Galactic foregrounds and noise contamination. For that purpose,
the proposed method, dubbed polarized GMCA (PolGMCA),
builds upon two new key mechanisms: i) it profits from re-
cent advances in BSS that allow for the efficient separation of

sparse and partially correlated sources; and ii) it builds upon
map estimator aggregation, which helps providing a better bal-
ance between foreground residuals and noise contamination. The
PolGMCA algorithm is detailed in Sect. 2. Numerical experi-
ments based on the Planck Sky Model are described in Sect. 3,
which demonstrate the ability of the proposed method to achieve
good separation performances on the Galactic center as well as
at large scales.

2. Polarized sparse component separation

2.1. Component separation for polarized data

Modeling of polarized data: polarized fields can be described
in several ways. They are generally measured by the Stokes pa-
rameters Q and U, which can further be expanded in the har-
monic domain as follows:

Q ± iU =
∑
`,m
±2a`m ±2Y`m, (3)

where ±2Y`m stands for the spin-2 spherical harmonics basis
functions.

Extending the concept of the wavelet representation for po-
larization vector fields on the sphere has been proposed in Starck
et al. (2009) based on the celebrated “a trous” algorithm (Starck
et al. 2006). Building a wavelet transform for Q/U polarization
fields then consist of building J successive smooth approxima-
tions of the Q and U maps via a convolution with dyadically
rescaled versions of the so-called scaling function h:

∀ j = 0, . . . , J; cQ
j = h j ? Q (4)

cU
j = h j ? U, (5)

where J stands for the total number of scales. Following Starck
et al. (2006), the scaling function is built so as to verify isotropy
in the pixel domain. The wavelet coefficients at scale j are then
defined as the difference of two consecutive approximations:

∀ j = 0, . . . , J; wQ
j+1 = cQ

j − cQ
j+1 (6)

wU
j+1 = cU

j − cU
j+1. (7)

In practice, these operations reduce to simple multiplications of
the Q and U map spherical harmonics coefficients with the scal-
ing filters {h j} j=0,...,J .

According to the à trous algorithm, the Q and U maps can
be reconstructed by a very simple summation:

Q = cQ
J +

J∑
j=1

wQ
j (8)

U = cU
J +

J∑
j=1

wU
j . (9)

The same polarization field can equivalently be described as E
and B polarization modes (Zaldarriaga 1998):

E =
∑
`,m

aE
`mY`m =

∑
`,m

−
1
2

(2a`m + −2a`m) (10)

B =
∑
`,m

aB
`mY`m =

∑
`,m

1
2

i (2a`m − −2a`m) , (11)

where Y`m stands for the standard 0-spin spherical harmonics
functions. The E and B fields are therefore usual real scalar
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fields. The expansions of the E and B fields in the harmonics
domain is related to the Q and U fields as follows:

aE
`m = −

2a`m + −2a`m
2

(12)

aB
`m = i 2a`m − −2a`m

2
· (13)

The E and B fields are therefore derived from the Q and U fields
by simply applying twice the spin-lowering operator to Q + iU
and the spin-raising operator to Q − iU. Following (Starck et al.
2009), extending the isotropic and undecimated wavelet trans-
form for E/B polarization fields by constructing formal E and
B maps as described in Eq. (10) from the Q and U maps and
then applying the isotropic undecimated wavelet transform for
each E and B scalar-valued maps independently.

Standard approaches for polarized CMB map estimation:
component separation on a polarization vector field can be per-
formed either in the Q/U coordinate system or the E/B field.
So far, most standard methods use a description of the compo-
nents based on second-order statistics. In that respect, the CMB
is more naturally described by its E/B power spectra and cross-
spectra in the E and B fields. Therefore, the following advanced
methods perform in the E/B fields:

– Internal linear combination – ILC: this component separa-
tion technique is well known in the astrophysics commu-
nity (Eriksen et al. 2004; Bennett 2013; Kim et al. 2009).
Essentially, it estimates a CMB map, whether in tempera-
ture or polarization, with minimum variance. The Needlet-
ILC (Basak & Delabrouille 2012a) performs in the wavelet
domain; it has been applied to the WMAP data and more
recently to the Planck PR2 data (Planck Collaboration IX
2015) to provide estimates of the CMB polarized maps. In
statistics, this estimation procedure is well known as the best
linear unbiased estimator, or BLUE.

– Spectral matching ICA – SMICA: this component separation
method enforces the statistical independence of the sought-
after components – for more details, see (Cardoso et al. 2002;
Delabrouille et al. 2003). SMICA assumes that each com-
ponent, whether the CMB or foreground components, can
be modeled as a random Gaussian random field with un-
known power spectrum. In this setting, the components are
estimated by enforcing the contrast between the spectrum of
the components in the harmonic domain. An extension of
SMICA to polarized data has been proposed in Aumont &
Macías-Pérez (2007).

The main limitations of these two component separation tech-
niques are twofold: i) galactic and extragalactic foregrounds can
hardly be modeled as stationary and homogeneous signals; and
ii) they both rely on second-order statistics to separate the com-
ponents, which is not well-suited to model Galactic foregrounds:
they are non-stationary and non-Gaussian signals in nature.

