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ABSTRACT

The main signature of the interaction between cosmic rays and molecular clouds is the high ionisation degree. This decreases towards
the densest parts of a cloud, where star formation is expected, because of energy losses and magnetic effects. However recent obser-
vations hint to high levels of ionisation in protostellar systems, therefore leading to an apparent contradiction that could be explained
by the presence of energetic particles accelerated within young protostars. Our modelling consists of a set of conditions that has to
be satisfied in order to provide an efficient particle acceleration through the diffusive shock acceleration mechanism. We find that jet
shocks can be strong accelerators of protons which can be boosted up to relativistic energies. Another possibly efficient acceleration
site is located at protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to
accelerate protons. Our results demonstrate the possibility of accelerating particles during the early phase of a proto-Solar-like system
and can be used as an argument to support available observations. The existence of an internal source of energetic particles can have
a strong and unforeseen impact on the star and planet formation process as well as on the formation of pre-biotic molecules.
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1. Introduction

It is largely accepted that Galactic cosmic rays, which pervade
the interstellar medium, are likely produced in shock waves
in supernova remnants (Drury 1983). Cosmic rays activate the
rich chemistry that is observed in a molecular cloud (Duley &
Williams 1984), and also regulate its collapse timescale (Balbus
& Hawley 1991; Padovani et al. 2014), determining the effi-
ciency of star and planet formation. However, cosmic rays can-
not penetrate the densest parts of a molecular cloud, where the
formation of stars is expected, as a result of energy losses and
magnetic field deflections (Padovani et al. 2009, 2013; Padovani
& Galli 2011, 2013; Cleeves et al. 2013). Recently, observa-
tions towards young protostellar systems show a surprisingly
high value of the ionisation rate (Ceccarelli et al. 2014; Podio
et al. 2014), the main indicator of the presence of cosmic rays in
molecular clouds. Synchrotron emission, the typical feature of
relativistic electrons, was also detected towards the bow shock
of a T Tauri star (Ainsworth et al. 2014). Nevertheless, the origin
of these signatures unique to energetic particles is still puzzling.
Here we show that particle acceleration can be driven by shock
waves occurring within protostars.

2. Particle acceleration in shocks

This works focuses on shock acceleration by means of the diffu-
sive shock acceleration (DSA) mechanism. Also known as first-
order Fermi acceleration, DSA is a process where charged par-
ticles systematically gain energy while crossing a shock front.
Multiple shock crossings allow the particle energy to rapidly

increase, reaching the relativistic domain. The motion of par-
ticles back and forth from upstream to downstream requires the
presence of magnetic fluctuations that produce a scattering of
the pitch angle, namely the angle between the particle’s velocity
and the mean magnetic field (Drury 1983; Kirk 1994). We ar-
gue below that the accelerated particles themselves can produce
the necessary fluctuations to maintain DSA around shocks, as
discussed e.g. in Bell (1978).

In the following subsections, we describe all the conditions
that have to be satisfied to effectively accelerate protons and
electrons through DSA. The acceleration of helium and heav-
ier nuclei will be presented in a subsequent paper. All the con-
straints limiting the maximum energy of the accelerated parti-
cles are written as functions of the upstream flow velocity in
the shock reference frame, Ush = vfl − vsh, vfl and vsh are the
flow and the shock velocities in the observer reference frame,
respectively. Our aim is to compute the maximum energy, Emax,
reached by a particle in the regime where ions and neutrals are
coupled. As explained in Sect. 2.3, in this case the damping of
the Alfvén waves, which determines the confinement of parti-
cles, is weak and particle acceleration is more effective.

2.1. Condition on shock velocity

In order to have efficient particle acceleration, the flow has to be
supersonic and super-Alfvénic. These two conditions are com-
bined into the following relation

Ush,2 > max
{
9 × 10−2 [

γadT4(1 + x)
]0.5 , 2 × 10−4n−0.5

6 B−5

}
, (1)
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where Ush,2 has units of 102 km s−1, γad is the adiabatic index,
T4 the upstream temperature in 104 K, n6 the total number den-
sity of hydrogen in 106 cm−3, x the ionisation fraction, and B−5
the magnetic field strength in 10−5 G. The two terms in square
brackets on the right-hand side of Eq. (1) are the ambient (or
upstream) sound speed and the Alfvén speed of the total gas in
102 km s−1, respectively.

