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ABSTRACT

Context. The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the
star’s oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity
waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us
to study the excitation, propagation, and dissipation of these waves.
Aims. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear
overview of their properties.
Methods. We use a method of frequency filtering that reveals the path of individual gravity waves of different frequencies in the
radiative zone.
Results. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing
theory and to distinguish between propagative and standing waves (g-modes). We also show that the energy carried by waves is
distributed in different planes in the sphere, depending on their azimuthal wave number.
Conclusions. We are able to isolate individual IGWs from a complex spectrum and to study their propagation in space and time. In
particular, we highlight in this paper the necessity of studying the propagation of waves in 3D spherical geometry, since the distribution
of their energy is not equipartitioned in the sphere.
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1. Introduction

Internal gravity waves (IGWs) propagate in stably stratified flu-
ids with gravity as a restoring force. They can be observed in
laboratory experiments (e.g., Mowbray & Rarity 1967; Gostiaux
et al. 2007; Perrard et al. 2013), planetary atmospheres and
oceans (e.g., Staquet & Sommeria 2002; Fritts & Alexander
2003), and in our case, they are believed to exist in the radiative
regions of stars. In solar-like stars, these waves are stochasti-
cally excited by turbulent convective motions in the outer lay-
ers, which leads to the formation of a rich spectrum. During
their propagation, IGWs are known to transport angular momen-
tum by radiative damping (e.g., Schatzman 1993; Zahn et al.
1997), corotation resonances (e.g., Booker & Bretherton 1967;
Alvan et al. 2013), or nonlinear wave breaking (e.g., Barker &
Ogilvie 2010). They also affect the mixing of chemical elements
in stars’ interiors (e.g., Press 1981; Garcia Lopez & Spruit 1991;
Montalban 1994; Charbonnel & Talon 2005). As a consequence,
they are expected to influence the evolution of stars and partic-
ularly the evolution of their internal rotation profiles (Talon &
Charbonnel 2005; Charbonnel et al. 2013; Mathis et al. 2013).
In the solar case, IGWs are serious candidates for explaining
the solid-body rotation of its radiative interior down to 0.2 R�
(Kumar et al. 1999; Charbonnel & Talon 2005)1. They are also

1 Another hypothesis for explaining the solid body rotation of the so-
lar radiative zone relies on the existence of a buried large-scale fos-
sil magnetic field, whose existence and effect are still the subject of
debates in the community (Gough & McIntyre 1998; Strugarek et al.
2011; Acevedo-Arreguin et al. 2013).

invoked to explain the transport of angular momentum in sub-
and redgiant stars (Talon & Charbonnel 2008; Fuller et al. 2014)
and in intermediate mass and massive stars (Pantillon et al. 2007;
Lee et al. 2014).

When progressive waves interfere constructively, they form
standing modes called gravity (g) modes, whose measurement
can provide information about the structure of the stars’ deep
interiors. These individual g-modes remain barely detectable at
the surface of the Sun. Unlike acoustic (p) modes, mainly lo-
cated near the surface, g-modes are trapped in the inner radia-
tive region, so we can accumulate a lot of information about the
structure of this zone. Nevertheless, they are evanescent in con-
vective regions and thus reach the surface with small amplitudes
(Appourchaux et al. 2010, and references therein). As of today,
the only reported detection for the Sun has been done in Garcia
et al. (2007, 2008). They observed the asymptotic signature of
g-modes at the surface of the Sun, but we are not yet able to
detect individual peaks (Garcia 2009). To improve our ability to
detect them, we thus need to characterize their properties, time
variabilities, and ability to tunnel through the solar convection
zone better.

Realistic numerical simulations help for understanding the
properties of IGWs in stars. Their excitation by the pummel-
ing of convective plumes at the top of the radiative zone has
already been studied in 2D (Massaguer et al. 1984; Hurlburt et al.
1986, 1994; Kiraga et al. 2003; Dintrans et al. 2005; Rogers &
Glatzmaier 2005; Rogers et al. 2006) and in 3D (Saikia et al.
2000; Brummell et al. 2002; Browning et al. 2004; Kiraga et al.
2005; Brun et al. 2011). Recently, Alvan et al. (2014) have
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shown the substantial progress made in high-performance com-
puting, allowing a 3D solar-like star to be modeled in full spher-
ical geometry from r = 0 to r = 0.97 R�. They took the non-
linear coupling between the convective envelope, the radiative
interior, and the dissipation along the wave propagation into ac-
count. Thanks to the use of a realistic density stratification in
the radiative region, the properties and frequencies of the waves
excited by the convection are those expected from theory. We
seek here to characterize the spectrum excited better by doing
a detailed analysis of its substructures. More precisely, we want
to understand why we can see modes in the spectral space and
not in the direct observation of the simulation (real space). Our
guiding question concerns the distinction between progressive
and standing waves and the transition between these two fami-
lies. Finally, we see how the waves’ energy is distributed in the
spherical star and what can be deduced from their excitation.