More recently, based on the concept of sparsity, we intro-
duced a new component separation technique called GMCA
(Bobin et al. 2013a). This algorithm is based on the sparse mod-
eling of the foregrounds in the wavelet domain. In contrast to
the CMB field, the Galactic foregrounds are better described in
the data domain, and therefore in the Q and U maps. We there-
fore prefer using the GMCA algorithm on the observed Q and
U maps.

In early 2015, the Planck consortium released the first esti-
mates of the polarized CMB maps that have been computed from

the Planck PR2 observations (Planck Collaboration IX 2015).
The proposed four maps have been calculated using extensions
to polarization of the component separation methods used to pro-
cess CMB temperature maps Planck Collaboration XII (2014).
These methods include the following:

– Commander (Eriksen et al. 2008): this is a Bayesian para-
metric estimation method that relies on an explicit param-
eterized modeling of the sky, which includes CMB, syn-
chrotron, and thermal dust emissions.

– SEVEM (Fernández-Cobos et al. 2012): this is a template-
fitting method that performs in the wavelet domain. For
this purpose, templates are derived from differences of in-
put Planck observations and are used as templates in a
foreground-cleaning procedure.

– NILC: a version of the Needlet ILC algorithm has been
used to derived polarized CMB maps. More precisely, the
NILC estimates ILC weights in 13 wavelet bands (see
Planck Collaboration IX 2015).

– SMICA: a special version of the SMICA algorithm (Cardoso
et al. 2002; Delabrouille et al. 2003) has been used to process
the Planck PR2 data. In contrast to the original SMICA al-
gorithm, spectral parameters are fitted for ` ≤ 50. For larger
multipoles, it is a harmonic ILC.

Component separation precisely amounts to estimating a mixing
matrix A, as described in Eq. (2), or equivalently unmixing coef-
ficients for ILC-based methods. As in Aumont & Macías-Pérez
(2007), Basak & Delabrouille (2012a), these parameters can be
estimated jointly for both the E and B fields, which makes per-
fect sense for the CMB, but not necessarily for foreground emis-
sions. Indeed, allowing for different mixing matrices for the Q/U
or E/B allows for more degrees of freedom to distinguish be-
tween complex contaminants, which are not perfectly described
by the linear mixture model of 2. Below, we propose performing
the GMCA algorithm independently in the Q and U fields.

2.2. Sparse component separation with GMCA

In contrast to standard component separation methods in cos-
mology, GMCA (Bobin et al. 2013a) relies on a different sepa-
ration principle: it profits from the naturally sparse distribution
of astrophysical components in the wavelet domain. More pre-
cisely, the so-called sparsity property means that most of the
energy content of the components is concentrated in a few co-
efficients. This property is also shared by the CMB since its
power spectrum decays rapidly (i.e., `2 at large scale and `3 at
small scales). This entails that the energy of the CMB will be
mainly concentrated in a small number of wavelet coefficients.
Components of distinct physical origins are very likely to ex-
hibit different sparsity patterns. The GMCA algorithm assumes
that the components are unlikely to share similar high-amplitude
wavelet coefficients. Enforcing the sparsity of components in the
wavelet domain has indeed been shown to be an efficient sepa-
ration procedure to achieve a clean, low-foreground estimate of
the CMB temperature anisotropies (Bobin et al. 2013a, 2014b).

Let Φ denotes a wavelet transform. We assume that each
source si can be sparsely represented in Φ; s j = α jΦ. The data
X can be written as

X = AαΦ + N, (14)

where α is an Ns × T matrix whose rows are α j. The GMCA
algorithm estimates a mixing matrix A that leads to the sparsest
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sources S. In practice, this is achieved by solving the following
optimization problem

min
A,α

1
2
‖X − AαΦ‖2F + λ ‖α‖0 . (15)

The expression ‖α‖0 stands for `0 pseudo-norm of α, which
counts the number of non-zero entries of α. The term ‖X‖F =√(

trace(XT X)
)

stands for the Frobenius norm.
The problem in Eq. (15) is solved by using an iterative algo-

rithm that optimizes sequentially on the sources S = αΦ and the
mixing matrix A. According to the model in Eq. (2), the GMCA
algorithm needs to be applied on data that share the same reso-
lution. For that purpose, the Planck frequency channels are first
downgraded to a common resolution before applying GMCA; a
high-resolution CMB map estimate is then carried out by per-
forming GMCA on various subsets of the Planck data. We re-
fer to Bobin et al. (2013a) for more details about the GMCA
algorithm.

Accounting for the variability of the mixture model : in polar-
ization as well as in temperature, most foreground emissions,
such as the thermal dust and synchrotron emissions, have an
electromagnetic spectrum that varies across the sky. From a
mathematical point of view, this causes the mixing matrix A
to vary across pixels. To account for the heterogeneity of the
mixture, the GMCA algorithm is applied on sky patches in
each wavelet band. These different steps gave birth to the local-
GMCA (LGMCA) algorithm, which has been described in detail
in Bobin et al. (2013a).