2.2. Condition on low-energy particle acceleration: collisional
losses

We are interested in the acceleration of low-energy particles
(.100 MeV−1 GeV) because they are responsible for the bulk
of the ionisation. We have to verify that the shock acceleration
rate is larger than the collisional loss rate (t−1

acc > t−1
loss). Following

Drury et al. (1996), the acceleration rate is given by

t−1
acc =

3.2 × 10−8

γ − 1
kαu (r − 1)

r(1 + rkd/ku)
µ̃−1U2

sh,2B−5 s−1, (2)

where µ̃ = m/mp is the particle mass normalised to the proton
mass, ku and kd are the diffusion coefficients in the upstream and
downstream media, respectively, normalised to the Bohm value
for protons,

k−αu,d =
κu,d

κB
=

3eB
γβ2mpc3 κu,d, (3)

where γ is the Lorentz factor, β = γ−1
√
γ2 − 1, and r is the shock

compression ratio. For a parallel shock, α = −1 and κu = κd,
while for a perpendicular shock, α = 1 and κu = rκd

1. The energy
loss rate is given by

t−1
loss = 3.2 × 10−9 β

γ − 1
µ̃−1n6L−25 s−1, (4)

where L−25 is the energy loss function (Padovani et al. 2009)
in units of 10−25 GeV cm2 which was extended to lower en-
ergies including Coulomb losses (for protons, Mannheim &
Schlickeiser 1994; and electrons, Swartz et al. 1971) and syn-
chrotron losses (Schlickeiser 2002). The maximum energy of
accelerated particles set by energy losses, Eloss, is found when
t−1
acc = t−1

loss, specifically

βL−25 = 10
kαu (r − 1)

r(1 + rkd/ku)
U2

sh,2n−1
6 B−5. (5)

2.3. Condition on particle acceleration: ion-neutral friction

The main limit on the possibility of particle acceleration is given
by the presence of an incomplete ionised medium. In fact, the
collision rate between ions and neutrals can be as high as to
decrease the effectiveness of the DSA, damping the particle’s
self-generated Alfvén waves responsible for the particle scatter-
ing the shock back and forth. Ions and neutrals are effectively
decoupled if the wave frequency is larger than the ion-neutral
collision frequency. Following Drury et al. (1996) and account-
ing for the fact that particles are not fully relativistic, we find that
the critical energy separating these two regimes, Ecoup, is derived
by solving the following relation

γβ = 8.5 × 10−7µ̃−1T−0.4
4 (n6x)−1.5B2

−5. (6)

1 A parallel/perpendicular shock is when the shock normal is paral-
lel/perpendicular to the ambient magnetic field, respectively.

If the particle energy is larger than Ecoup, ions and neutrals are
coupled.

The upper cut-off energy due to wave damping, Edamp, is set
by requiring that the flux of accelerated particles advected down-
stream by the flow is equal to the flux of particles lost upstream
because of the lack of waves (due to wave damping) to confine
the particles. Following Drury et al. (1996), using their exact
equation for the wave damping rate, accounting for departures
from fully relativistic behaviour, and assuming Ush to be much
larger than the Alfvén speed, Edamp follows from

γβ2 = 8.8 × 10−5µ̃−1ΞU3
sh,2T−0.4

4 n−0.5
6 (1 − x)−1B−4

−5P′−2, (7)

where

Ξ = B4
−5 + 1.4 × 1012µ̃2γ2β2T 0.8

4 n3
6x2. (8)

Both Eqs. (6) and (7) are valid for T ∈ [102, 105] K. The pa-
rameter P′

−2 is the fraction of the shock energy (mpnU2
sh) going

into particle acceleration in 10−2, which is proportional to the
shock efficiency η ∈ [10−6, 10−3] (Bykov 2004) and represents
the fraction of particles extracted from the thermal plasma that
is injected into the acceleration process by a shock. We predict
both non-relativistic and mildly relativistic accelerated particles
and we checked a posteriori that there is no strong back reac-
tion. This means that the upstream medium is not warned by
these particles that a shock is coming and we can safely assume
that the shock and DSA process are unmodified. In other words,
calculations are carried out in the test-particle limit.

If Edamp > Ecoup, then Edamp is in the coupled regime, namely
neutrals coherently move with ions and ion-generated waves are
weakly damped. The last inequality can be written by combining
Eqs. (6) and (7) as

R =
102

β
ΞU3

sh,2n6x1.5(1 − x)−1B−6
−5P′−2 > 1. (9)

We consider shocks in three types of environments: in jets as
well as in accretion flows in the collapsing envelopes and on the
surfaces of protostars. Using the range of parameters of Table 1,
we find that R � 1 in protostellar envelopes (Sect. 3). This is to
say that the following two conditions on shock age and geometry
(Sect. 2.4) are only discussed with reference to shocks in jets and
on protostellar surfaces.