In the present work, we use a method of frequency filter-
ing that reveals the signature of IGWs in real space and that
clarifies their behavior at different frequencies. In Sect. 2, we
show and discuss the complex and rich spectrum of IGWs ex-
cited by penetrative convection in our 3D model. In Sect. 3, we
describe our method of frequency filtering before presenting the
associated results. We thus show the relation between our full
3D nonlinear simulations and the asymptotic linear raytracing
theory, often used to illustrate the propagation of internal waves
in stars. We also show that waves of low frequency are atten-
uated while higher-frequency waves propagate up to the center
and form modes. We finish by showing a property of internal
waves that single-handedly warrants their study in 3D: at low ro-
tation rate, the energy carried by IGWs is concentrated in planes
of the sphere, whose inclination depends on the wave numbers.
This property is broken at high rotation rates, leading to very
complex 3D waves’ paths of propagation.

2. 3D nonlinear simulations of IGWs

We used the anelastic spherical harmonic (ASH) code (Clune
et al. 1999; Brun et al. 2004) to solve the full set of 3D anelastic
hydrodynamic equations in a solar-like star rotating at the ve-
locity Ω0 = Ω0ez (Ω0 = 414 nHz). The domain of computation
includes both the radiative and the convective regions from r = 0
up to r = 0.97 R�. We provide a description of the ASH code and
a presentation of the model used here in Appendix A. More de-
tails can be found in Alvan et al. (2014). In this section, we focus
on the study of the gravity wave spectrum excited in the radia-
tive zone. This spectrum is rich and complex, and it varies as a
function of depth.

2.1. Wave pattern in physical space

The use of a seismically calibrated 1D solar model (Brun et al.
2002) to initialize the 3D simulation ensures a realistic stratifi-
cation in the radiative zone that allows us to study the proper-
ties of the IGWs excited by the overshoot process quantitatively.
To quantify this stratification, we define the Brunt-Väisälä fre-
quency by

N =

√
ḡ

(
1
γP̄

∂P̄
∂r
−

1
ρ̄

∂ρ̄

∂r

)
, (1)

where r is the radius, ρ̄, P̄, and ḡ are the reference density, pres-
sure, and acceleration of gravity, and γ is the first adiabatic ex-
ponent (see Appendix A). In the whole paper, frequencies are
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Fig. 1. Profile of the Brunt-Väisälä frequency as a function of the nor-
malized radius. Colored horizontal lines highlight the regions of propa-
gation of the waves revealed by our filtering technique in Fig. 5.

plotted in Hz and not in rad/s. We represent the profile of N in
Fig. 1.

The linear asymptotic theory (e.g., Unno et al. 1989; Aerts
et al. 2010; Christensen-Dalsgaard 2011) predicts that the dis-
persion relation of IGWs is

ω =
Nkh

k
, (2)

where ω is the frequency of the wave (also expressed in Hz),
and k the norm of the wavevector k = krer + kh whose radial
and horizontal components are denoted kr and kh. This equation
is satisfied when we neglect the effect of the Coriolis acceler-
ation, which is possible here since the model rotates at the so-
lar rotation rate, verifying 2Ω0 = 2 × 414 nHz � ω for the
frequencies ω of interest in this work. According to this rela-
tion, IGWs can propagate in the regions where N is real only,
i.e. in radiative zones, and are evanescent in convective zones.
Their maximum frequency is also limited by the maximum value
max(N) = 0.466 mHz available for the current Sun (cf. Fig. 1).

In Figs. 2a and b, we show the radial velocity in a 3D view
and an equatorial slice of the simulated star with downflows
and upflows. We clearly see the convective envelope from about
0.71 R� to the surface of the computational domain and the inner
radiative zone. Since it is visible in Fig. 2c, the velocity ampli-
tude of the convective motions is much larger than the one of the
waves (factor 103 to 105). Consequently, to visualize both con-
vection pattern and IGWs in the top panels, we divided the radial
velocity by its root mean square (rms) value at each radius.

In the radiative region, we see what looks like concentric
circles, which are in fact almost circular spirals. They cor-
respond to the superposition of several wavefronts of gravity
waves evolving at different frequencies. The comparison be-
tween these pattern and those predicted by the raytracing theory
(see Sect. 3.2) shows that the IGWs visualized here have fre-
quencies of about [0.01−0.05] mHz. This is quite low in compar-
ison with the expected solar g-modes’ frequencies (Christensen-
Dalsgaard 2011). Deeper in the radiative region, the quasi-
circular pattern changes into a more complex shape. We explain
these observations in Sect. 3.3.