The LGMCA algorithm has been implemented and evaluated
on simulated Planck data in Bobin et al. (2013a). It has been ap-
plied to the Planck PR1 data, for which it led to the estimation of
a low-foreground full-sky map of the CMB anisotropies Bobin
et al. (2014b).

2.3. Sparse reconstruction of the CMB polarization maps

Separating non-Gaussian and partially correlated compo-
nents. Whether in polarization or in temperature, foreground
removal is an extremely challenging task, particularly in two
respects.

– In the Galactic center: the foregrounds in Galactic regions
are by far the contaminants with the largest emissivity. The
rapid variation of the foreground emission laws in the vicin-
ity of the Galactic center makes component separation stren-
uous, in particular for synchrotron and thermal dust emis-
sions. This has been addressed in Bobin et al. (2013a) by
localizing the mixture model in the framework of GMCA.
However, distinct components are also prone to share some
similarities in the Galactic region: different components have
high emissivity in the same regions. Subsequently, distinct
components will exhibit partial correlations in these ar-
eas. This phenomenon makes separating them much more
difficult.

– At large scales: in this case – typically for ` < 100 – only few
spherical harmonics are observed. As a consequence, even
theoretically decorrelated components exhibit some experi-
mental correlation, commonly dubbed chance-correlations.
The underlying components can therefore be regarded as
partially correlated signals.

In both cases, the presence of partial correlations between the
components will strongly hamper the performances of compo-
nent separation methods and weaken their ability to efficiently
remove Galactic foregrounds from the cosmological signal. An
extension of the GMCA algorithm (Bobin et al. 2014a) has re-
cently been introduced in the signal-processing community to
specifically solve the separation of partially correlated sources.
Its main assumption is that partial correlation between compo-
nents will mainly impact a subset of the sparse decomposition
coefficients. The rationale of this algorithm relies on a weighting
scheme that aims at penalizing correlated entries, which are the
most detrimental for separation. This algorithm first means that
some diagonal weight matrix Q (Bobin et al. 2014a) needs to be
defined, and secondly that the minimization problem in Eq. (15)
needs to be substituted by

min
A,α

1
2

Trace
{
(X − AαΦ)Q(X − AαΦ)T

}
+ λ ‖α‖0 . (16)

Bobin et al. (2014a) have shown that partially correlated sam-
ples are related to non-sparse columns of the source matrix S.
Based on this relationship, it adaptively updates the weight ma-
trix with respect to the estimated sources during the iterations of
the algorithm.

This algorithm has been shown to be very effective in distin-
guishing partially correlated sources. For more details, we refer
to Bobin et al. (2014a).

Improving the noise/foreground residual trade-off by combin-
ing estimators. Whether in temperature or in polarization, an
accurate estimate of CMB anisotropies requires solving some-
what antagonistic signal-processing problems:

– Low noise contamination: polarized CMB data are highly
dominated by instrumental noise, by several orders of mag-
nitude. An effective CMB recovery method should therefore
be able to deliver polarized CMB map estimates with low
noise contamination. Instrumental noise in Planck-like data
is generally approximated by a stationary Gaussian random
field. Hence methods based on second-order statistics (SOS)
in the harmonic domain, such as harmonic ILC (HILC, Kim
et al. 2009), are very efficient at small scales where noise
dominates.

– Low foreground residuals: foregrounds, and especially
Galactic foregrounds, are non-Gaussian and non-stationary
signals. As a consequence, component separation methods
that rely on SOS, and particularly in the harmonic domain,
are poorly suited to accurately remove foreground com-
ponents. Bobin et al. (2013a) emphasized that the use of
sparsity in spatially localized signal representations, such
as wavelets, provides an effective strategy to estimate a
low-foreground CMB map.

These two points underline that component separation for CMB
polarization data differs from the case of temperature where the
noise is not as high as at the level of foreground components.
Neither SOS-based nor sparsity-based techniques are perfect
candidates to estimate low-foreground and low-noise CMB po-
larization maps. Subsequently, we instead propose to combine
estimates delivered by SOS-based and sparsity-based compo-
nent separation methods. This aggregation of complementary
estimators is inspired by advances in statistics and estimation
theory (Yang 2004).

For the sake of generality, we assume that we have access
to P unbiased estimators of the CMB {ci}i=1,...,P, which basically
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differ from each other by their noise contamination and level
of foreground residuals. The goal of estimator aggregation is to
find some weights {πi}i=1,...,P so that the combined estimator is
expressed as a linear combination of these estimators:

ĉ =

P∑
i=1

πici. (17)

The resulting estimator is guaranteed to be unbiased as
long as the weights add up to unity:

∑P
i=1 πi = 1.

Furthermore, the weights are estimated by minimizing some cost
function R(π1, . . . , πP):

min
{πi}i=1,...,P

R(π1, . . . , πP) s.t.
P∑

i=1

πi = 1, (18)

which enforces some desired properties for the combined
estimator.