2.4. Conditions due to shock age and geometry

The maximum energy set by the age of the shock, Eage, is found
when the acceleration time, given by the inverse of Eq. (2), is
equal to the age of the shock. The latter can be assumed of the
order of the dynamical time of the jet (&103 yr, de Gouveia Dal
Pino 1995) or equal to the accretion time in the case of a sur-
face shock (∼105 yr, Masunaga & Inutsuka 2000). Then, Eage is
computed from

γ − 1 = 103 kαu (r − 1)
r(1 + rkd/ku)

µ̃−1U2
sh,2B−5tage,3, (10)

with tage,3 in units of 103 yr.
A further constraint is given by the geometry of the shock.

In particular, the upstream diffusion length, λu = κu/Ush, has
to be at most a given fraction ε < 1 of the shock radius, Rsh;
besides, in the jet configuration particles may also escape in the
transverse direction. The shock can be assumed to be planar as
long as the particle’s mean free path around the shock is smaller
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Table 1. Values of the parameters described in the text.

Site∗ Ush T n x B
[km s−1] [K] [cm−3] [G]

E 1−10 50−100 107−108 .10−6 10−3−10−1

J 40−160 104−105 104−107 0.01−0.9 5 × 10−5−10−3

S 260 9.4 × 105 1.9 × 1012 0.01−0.9 10−1−103

Notes. (∗) E = envelope; J = jet; S = protostellar surface.

than the transverse size of the jet, R⊥. The maximum energy due
to upstream escape losses, Eesc,u, follows from

γβ2 = 4.8kαu µ̃
−1Ush,2B−5 min

(
εRsh,2,R⊥,2

)
, (11)

where both Rsh,2 and R⊥,2 are in units of 102 AU. In the follow-
ing we assume ε = 0.1 (Berezhko et al. 1996). Since jet shocks
have a small transverse dimension, there is a further condition
for the escape of particles downstream: the maximum energy
due to downstream escape losses, Eesc,d, is found when the ac-
celeration time, inverse of Eq. (2), is equal to the downstream
diffusion time, tdiff,d = R2

⊥/(4κd) 2, namely

γβ2(γ − 1) = 5.8
(kukd)α(r − 1)
r(1 + rkd/ku)

µ̃−1(Ush,2B−5R⊥,2)2. (12)

Finally, if the shock is supersonic and super-Alfvénic (Eq. (1))
and if R > 1 (Eq. (9)), the maximum energy reached by a parti-
cle is Emax = min[Eloss, Edamp, Eage, Eesc,u, Eesc,d].

3. Potential particle acceleration sites

In this section, we identify and characterise possible sites of par-
ticle acceleration in protostars. In particular, we consider accre-
tion flows in the collapsing envelopes and on protostellar sur-
faces as well as jets. The required parameters needed to prove
the effectiveness of shock acceleration are shown in Table 1.

It is straightforward to verify that Eq. (9) is not fulfilled in
envelopes (R � 1). The ionisation fraction and the shock ve-
locity are too small, quenching the particle acceleration. The
magnetic field strength is also large enough to produce a sub-
Alfvénic shock. This rules out envelopes as a possible shock ac-
celeration sites. From now on we focus on shocks in jets and on
protostellar surfaces.

3.1. Jets

Jets are observed at all stages during the evolution of a protostar
(e.g. McCaughrean et al. 2002; Reipurth et al. 1997; Watson &
Stapelfeldt 2004). Jet speeds, vfl, are similar for different classes
(60−300 km s−1) with shock velocities, vsh, of the order of
20−140 km s−1 (Raga et al. 2002, 2011; Hartigan & Morse 2007;
Agra-Amboage et al. 2011), then Ush = 40−160 km s−1. The
neutral density is between 104 and 107 cm−3 (Lefloch et al. 2012;
Gómez-Ruiz et al. 2012) with temperatures of the order of 104 K
up to about 106 K (Frank et al. 2014). There is only one theoret-
ical estimate for the magnetic field strength (B ∼ 300−500 µG)
for Class II sources (Teşileanu et al. 2009, 2012). The transverse
radius of a jet is about 5 AU, 10 AU, and 50 AU at 15 AU,
100 AU, and 1000 AU from the source, respectively (Cabrit et al.
2007; Hartigan et al. 2004). The ionisation fraction in Class I

2 The factor 4 in the denominator comes from the fact that the diffusion
process in the perpendicular direction is in two dimensions.

and II are similar, x ∼ 0.05−0.9 (Nisini et al. 2005; Maurri et al.
2014), while Class 0 jets are mainly molecular (Dionatos et al.
2010).

3.2. Accretion flows on protostellar surfaces

We use the computational results of the protostellar collapse of
an initially homogeneous cloud core described in Masunaga &
Inutsuka (2000). Their simulation describes the phase of main
accretion, when the protostar mass grows because of the steady
accretion from the infalling envelope. They give the temporal
evolution of temperature, density, and flow velocity which, as-
suming a stationary shock, is equal to the shock velocity. The
radius of the protostar is set to 2×10−2 AU and we find that only
the last time step of the simulation, corresponding to the end of
the main accretion phase, leads to a strong proton acceleration.
Parameters are listed in the third row of Table 1.