2.2. Spectrum

To describe the IGWs we can see into the radiative zone more
precisely, we represent their spectrum so as to calculate their

A112, page 2 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526250&pdf_id=1


L. Alvan et al.: Characterizing gravity waves in 3D nonlinear stellar simulations

0.0 0.2 0.4 0.6 0.8 1.0
r/R

10-4

10-2

100

102

104

106

 (c
m

/s
)

Vrms 

Vrrms 

r/R 
 

(c
m

/s
)  

-2!

2!

1

0

-1

vr/vrrms

 

Fr
eq

ue
nc

y 
(m

H
z)

 

 r0 = 0.5R

10-28!

10-3!

(cm/s)2!

0 50 100 150
l

0.0
0.1

0.2

0.3

0.4
0.5

Fr
eq

ue
nc

y 
(m

H
z)

    

    

 
 

 

 

 
 

 
 

 

 

 
 

(a) (b) 

(c) 

(d) 

g modes 

progressive waves 

Fig. 2. a) 3D rendering of the simulated star. We represent the radial velocity divided by its rms value at each radius. b) Equatorial slice. Like
in the 3D view, IGWs pattern are visible in the inner radiative zone as quasi-circular spirals. c) rms profiles of the total (solid line) and radial
(dotted line) velocities as a function of the normalized radius, averaged over longitude, latitude, and time (about 10 convective overturning times).
d) Energy spectrum of gravity waves computed at r0 = 0.5 R� as a function of degree ` and frequency ω. Ridges are formed by g-modes of same
radial order n, and we see that they tend to the maximum Brunt-Väisälä frequency at high order ` (dotted white line). The black solid line denotes
the separation between g-modes (above) and progressive waves (below).
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Fig. 3. Percentage of the total energy (squared radial velocity) dis-
tributed in standing and progressive gravity waves.

frequencies. It is obtained by applying a spherical harmonic
transform, followed by a temporal Fourier transform, to the ra-
dial velocity vr(r0, θ, ϕ, t). For the moment, the radius r0 is fixed,
and we obtain the quantity ṽr(r0, `,m, ω), where ` is the degree,
m azimuthal number, andω the frequency of the wave. The quan-
tity represented in Fig. 2d is obtained by adding all contributions
in m quadratically, such as

E(r0, `, ω) =
∑

m

|ṽr(r0, `,m, ω)|2. (3)

The length of the temporal sequence used here is about 30 days,
which provides a frequency resolution of ωmin ≈ 0.38 ×
10−3 mHz. The temporal sampling rate ∆t = 1000 s allows us
to reach the maximum (Nyquist) frequency ωmin = 0.5 mHz and
corresponds to ten times the time step of the simulation.

The figure we obtained (Fig. 2d) is close to the spectrum pre-
dicted by the linear theory (e.g., Provost & Berthomieu 1986;
Christensen-Dalsgaard 2003). In the higher part of the spectrum
(above the black curve), we see individual modes forming en-
ergy peaks. Their frequencies correspond to g-mode frequencies
calculated by the oscillation code ADIPLS2 with very good ac-
curacy (Alvan et al. 2014). Modes with the same radial order
n − corresponding to the number of zeros of the radial eigen-
functions − form ridges, particularly visible at high frequency.
Moreover, as predicted by the dispersion relation (Eq. (2)), the
frequency upper limit corresponds to max(N) = 0.466 mHz. The
lower limit of this “g-modes” region is the effect of waves at-
tenuation. It is shown here and can be understood as a cut-off
frequency for the formation of g-modes, under which the waves
are sufficiently damped so that standing modes cannot form. We
show in Appendix B that this curve behaves as [`(` + 1)]3/8.

Below this frontier, the spectrum is composed of progressive
waves. When we compare spectra at different radii r0 (Alvan
et al. 2014), we see that the “progressive-wave region” de-
creases with increasing depth and finally disappears. We com-
pare the proportion of energy distributed in both regions in
Fig. 3. At r = 0.6 R�, the whole energy is contained in pro-
gressive waves. Then, when we move deeper into the radiative

2 http://users-phys.au.dk/jcd/adipack.n

zone, g-modes appear and progressive waves are damped. Below
0.3 R�, the number of progressive waves becomes negligible,
and the whole energy of the spectrum corresponds to standing
modes.

The richness of this spectrum shows that a wide frequency
range is excited by convection. As a result, one may wonder
why we only see one main pattern in real space (Figs. 2a and b).
The raytracing theory predicts that IGWs propagate along dif-
ferent paths depending on their frequencies. Is there a way
to visualize these paths in our simulations? By isolating some
waves and visualizing them in the model, we show that we can
learn more about the regions of propagation of IGWs in a full
3D geometry.

3. Going further: frequency filtering of radiative
zone

Here, we have filtered our data by selecting only a narrow band
of frequencies. In the following sections, we show that this
method reveals important properties of IGWs that were not ac-
cessible before.

3.1. Method

The idea of the frequency filtering can be discussed as follows.
We illustrate the method in Fig. 4.