Essentially, the proposed estimator aggregation procedure
will amount to combining SOS-based CMB map estimates, de-
livered by the HILC, with sparsity-based estimates provided by
the LGMCA algorithm. The LGMCA algorithm is well-suited
for accurately removing foreground residuals, but does not pro-
vide a low-noise estimate. In that respect, estimator combina-
tion is mainly implemented so as to minimize the impact of in-
strumental noise. Since noise is best modeled in the harmonic
domain with second-order statistics, it is therefore natural to
combine LGMCA-based estimates with HILC by seeking the
weights {πi}i=1,...,P that minimize the variance of the estimated
CMB in the harmonic domain.

In practice, a combined estimator in the harmonic domain is
derived by decomposing the harmonic domain in overlapping
bins of multipoles of fixed width ∆, which are indexed by l.
A set of weights {πi,l}i=1,...,P is then estimated in each band of
multipoles. Consequently, the aggregation of the P estimators
{ci}i=1,...,P is carried out by solving the following minimization
problem in each band l of multipoles:

min
{πi,l}i=1,...,P

∥∥∥∥∥∥∥∑i

πi,lbi,lci,l

∥∥∥∥∥∥∥
2

`2

s.t.
P∑

i=1

πi,l = 1, (19)

where ‖ . ‖`2 denotes the Euclidean norm, the term ci,l stands for
the lth harmonic multipole of the ith CMB map, and the val-
ues bi,l are the beam of different maps at the lth harmonic multi-
pole. This estimator is better known as the best linear unbiased
estimator (BLUE) in the statistics community or the ILC in as-
trophysics. The different weights are then recombined to provide
values for each multipole `.

Interestingly, the LGMCA algorithm amounts to applying
the GMCA algorithm on various subsets of observations. This
yields various estimates of the CMB maps with various spa-
tial resolutions: estimated maps with the lowest resolution are
computed from a larger number of observations and vice versa.
We have pointed out in Bobin et al. (2014b) that applying com-
ponent separation to a large number of observations allows for
more degrees of freedom to better provide a clean estimate of the
CMB map. The current version of the LGMCA algorithm per-
forms by using a single CMB map estimate in each wavelet band.
From the perspective of estimator aggregation, the LGMCA al-
gorithm already combines complementary CMB maps, but in a
rather suboptimal way. Again, the framework of estimator ag-
gregation can help providing a more efficient combination of
GMCA-based estimators with a better balance between noise

Weights estimated for estimator aggregation
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Fig. 1. Weights computed by estimator aggregation.

contamination (i.e., using maps with different spatial resolu-
tions) and foreground residual (i.e., using maps obtained from
various subsets of data).

The PolGMCA algorithm therefore i) derives five estimates
of the CMB map from various subsets of observations and with
different spatial resolutions (see Sect. 3.1); ii) combines these
sparsity-based estimates with the HILC estimates; and iii) it pro-
vides an accurate estimation of large-scale multipoles without
being highly sensitive to chance-correlations. Conversely, since
the estimator aggregation procedure is based on second-order
statistics, it may be prone to chance-correlations at large scales.
The aggregation weights are therefore set to zero for ` < 100
with the exception of the LGMCA low-resolution estimator.

To illustrate how estimator aggregation performs, Fig. 1 dis-
plays the values of the aggregation weights for each of the five
Q-map estimates computed with LGMCA and the HILC map.
These results were obtained by performing the PolGMCA algo-
rithm on the Planck-like PSM simulations described in Sect. 3.

It is very important to note that, as expected, the contribu-
tion of each of the maps delivered by the LGMCA algorithm
directly depends on their resolution: low-resolution maps have
significant weights at large scales and vice versa. Moreover,
HILC mainly contributes to the final estimate at small scales
(` > 700) and is predominant at the smallest scales (` > 1500)
where noise is very likely the predominant source of contamina-
tion. The global evolution of these weights clearly corroborates
the original motivation of estimator aggregation: i) give more
weight to sparsity-based estimators when non-Gaussian fore-
grounds are likely the most prominent; and ii) give more weight
to the SOS-based estimator when instrumental noise is the main
contamination.

3. Numerical experiments

3.1. Simulations and experimental protocol

Simulations By the end of 2015, the Planck satellite will pro-
vide the finest observations of the polarized sky in the frequency
range 30–353 GHz. We naturally propose evaluating the pro-
posed component separation method with simulated polarized
Planck data. For that purpose, we will make use of simulations
generated with the Planck Sky Model (PSM)1 in Delabrouille
et al. (2013).

1 For more details about the PSM, we refer to the PSM website:
http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.html
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Table 1. Parameters of the local and multiscale mixture model used in LGMCA and PolGMCA.

Band # Common resolution # sources Nominal patch size
1 33 arcmin 7 N/A
2 24 arcmin 6 64
3 14 arcmin 5 64
4 10 arcmin 4 32
5 5 arcmin 3 16

PSM simulations. The PSM includes the best of the current
knowledge of most polarized astrophysical signals and fore-
grounds, as well as simulated instrumental noise and beams. In
detail, the simulations were obtained using the publicly available
PSM version 1.7.8 with the following details.

– Frequency channels: the simulated data are composed
of the seven LFI and HFI channels at frequencies of
33, 44, 70, 100, 143, 217, and 353 GHz. The frequency-
dependent beams are perfect isotropic Gaussian PSFs with
a FWHM ranging from 5 arcmin at 217 and 353 GHz to
33 arcmin at 33 GHz. These simulations do not account for
the effect of the scanning strategy adopted by full-sky sur-
veys; indeed, these survey strategies are similar to producing
non-isotropic and spatially varying beams, which are more
elongated in the scanning directions.