4. Maximum energy of the accelerated particles

For jet shocks we perform a parametric study using the val-
ues in the second row of Table 1, assuming a parallel shock,
η = 10−5, and T = 104 K. We also consider κu = κB, which
is the most favourable circumstance for accelerating particles
(Drury et al. 1983) and we compute Emax for Rsh = 100 AU
and R⊥ = 10 AU. The upper panel of Fig. 1 shows the maxi-
mum energy that a shock-accelerated proton can reach. By in-
creasing both Ush and B, Emax attains higher values up to about
13 GeV for protons. Once the combination of parameters satis-
fies the condition R > 1, Emax rapidly reaches a constant value,
encompassed by the cyan contours in each subplot. In fact, the
maximum energy is controlled by Eesc,d that is independent of
both n and x. Supposing the magnetic field to have a strong
toroidal component, we repeat the calculation for the case of a
perpendicular shock finding that Emax decreases by a factor of
about 1.3, since E⊥esc,d/E

‖

esc,d ∝ (r + 1)/(2r) 3.
For shocks on protostellar surfaces, we use values in the third

row of Table 1, varying x and B. Assuming η = 10−5, ku = 1,
and a parallel shock, we find values of Emax for protons up to
about 26 GeV for B ∼ 3−10 G (see lower panel of Fig. 1),
which are comparable with magnetic field intensities computed
by e.g. Garcia et al. (2001). As a result of high temperatures,
Coulomb losses are dominant and Emax is constrained by Eloss.
Thus, for a perpendicular shock, Emax is a factor of about 1.3
larger, since E⊥loss/E

‖

loss ∝ (r + 1)/r. Hatched areas in both panels
of Fig. 1 show regions where acceleration is not possible because
of strong wave damping.

Electrons can be accelerated as well, but generally Emax
for electrons is much smaller than Emax for protons because
of wave damping and stronger energy losses. For instance, for
Ush = 160 km s−1 and B = 1 mG, Emax ∼ 300 MeV for a nar-
row range of density and ionisation fraction (n & 3 × 106 cm−3,
x & 0.6). For lower values of B and Ush, Emax . 50 MeV. We
also find that electron acceleration is not triggered by protostel-
lar surface shocks.

5. Discussion and conclusions

We investigated the possibility of accelerating particles within
a protostellar source by means of shock processes through the

3 Superscripts ⊥ and ‖ refer to perpendicular and parallel shocks,
respectively.
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Fig. 1. Upper panel: case of a parallel shock in jets: ionisation frac-
tion, x, versus density of neutrals, n, for Ush = 40 and 160 km s−1,
B = 50 µG and 1 mG, and T = 104 K. Lower panel: case of parallel
(left) and perpendicular (right) shocks on protostellar surfaces: ionisa-
tion fraction, x, versus magnetic field strength, B, for Ush = 260 km s−1,
T = 9.4 × 105 K, and n = 1.9 × 1012 cm−3. Colour maps show values
of Emax for protons and cyan contours delimit the regions where Emax
reaches its maximum constant value shown in GeV in each subplot.
Vertically hatched regions refer to combinations of parameters corre-
sponding to strong wave damping (R < 1).

diffusive shock acceleration mechanism. We focused our atten-
tion on the effectiveness of shocks in envelopes, on protostellar
surfaces, and in jets. We concluded that:

(i) In envelopes, x and Ush are too small, preventing any particle
acceleration. Besides, B is as large as to yield sub-Alfvénic
shocks.

(ii) Jet shocks are possible accelerators of particles that can be
easily boosted up to relativistic energies. The acceleration is
more efficient for protons which can reach up to about 13 or
10 GeV (for parallel or perpendicular shocks, respectively),
while electrons attain at most about 300 MeV because of
wave damping and energy losses.

(iii) Protostellar surface shocks can accelerate protons up to
about 26 or 37 GeV (for parallel or perpendicular shocks, re-
spectively). Electrons cannot be accelerated mainly because
of large magnetic field strengths leading to synchrotron
losses.

The set of conditions that has to be fulfilled is highly non-linear:
small variations in one or more parameters (B, x, n, T , Ush, η,
ku, kd) can make the acceleration process inefficient. As a con-
sequence, since young protostars are highly dynamic systems,
particle acceleration can be a very intermittent process. In a

subsequent paper, we will discuss in detail other possible ac-
celeration mechanisms as well as the effect of variations in the
parameter set and the distance of the jet shocks from the pro-
tostar, including departures from Bohm-type diffusion with the
aim of studying the propagation of high-energy particles in the
protostellar environment to explain the available observations.
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