Panel (A) shows a region of the simulated star belonging
to the equatorial plane. We represent the radial velocity as a
function of the radius and the longitude, right below the exci-
tation zone (interface between convective and radiative regions).
Several different gravity waves are propagating through this re-
gion, but they are placed on top of each other so we cannot see
their paths clearly. Our aim is to separate the waves of different
frequencies. To illustrate the manipulation, we have chosen two
points (B and C) labeled by white crosses. Image (A) evolves
with time and so does the signal at points B and C.

Panels (B) and (C) represent the Fourier spectrum of these
two points. For Point B, we see that the main peak is located in
the blue shaded region, around 0.01−0.02 mHz. For Point C, the
main peak is instead around 0.03 mHz (green shaded region) but
we also see a secondary peak around 0.005 mHz (orange shaded
region). This means that each point oscillates at the frequency of
one or two waves passing through.

Thus, to isolate a wave oscillating at frequency 0.02 mHz
(for example), we calculated the Fourier spectrum of each point
(i.e. Nr × Nθ × Nϕ = 569 × 512 × 1024 ≈ 3 × 108 points),
we applied a passband filter to the spectrum (a Gaussian cen-
tered at 0.02 mHz), and we came back to the real space using
an inverse Fourier transform. The width of the Gaussian filter is
2 × 10−4 mHz for this example.

The result is shown in Panels (D1), (D2), and (D3) of Fig. 4
for three different frequencies. For 0.02 mHz, we see that the
isolated wave passes through Point B, and it is also the case for
the wave at 0.03 mHz passing through Point C. We note α the
angle between the direction of the wave beam and the gravity.
This angle decreases from (D1) to (D3), since we increase the
central frequency of the filter.

This manipulation allows us to highlight one of the main
properties of IGWs. From the linear theory of raytracing
(Lighthill 1978; Gough 1993; Christensen-Dalsgaard 2011),
we know that IGWs propagate along beams whose paths are
ruled by the dispersion relation (Eq. (2)). The shape formed
by the beams at the point of the wave’s excitation is called a
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Fig. 4. Filtering of the same image at three different frequencies. Downflows are represented in blue, upflows in red tones. A) Selected zone of
the star. B) and C) frequency spectra of points B) and C) where we see one or two main peaks. The vertical axis represents the normalized radial
velocity. The vertical red line indicates the position of the Gaussian filter (width = 2 × 10−4 mHz). D1), D2) and D3): result of the filtering of
image A) at three frequencies. Wave beams are visible with an inclination that varies with the frequency, forming St Andrew’s crosses. The angles’
values are indicated in Table 1.

St Andrew’s cross (Lighthill 1986; Voisin 1991). The wave’s en-
ergy is radiated around an angle αth to the radial direction such
that

αth = arccos
(
ω

N1

)
, (4)

where N1 is the value of N in the region considered. This an-
gle is visible in Panels (D1)−(D3) of Fig. 4. To measure it, we
calculate its tangent in each panel using the relation

αm = arctan
(L

h

)
, (5)

where L is the length considered along the longitudinal direc-
tion and h along the radial direction. For the measurement of L,
we have translated the longitude from radians to solar radii. The
values found are indicated in Table 1 and compared to pseudo-
theroretical values calculated from Eq. (4), where the value of
N1 must be deduced from the figure.

For αm, the main source of error is the measurement of the
distances h and L. The error shown here corresponds to the width
of the beam. For αth, we also considered an error coming from
the measure of N1, which depends on the estimation of the start-
ing point of the cross. Another possible source of error could be

Table 1. Comparison between the St Andrew’s cross angles predicted
by the dispersion relation and measured in Fig. 4.

Filtered frequency N1 (mHz) αth (deg) αm (deg)
0.02 mHz 0.15 ± 0.02 82.34 ± 1.03 85.4 ± 2.29
0.03 mHz 0.17 ± 0.02 79.84 ± 1.21 84.29 ± 3.59
0.04 mHz 0.18 ± 0.02 77.16 ± 1.45 82.2 ± 1.79

Notes. Owing to the zooming effect, the α angles actually look smaller
in the lower panels of Fig. 4.

the quality of the filter, but since it has a very narrow bandwidth,
this is negligible compared to the other factors.

This comparison shows that we find a bias between both val-
ues, where αm is systematically larger. A future work will be
dedicated to exploring more frequencies, in order to determine
the extent of this difference precisely and to decide on the pre-
cision of the linear dispersion relation used here. We have al-
ready checked that the influence of the coriolis acceleration is
too weak at this rotation rate to explain the observed difference,
even though it goes in the right direction.
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Fig. 5. 3D and 2D views of portions of the star filtered at different frequencies. On the right, ASH results are represented in gray tones, and we have
superimposed the path of the corresponding wave calculated by the method of raytracing. Only the radiative zone is represented. For ω = 0.2 mHz,
the green dotted circle represents the outer turning point, and the green arrows highlight the nonpropagation region. For ω = 0.3 mHz, the two
blue dotted circles represent the outer and inner turning points, and the blue arrow shows the nonpropagation region. For the four frequencies, the
propagation regions correspond to the colored horizontal lines in Fig. 1.