– Instrumental noise: the sky coverage is not uniform and ho-
mogeneous, since some areas are more frequently observed
than others. The noise statistics (i.e., noise variance map for
each frequency channel) are assumed to be known accurately
and consistent of the Planck noise variance maps. The simu-
lations account for the inhomogeneity of the noise statistics,
but not for its correlation along the scanning direction. Noise
is assumed to be uncorrelated.

– Cosmic microwave background: the CMB map is a corre-
lated random Gaussian realization entirely characterized by
its T, E, and B power spectrum and T-E cross-spectrum. In
the simulations, the CMB intensity and polarization power
spectra and cross-spectra are generated according to the
Λ-CDM model derived from the Planck 2013 results. The
simulated CMB is Gaussian, and no non-Gaussianity (e.g.,
lensing, ISW, fNL) has been added. The simulated polarized
CMB maps are free of B mode.

– Point sources: infrared and radio sources were added based
on existing catalogs at that time. In the PSM, polarized point
sources are attributed a random polarization degree and uni-
formly random polarization angle.

The Galactic polarization models, which are composed of the
dust and synchrotron emissions. These emissions are based on
the PSM mamd2008 model Miville-Deschênes et al. (2008) that
is parameterized by the intrinsic polarization fraction. By de-
fault, it is set to 15% to match the WMAP data.

More precisely,

– Polarized dust emissions: the polarization of Galactic ther-
mal dust emission is due to the partial alignment of elon-
gated dust grains with the Galactic magnetic field. It is
poorly known, however; the current PSM simulations are
an extrapolation from the thermal dust intensity. The emis-
sion of the thermal dust is modeled by a graybody emission
law. PSM simulations have been shown to agree well with
the Archeops observations of polarized dust (Ponthieu et al.
2005) and WMAP 94 GHz measurements.

– Polarized synchrotron emission: the polarized synchrotron
emission is obtained by extrapolating WMAP 23 GHz Q
and U maps using the same power-law model as for the tem-
perature map. This approach has been shown to be consis-
tent with the WMAP polarized synchrotron maps (Gold et al.
2011).

Comparison protocol. So far, the component separation meth-
ods used to estimate CMB polarization maps are limited to
ILC-based techniques (Basak & Delabrouille 2012a) and an ex-
tension of SMICA to polarization (Aumont & Macías-Pérez
2007). In contrast to LGMCA, none of these codes is publicly
available. The recent analysis of the Planck PR1 temperature
data (Planck Collaboration XII 2014) revealed that ILC-based
component separation techniques, and especially their harmonic
variant, provided some of the best results in the noise-dominant
regime: the SMICA map has been obtained by applying har-
monic ILC (HILC) for ` > 1500. Hence, it is very likely
that similar results will hold true in the case of polarization.
Consequently, this section focuses on comparing the CMB map
derived from HILC (described in Appendix A) and the new
PolGMCA method, which combines HILC with the updated
version of the LGMCA algorithm.

The LGMCA algorithm requires defining three parameters:
i) the number of sources is set to be equal to the number of chan-
nels; ii) the common resolution; and iii) the nominal patch size.
All these parameters are given in Table 1 and are chosen as in
Bobin et al. (2014b).

3.2. CMB map estimates

Figures 2 and 3 display the estimated CMB Q and U maps,
which were computed with HILC and PolGMCA. The maps
were smoothed at a resolution of one degree so as to better high-
light the large-scale residual features and remove high-frequency
noise, thus facilitating visual inspection. These figures first show
that the proposed PolGMCA algorithm achieves a much better
cleaning of the Galactic center; the HILC map clearly contains
significant large-scale foreground residuals, which are mainly
limited to the Galactic center. However, while showing fewer
residuals in the Galactic center, the PolGMCA map seems to
be slightly more contaminated by instrumental noise, as seen
from the apparently stronger background fluctuations. To a lesser
extent, the same conclusions can be drawn from the estimated
U map features in Fig. 3.

Figure 4 shows the total foreground residuals that contam-
inate the estimated CMB Q maps. These maps were obtained
by applying the unmixing parameters to the input foregrounds.
These maps were furthermore smoothed to a common resolution
of one degree. Both HILC and PolGMCA visually yield low lev-
els of foreground residuals at large Galactic latitudes. As noted
earlier in this paragraph, the PolGMCA algorithm achieves a

A92, page 6 of 12



J. Bobin et al.: Polarized CMB recovery with sparse component separation

Fig. 2. Estimated CMB Q maps at 1 deg resolution: Input CMB (left), HILC (middle), and PolGMCA (right).

Fig. 3. Estimated CMB U maps at 1 deg resolution: Input CMB (left), HILC (middle), and PolGMCA (right).

Fig. 4. Foreground residual in the estimated Q maps at 1 deg resolution: input CMB (left), HILC (middle), and PolGMCA (right).

significantly better foreground cleaning in the vicinity of the
Galactic center.