A112, page 6 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526250&pdf_id=5


L. Alvan et al.: Characterizing gravity waves in 3D nonlinear stellar simulations

3.2. Visualization of the high frequency wave pattern

We now apply this method of filtering to a larger portion of
the star to see if we can visualize other patterns than the quasi-
circular spiral visible in Figs. 2a and b. Our results are shown in
Fig. 5, in 3D and 2D views. To understand the results, we com-
puted the paths in 2D of some IGWs using the method of ray-
tracing. It consists in calculating the value of the wave’s phase
along a path x(t) by resolving the Hamiltonian system

dxi

dt
=
∂W
∂ki

,

dki

dt
= −

∂W
∂xi

,

(6)

where W(x, k, t) = ω, and (xi, ki) the Cartesian coordinates of the
position vector x and the wavevector k (e.g., Lignières 2011).
In our case, we employed polar coordinates, transforming the
system (10) into

dr
dt

=
∂W
∂kr

= vgr,

dθ
dt

=
1
r
∂W
∂kθ

=
vgθ

r
,

dkr

dt
= −

∂W
∂r

+
vgθ

r
kθ,

dkθ
dt

= −
1
r
∂W
∂θ
−
vgr

r
kθ,

(7)

where ug = vgr er + vgθ eθ is the group velocity of the wave at
which the ray propagates. In this work, we use the raytracing
theory in 2D, as employed by many other authors (e.g., Lignières
2011; Christensen-Dalsgaard 2011; Kosovichev 2011), as a tool
for understanding our simulations. When computing the ray
paths shown in Fig. 5, we used the Brunt-Väisälä frequency pro-
file presented in Fig. 1. Further developments of this method
and its generalization in 3D will be the object of a future work
(Mathis et al., in prep.).

The results shown in Fig. 5 illustrate the diversity of the paths
followed by the different waves. The lower the frequency, the
more the ray paths look like spirals. Another way to understand
it is to say that we retrieve the cross shape at the point of depar-
ture of the waves, whose angle α with the radial direction de-
creases with increasing frequency. In particular, the yellow case
(ω = 0.05 mHz) is the closest to the general pattern (Figs. 2a
and b). We thus confirm that what we see without filtering in
the external region of the radiative zone is a sample of low-
frequency waves. The other paths were not visible in Figs. 2a
and b because the low-frequency part of the spectrum is domi-
nant in amplitude (red tones in Fig. 2d). By filtering out this part,
we can visualize the region of propagation of the other waves,
and especially of the resonant g-modes.

The dispersion relation (Eq. (2)) imposes that the wave
frequencies ω are less than the Brunt-Väisälä frequency N.
Consequently, we can define the limit of the propagation region
by two turning points rin and rout such that N(rin) = N(rout) = ω.
For instance, the wave oscillating at 0.3 mHz (bottom panel of
Fig. 5) is confined more deeply in the radiative zone than the
one at 0.05 mHz (top panel). This is also visible in Fig. 1, where
we indicate the regions of propagation of the waves shown in
this section by colored lines. We note that the outer turning
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first zero of the enthalpy flux, and the point rov below which the ampli-
tude of the flux drops to 10% of its most negative value. The radius rbcz
corresponds to the point where the mean entropy gradient changes sign.
The green vertical line represents the positions of rout for ω = 0.2 mHz.

point is different from the penetration depth rov, where convec-
tive plumes deposit the energy transferred to waves. We clarify
the different radii defined here in Fig. 6.

It is interesting to see that, although the excitation region
is located at the base of the convection zone (penetration re-
gion), the perturbation is able to propagate in a “non-propagation
region” (blue arrow and limits materialized by green and blue
dotted circles). This phenomenon can explain the fact that high-
frequency modes ([0.3−0.4] mHz) are less powerful in the spec-
trum (Fig. 2d). In fact, a part of the initial energy transfered from
the convective region to the waves is lost in the evanescent re-
gion, between the overshoot region and rout.

A moving version of Fig. 5 shows that the paths visible here
do not propagate. They oscillate at the chosen frequency (wave-
fronts propagate toward the surface at the phase velocity), but the
envelope remains stable. Thus, what we see here are stationary
modes instead of progressive waves. In the following section, we
show that the method of frequency filtering allows us to distin-
guish between these two families.