Total foreground residualIn this section, we evaluate the qual-
ity of estimating the polarized CMB E maps, which we com-
puted with HILC and PolGMCA. The purpose of this article
is of course to provide a component separation methods that
provides clean, low-foreground, polarized CMB maps at high
Galactic latitudes as well as in the Galactic center. For this pur-
pose, the power spectra of the individual and total foreground
residuals were computed from various values of the sky cover-
age –25%, 55%, and 85% – and without any masking (full-sky).
These masks are common to all the methods; they were com-
puted based on the foreground residuals of both the two maps
so as not to favor or penalize one of these maps. Since these
comparisons are based on simulations, the noise and CMB an-
gular power spectra are the actual spectra of the input simula-
tion; they are therefore not based on Monte Carlo simulations.
Furthermore, these angular power spectra are displayed with 3σ
error bars based on 100 noise simulations. Because the instru-
mental noise is one of the maing contaminants of the estimated
polarized CMB maps, the uncertainties with respect to noise al-
low assessing the statistical significance of the foreground resid-
uals quite accurately.

Figure 6 displays the power spectrum of the total foreground
residual (i.e., synchrotron, thermal dust, and point sources) for
HILC and PolGMCA for various values of the sky coverage.
At large scales, for ` < 100, the PolGMCA algorithm pro-
vides a lower level of foreground residuals whether it is at high
Galactic latitudes (sky coverage of 25%) or on the Galactic
center (full-sky estimate). This enhancement is very likely the

consequence of the new separation mechanism described in
Sect. 2.3, which makes the estimation of the E CMB map less
sensitive to chance correlations, but at the cost of an increase in
the noise level.

At intermediate scales – for 100 < ` < 600 – PolGMCA
and HILC provide very similar results on 55% of the sky. HILC
seems to perform slightly better for high Galactic latitudes. Both
methods yield estimates with very low foreground residuals at
high Galactic latitudes, which are about one order of magnitude
lower than both the noise and the cosmological signal. For a
more extended sky coverage, the level of foreground residuals
rapidly increases in the CMB E map delivered by the HILC al-
gorithm, while PolGMCA produces a clean full-sky estimate of
the E map at intermediate scales. At smaller scales – ` > 600 –
PolGMCA performs better than HILC with similar noise level
but lower foreground residuals. Interestingly, at very large scales
– ` < 10 – the level of foregrounds is significantly lower than
the level of CMB; this suggests that large-scale anomalies in po-
larization could also be carried out without masking, similarly
to what has been done for the temperature large-scale anomaly
studies (Rassat et al. 2014). This result makes PolGMCA a
good candidate for analyzing the large-scale anomalies of the
CMB map.

Figure 6 displays 3σ error bars based on 100 noise simu-
lations, which first reveal that outside the Galactic center (i.e.,
for masks larger than 85%) the discrepancy between these
two methods is not significant with respect to noise uncer-
tainty. In contrast, when no mask is applied, the improvements
achieved by the PolGMCA algorithm are statistically significant.
This highlights the very good performances of the PolGMCA
algorithm in the vicinity of the Galactic center.
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Fig. 5. Foreground residual in the estimated U maps at 1 deg resolution: input CMB (left), HILC (middle), and PolGMCA (right).
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Fig. 6. Total foregrounds – top left panel: power spectrum of total foreground residuals for the E map from a sky coverage of 25%. Top right panel:
the same from a sky coverage of 55%. Bottom left panel: the same from a sky coverage of 85%. Bottom right panel: the same for the full sky.

Individual foreground residuals. This paragraph investigates
the contamination of the polarized CMB map estimates, and
especially the CMB E map from individual foregrounds.

– Thermal dust. Figure 7 features the power spectrum of the
residual thermal dust contamination for various sky cover-
ages ranging from 25% to the full sky. For intermediate and
small scales (i.e., ` > 1000), thermal dust is by far the
main contaminant for both the HILC and PolGMCA E maps,
whether it is in the Galactic center or at high Galactic lat-
itudes. In this range of multipoles, HILC performs slightly
better than PolGMCA for sky coverages smaller than 55%.
For larger sky coverage, the ability of PolGMCA to deliver a
clean estimate of the CMB map in the Galactic center greatly
helps limiting the increase of thermal dust residual from ar-
eas close to the Galactic center. It is important to notice that
the E map delivered by the PolGMCA algorithm shows a
level of thermal dust residual that is about one order of mag-
nitude lower than the level of CMB for ` < 1200, even for a
sky coverage as high as 85%.
At small scales, for ` < 100, the CMB E map computed
with PolGMCA contains significantly lower thermal dust
residuals at all latitudes. HILC provides a slightly lower dust
level in the range 100 < ` < 1000 at high Galactic latitudes.

– Synchrotron. The power spectrum of the synchrotron resid-
uals in the HILC and PolGMCA E maps are displayed in
Fig. 8. HILC a provides lower synchrotron contamination

for ` < 20, whether it is in the Galactic center or at
higher Galactic latitudes. However, PolGMCA provides sig-
nificantly lower synchrotron residuals for ` > 100, even for
high Galactic latitudes.

– Point sources. Figure 9 shows the power spectrum of the
point source contamination. At large scales, PolGMCA ex-
hibits slightly higher point sources residuals for an all-sky
coverage. PolGMCA performs slightly better than HILC at
intermediate and small scales. It is interesting that that for
large sky coverage, the E map obtained with PolGMCA
shows a significantly lower level of point source resid-
uals for ` > 100; this highlights the ability of the
PolGMCA algorithm to remove highly non-Gaussian and
non-stationary components such as point sources, especially
in the Galactic center. For astrophysical studies, the most
prominent point sources will be masked to limit their impact.
The level of point source residuals is therefore expected to
be significantly lower for both component separation tech-
niques in this setting.

3.3. Toward an accurate full-sky estimate of the CMB
polarization maps

In this section, we investigate with more precision the quality
of estimating the CMB polarization map across the sky. Indeed,
one of the objectives of this article is to achieve an accurate
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Fig. 7. Thermal dust – top left panel: power spectrum of the thermal dust residual in the estimated E map from a sky coverage of 25%. Top right
panel: the same from a sky coverage of 55%. Bottom left panel: the same from a sky coverage of 85%. Bottom right panel: the same for the full
sky.
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Fig. 8. Synchrotron – top left panel: power spectrum of the synchrotron residual in the estimated E map from a sky coverage of 25%. Top right
panel: the same from a sky coverage of 55%. Bottom left panel: the same from a sky coverage of 85%. Bottom right panel: the same for the full
sky.

full-sky estimate of polarized CMB maps. For this purpose, and
following an analysis method we have used before (Bobin et al.
2013a,b, 2014b), the accuracy of a CMB map can be evaluated
by computing the level of foreground residuals in bands of lat-
itudes in the wavelet domain. Using wavelets, one can analyze
the estimated CMB maps with a good localization in space as
well as in harmonic space.

More precisely, the estimated Q and U maps were decom-
posed into six wavelet bands (see Starck et al. 2006). Each of
the six bands was then split uniformly into 18 bands of latitudes;
each band of latitude has a width of 10◦. Figure 10 reports the
energy level (Euclidean norm) of the total foreground residuals
(i.e., thermal dust, synchrotron, and point sources) for the six
wavelet scales. By convention, the wavelet scale 0 corresponds
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Fig. 9. Point sources – top left panel: power spectrum of the point source residuals in the estimated E map from a sky coverage of 25%. Top right
panel: the same from a sky coverage of 55%. Bottom left panel: the same from a sky coverage of 85%. Bottom right panel: the same for the full
sky.

to the smallest scales (` > 1600) and scale 5 to large scales
(50 < ` < 100).

It is first interesting to note that at all scales, HILC has a
level of foreground residuals that exceeds the level of the CMB
in the Galactic center at latitudes of about ±15◦. This is pre-
cisely in the vicinity of the Galactic center at which the station-
arity assumptions, made in the framework of HILC, are prob-
ably the least valid and where the use of spatial localization
and sparsity is the most beneficial for component separation.
Consequently, the CMB map estimated by the PolGMCA algo-
rithm has significantly lower foreground residuals for Galactic
latitudes lower than 15◦. More precisely, in the Galactic plane,
the HILC Q map has an order of magnitude higher foreground
residuals than PolGMCA, in wavelet bands corresponding to
` > 400.

For the first three wavelet scales, the PolGMCA Q and
U maps have a level of foreground residuals that is constantly
lower than the level of CMB throughout the sky. At larger scales,
the CMB is dominated by the foregrounds only for latitudes that
are lower than ±10◦.

For Galactic latitudes higher than ±25◦, these plots confirm
the very good efficiency of the HILC algorithm in regions where
instrumental noise is, by far, the most prominent contaminant
in the data. The PolGMCA algorithm generally provides similar
or slightly higher levels of foregrounds in high Galactic regions,
but still much lower than the level of instrumental noise.

These numerical results highlight the efficiency of the pro-
posed PolGMCA algorithm to provide a very accurate estimate
the polarized CMB maps in the vicinity of the Galactic center
while providing residual levels that are competitive to the very
effective HILC algorithm at high Galactic latitudes at intermedi-
ate and small scales. The PolGMCA is shown to be particularly
effective at large scales (i.e., for ` < 200), where it yields esti-
mates of the CMB Q and U maps with significantly lower levels
of total foreground at all Galactic latitudes.

4. Conclusion

We presented a novel component separation method that is dedi-
cated to estimating the CMB polarization modes. This approach
builds upon the GMCA algorithm, which emphasizes the spar-
sity of the sought-after sources in the wavelet domain to separate
them out. The proposed algorithm, dubbed PolGMCA, extends
the basic GMCA algorithm with two significant improvements:
i) it allows for the efficient separation of partially correlated
sources thanks to recent improvements of the GMCA algorithm;
and ii) it aggregates sparse and second-order based CMB estima-
tors to benefit from their complementary characteristics in terms
of propagated noise and foreground residuals. Subsequently,
we showed that the proposed PolGMCA algorithm exhibits the
following interesting properties:

– It provides an improved estimate of the polarized CMB maps
particularly at large scales, typically for ` < 200, out-
side the Galactic center, where the ability to account for
the partial correlation the components is essential. However,
these improvements are not significant with respect to the
noise-related uncertainty.