3.3. Distinguishing between progressive and standing waves

Along their propagation, IGWs are affected by a damping pro-
cess that is proportional to the radiative diffusivity of the fluid. In
the linear and asymptotic (ω � N) approximations (Zahn et al.
1997), the amplitude of a gravity wave propagating in a nonadi-
abatic medium is damped by a factor e−τ/2 where

τ (r, `, ω) = [`(` + 1)]
3
2

∫ r̂out

r
κ

N3

ω4

dr′

r′3
· (8)

We see that this depends on the radiative diffusivity coefficient κ,
but also on both the frequency ω and the degree `. We introduce
r̂out, the maximum radius, close to the external turning point rout
(with r̂out < rout), until when the JWKB approximation used to
derive this expression can be assumed (see Fig. 6 and the detailed
discussion in Appendix B and in Alvan et al. 2013).

We know that g-modes are formed by positive interferences
between two progressive IGWs. This implies that the amplitude
of these IGWs is high enough to reach the inner turning point rin
and then to go back toward the surface (see Eq. (B.8)).
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Fig. 7. Distinction between progressive and standing waves. The top left panel is a zoom of Fig. 2d (same colorbar). Three horizontal dotted
lines represent the frequencies chosen in Panels A)−C). In these panels, we show the radial velocity in the same region filtered at three different
frequencies. Low-frequency waves are rapidly damped and cannot form g-modes (Panel A)). In contrast, for ω = 0.1 mHz and ω = 0.2 mHz
(Panels B) and C)), we see modes oscillating between the two turning points (white lines).

In Fig. 7 we show the result of different filtering of the same
region of the star. This is a slice of the equatorial plane (θ = π/2)
with the normalized radius as vertical axis and the longitude ϕ
as horizontal axis. In the top righthand panel, we zoom in to the
lower region of the spectrum presented in Fig. 2. We see that,
at ω = 0.016 mHz, the energy is fairly concentrated below the
black line. The result is that the waves propagate over a finite
distance before being completely damped. We draw the reader’s
attention to the vertical axis that stops at 0.45 R� since no wave is
visible beyond. In contrast, for ω = 0.1 mHz and ω = 0.2 mHz,
the main energy of the spectrum is above the black line (red
tones), and in the real space, we clearly see that waves propa-
gate between both turning points (white lines). They are excited
at the top of the radiative zone, they go from rout to rin where
they bounce, and they come back to rout.

We also note that the path of propagation changes between
panels. In particular, the inclination of the rays steepens with
higher frequency following the tendency discussed in Sect. 3.1.
Moreover, we see that the number of rays increases with ω. We
can define an effective wavenumber `eff by

`eff =
2πrout

λ
, (9)

where rout is the outer turning point, and λ a wavelength that can
be measured in the figures. We find `eff ≈ 11 for ω = 0.1 mHz
and `eff ≈ 14 for ω = 0.2 mHz.

The conclusion of this study is to confirm the intuition that
the spectrum realized in our 3D simulations is made up of both
standing modes and progressive waves, as one expects. Since the
radiative damping is more efficient for high values of `, the cor-
responding waves do not have enough energy to bounce at their
inner turning point and to form modes. They thus stay simple
progressive IGWs. Although not discussed here in detail, it is
clear that viscosity will also damp the waves (in addition to ra-
diative diffusion), since we have a Prandtl number close to one
in the radiative zone (Vadas & Fritts 2005).

3.4. Energy concentrated in planes

We now focus on a propagation property of IGWs in 3D. The
results of this part highlight the importance of studying gravity
waves in fully spherical geometry. The asymptotic theory of stel-
lar oscillations (e.g., Gough 1993; Christensen-Dalsgaard 2003;
Aerts et al. 2010) predicts that in the case where we can neglect
the rotation of the star with respect to the waves frequencies
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Fig. 8. Schematic representation of the propagation planes of azimuthal
components of mode ` = 9.

(ω � 2Ω0), the horizontal components of the wavevector
verify r sin θ kϕ = m,

k2
h = k2

θ + k2
ϕ =

`(` + 1)
r2 ·

(10)

Using this property, Gough (1993) has shown theoretically that
the ray paths of waves defined by (`,m) are confined in planes
forming an angle

θ`,m = sin−1
(

m
` + 1/2

)
≈ sin−1

(
m

√
`(` + 1)

)
(11)

with the polar plane3. These planes do not depend on the fre-
quency of the waves, and they are independent of the dispersion
relation. For instance, this means that this property is also true
for acoustic waves. We show an example in Fig. 8, where we
have represented the planes where modes (` = 9,m = 0, 3, 5, 9)
are expected to be concentrated. We see that the highest values
of m correspond to planes close to the equator. By definition, the
m = 0 plane always contains the poles (axisymmetric case).

We are going to test this theoretical result with our 3D non-
linear simulations. To illustrate it, we use the result of a filtering
at frequency 0.3 mHz. The corresponding region in the spectrum
is represented in Fig. 9. We show a zoom of Fig. 2d and indicate
the bandwidth of the filter. The mode located in the middle of
this bandwith is ` = 9. We here recall that the spectrum shown
includes all values of m (see Eq. (3)). As a consequence, the red
peaks of energy visible in this figure are formed by the super-
position of all m components, whose frequency ωn,`,m is slightly

3 The exact expression found by Gough (1993) is the one using `+1/2,
because he employed a general formalism that is different from the
usual projection on spherical harmonics followed by the asymptotic ap-
proximation. Nevertheless, with respect to the precision of our results,
the approximation

√
`(` + 1) ≈ ` + 1/2 is largely acceptable for the

degree of the mode chosen here, ` = 9.
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Fig. 9. Zoom of the spectrum represented in Fig. 2d. The dotted lines
represent the bandwidth of the filter applied (Gaussian function cen-
tered at 0.3 mHz with full width at half maximum σ = 2 × 10−3 mHz)
that allows us to select the mode ` = 9 in particular.

shifted by the effect of the rotation. This rotational splitting is
given by

ωn,`,m = ωn,`,0 +
m

`(` + 1)
Ω0, (12)

where ωn,`,0 is the central peak, corresponding to m = 0 (see
Sect. 4.3.2 of Alvan et al. 2014).

Knowing the rotation rate of our model (1Ω�) and the
frequency considered here, the distance ωn,`,m − ωn,`,0 be-
tween two peaks of different m and same ` is much less
than the one between two modes of consecutive n values (see
Alvan et al. 2014). That is why we do not see any overlap in the
peak and why the filter selects the whole azimuthal components
of the mode.

After having filtered the whole radiative zone, we need to ac-
cess each plane of the sphere and to measure the corresponding
dominant azimuthal number m. For example, to reach the plane
θ9,5 = 31 (represented in green in Fig. 8), we apply a rotation
matrix of angle 90−θ9,5 to the sphere, so that the desired plane
is now located at the equator. We then apply a Fourier transform
with respect to the longitude ϕ to obtain the spectrum in m. The
result for four planes is given in Fig. 10. The white zones corre-
spond to the dominant values of m.

We see that these values are indeed different for each plane
and that they correspond to those expected by the theory. In par-
ticular, the m = 9 peak is clearly dominant in the θ9,9 plane and
so is m = 0 in the θ9,0 plane. That secondary peaks are also vis-
ible can be explained by the following arguments. First, for the
top lefthand panel (θ9,9), we notice two weak peaks at m = 12
and m = 14. We assigned them to the mode ` = 14, which is par-
tially taken into account by the filter (see Fig. 9). Nevertheless,
it is clear that the m = 9 mode is dominant. Then, the theory
predicted that the existence of these planes assumes some ap-
proximation that is not verified by our model. The adiabatic ap-
proximation made by Gough (1993) is not true here since our
waves are submitted to thermal and viscous diffusivities. This
could result in a leakage of the energy from one plane to an-
other. Moreover, the presence of rotation in our model is to be
considered as a small disturbance. Indeed, by using our 3D ray-
tracing code (Mathis et al., in prep.), we have shown that the
propagation of IGWs in planes is no longer verified in the case
of rapidly rotating stars (except for m = 0). Finally, we can in-
voke numerical noise because our spherical harmonic transform
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Fig. 10. Results of Fourier transforms applied to four selected planes of the radiative zone, after a frequency filtering at ω = 0.3 mHz. The main
value of m in each plane corresponds to the one expected by the asymptotic theory. The horizontal axis is voluntarily extended up to m = 30 to
show that we only retrieve the expected values of m.
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Fig. 11. Distribution of the energy transported by the IGWs as a function of the latitude for two different models. The vertical axis is normalized
by the maximum value.
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uses a finite number of mesh points, which results in a leakage
of the energy from one pair (`,m) to another. Despite these limi-
tations, this is a clear example of the need to model those waves
in full spherical geometry.

In Alvan et al. (2014), we showed that the energy of a given
g-mode tends to concentrate in high m components. We clarify
this result in Fig. 11 by showing the distribution of energy as
a function of latitude for the current model (turb2) and for a
less turbulent model discussed in detail in that paper. Indeed, we
see that for the model ref, the energy is concentrated around the
equator. We suspect that this concentration of energy may be due
to the shape of convection (banana cells) in low-latitude regions.
If we increase the turbulence of the convection (model turb2),
the distribution becomes more homogeneous in latitude, but we
still see a peak around the equator (colatitude θ = π/2). For
instance, this could imply a more efficient transport of angular
momentum induced by the presence of IGWs in the equatorial
regions.

4. Conclusion

The aim of this paper has been to understand gravity waves in
solar-like stars. To this end, we analyzed our 3D simulations
in order to deepen our understanding of the complexity of the
spectrum excited. Here, we have explored and described the sub-
structures of this spectrum by showing the co-existence of both
progressive IGWs and standing modes. For the first time in sim-
ulation, we were able to visualize individual IGWs in the inner
regions of the stars.