– It provides very accurate estimates of the polarized
CMB maps in regions where foregrounds, which are by
nature non-Gaussian and non-stationary, dominate. This is
specifically the case in the vicinity of the Galactic center at
latitudes ±15◦. In this setting, the PolGMCA algorithm ben-
efits by a large amount from its ability to account for the
partial correlation of the components to be removed.

– In noise-dominated regions of the sky, the polarized
CMB maps provided by the PolGMCA algorithm have fore-
ground levels that are close to the HILC algorithm, which is
assumed to be close to optimality in this noise regime.

Altogether, these results make the PolGMCA algorithm a
good candidate for Galactic studies in polarization, studying
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Fig. 10. Total foreground residuals in the Stokes parameter Q map:
mean squared error (MSE) per band of latitude in the wavelet domain.
Dashed lines represent the noise level for each component separation
method.

Total foreground MSE in wavelet band #0 - U map - 1536 < l < 3072

-50 0 50
Latitude in degrees

10-16

10-14

10-12

10-10

V
ar

ia
nc

e 
in

 K
2

Total foreground MSE in wavelet band #1 - U map - 768 < l < 1536

-50 0 50
Latitude in degrees

10-16

10-14

10-12

10-10

V
ar

ia
nc

e 
in

 K
2

Total foreground MSE in wavelet band #2 - U map - 384 < l < 768

-50 0 50
Latitude in degrees

10-16

10-14

10-12

10-10

V
ar

ia
nc

e 
in

 K
2

Total foreground MSE in wavelet band #3 - U map - 192 < l < 384

-50 0 50
Latitude in degrees

10-16

10-14

10-12

V
ar

ia
nc

e 
in

 K
2

Total foreground MSE in wavelet band #4 - U map - 96 < l < 192

-50 0 50
Latitude in degrees

10-18

10-16

10-14

10-12

V
ar

ia
nc

e 
in

 K
2

Total foreground MSE in wavelet band #5 - U map - 48 < l < 96

-50 0 50
Latitude in degrees

10-18

10-16

10-14

10-12

V
ar

ia
nc

e 
in

 K
2

Fig. 11. Total foregrounds residuals in the Stokes parameter U map:
mean squared error (MSE) per band of latitude in the wavelet domain.
Dashed lines represent the noise level for each component separation
method.
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Fig. A.1. Bands of multipoles used to derive HILC weights: left all the
81 overlapping bands used to compute the ILC weights in the harmonic
domain. Right: examples of five different bands for better visualization.

large-scale anomalies, and testing the detection of B-modes from
Planck data.
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Appendix A: Harmonic ILC implementation

Harmonic ILC has been widely used, mainly to estimate CMB
maps from WMAP data in temperature data (Tegmark et al.
2003) and polarization (Kim et al. 2009). More recently, the
SMICA CMB polarized maps derived from the Planck PR2 data
(Planck Collaboration IX 2015) are equivalent to a HILC so-
lution at high ` multipoles. The appeal of HILC resides in its
ability to precisely account for the different beams at each chan-
nel as well as in its accuracy in modeling stationary Gaussian
random fields such as the CMB.

In this paper, and inspired by Tegmark et al. (2003), Kim
et al. (2009), we implemented an HILC method that proceeds in
two steps:

– Fitting the ILC weights: ILC estimates weights to obtain a
minimum variance solution. In the case of HILC, this step
is performed independently on overlapping bands of mul-
tipoles that span the desired range of multipoles [0, 2500].
The bands have a fixed width ∆ = 80; this width was tuned
so as to provide the best estimation accuracy in PSM sim-
ulations, as a trade-off between good foreground modeling
(narrow bands) and statistical robustness (broad bands). All
the 81 bands used to derive ILC weights are displayed in the
left panel of Fig. A.1. Let bi,` be the beam of the ith fre-
quency channel, wl,` be the filter defining the lth band, and
x̃i,(`,m) be the a`,m coefficient of the ith frequency channel,

2 http://jstarck.free.fr/isap.html

the weights [πi,l]i=1,...,M in the lth band are computed by min-
imizing the following problem:

min
{πi,l}i=1,...,M

∑
`,m

∥∥∥∥∥∥∥∑i

wl,`πi,lbi,` x̃i,`,m

∥∥∥∥∥∥∥
2

`2

s.t.
M∑

i=1

πi,l = 1.

(A.1)

– Deriving `-dependent weights: from the 81 bands, one de-
rives the weight per band and observation. A simple interpo-
lation procedure was used so as to derive a weight per ` and
per observation i. This interpolation step was performed to
provide weight vectors πi = [πi(0), . . . , πi(`), . . . , πi(`max)] as
follows:

∀i = 1, . . . ,M; πi =

∑
l wl,`πi,`∑

l wl,`
, (A.2)

which is essentially a simple interpolation by weighted aver-
aging, where the filters wl were used as weights.

The exact same HILC algorithm is used to aggregate the CMB
estimators in the PolGMCA algorithm described in Sect. 2.
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