− Thanks to our frequency filtering method, we isolated some
well-chosen waves in spectral space and shown that their en-
ergy paths in the real space correspond to the one predicted
by the linear raytracing theory.

− We showed that it is possible to distinguish between g-modes
and progressive IGWs by measuring their damping rate. If
the damping rate is too high, IGWs do not reach their in-
ner turning point (whose depth depends on the frequency
of the wave), and they cannot form resonant mode. In con-
trast, we see in the figures that isolated waves taken in the
high part of the spectrum (high frequency and/or high de-
gree `) can bounce at r = rin and form a g-mode. The cut-off
frequency separating g-modes and progressive IGWs scales
with [` (` + 1)]3/8. This analysis gives us precise knowledge
of the composition of the spectrum excited in our model.
Consequently, it gives a rather good understanding of the
same processes acting on the real wave spectrum of the Sun.

− Our third result consists in the study of the spatial distribu-
tion of the waves energy in the 3D radiative zone. We have
shown that, according to the theoretical predictions of Gough
(1993), waves of different degrees ` and azimuthal order m
are distributed differently in space. Their energy is confined
in planes, whose inclination with the polar direction varies
with (`,m). The plane that is the closest to the equator is the
one with m = `. Moreover, as noted in Alvan et al. (2014),
the waves associated to high values of m have the highest
amplitude, which may be explained by studying the reparti-
tion of convective plumes. This result for the concentration
of energy in planes is very important because it could guide
our research into g-modes at the surface of the Sun and our
understanding of the angular momentum transport by gravity
waves.

It is important to highlight that, to perform these simulations, we
adopted values of diffusivities that are necessarily much higher

than their microscopic values. For this reason, some of the pre-
dictions of the model (e.g., concerning the energetical aspects of
the spectrum of IGWs excited by convection) must be consid-
ered with caution.

The direct perspectives of this work are to improve our anal-
ysis by taking the effect of rotation that modifies the ray paths
and break the propagation in planes into account. This project
requires improving both the simulation (exploring other param-
eter regimes) and the theory. Indeed, our analysis is guided by
the results of the raytracing theory but also by theoretical results
about the impact of rotation on the excitation and propagation of
IGWs (Belkacem et al. 2009; Mathis et al. 2014). We also plan
to study the nonlinear aspects of IGWs, including for example
triadic interactions or wave breaking (e.g., Staquet & Sommeria
2002; Barker 2011; Bourget et al. 2013). Finally, the extension
of this study to other types of stars is in progress and will provide
a new source of asteroseismic predictions.
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Appendix A: ASH code and 3D model description

The ASH code solves the set of 3D anelastic hydrodynamic
equations in a spherical geometry. The equations are fully non-
linear in velocity, and we linearize the thermodynamic variables
with respect to a spherically symmetric and evolving mean state.
We denote ρ̄, P̄, T̄ , and S̄ as the reference density, pressure, tem-
perature, and specific entropy. Fluctuations in this reference state
are denoted by ρ, P, T , and S . We assume a linearized equation
of state

ρ

ρ̄
=

P
P̄
−

T
T̄

=
P
γP̄
−

S
cp

, (A.1)

and the zeroth-order ideal gas law

P̄ = Rρ̄T̄ , (A.2)

where γ is the first adiabatic exponent, cp the specific heat per
unit mass at constant pressure, and R the gas constant.

We also introduce the local velocity u =
(
vr, vθ, vϕ

)
expressed

in spherical coordinates (r, θ, ϕ) in the frame rotating at constant
angular velocityΩ0 = Ω0ez. The set of hydrodynamic equations
solved by ASH in the present case is

(a) ∇. (ρ̄u) = 0,

(b) ρ̄

(
∂u

∂t
+ (u.∇) u

)
= −ρ̄∇ω̃ − ρ̄

S
cp
g − 2ρ̄Ω0 × u

− ∇.D−
[
∇P̄ − ρ̄g

]
,

(c) ρ̄T̄
∂S
∂t

+ρ̄T̄u.∇
(
S + S̄

)
= ρ̄ε+∇.

[
κrρ̄cp∇

(
T + T̄

)
+κρ̄T̄∇S + κ0ρ̄T̄∇S̄

]
+ 2ρ̄ν

[
ei jei j − 1/3 (∇.u)2

]
,

(A.3)

where Eq. (A.3a) is the continuity equation in the anelastic ap-
proximation; (A.3b) the momentum equation; and (A.3c) the en-
ergy equation.
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Fig. A.1. Radial profiles of the effective diffusivities κ (thermal) and ν
(viscous). The model used here is called turb2 in Alvan et al. (2014).

We define the gravitational acceleration g, the viscous stress
tensorD defined by

Di j = −2ρ̄ν
(
ei j − 1/3 (∇.u) δi j

)
, (A.4)

with ei j = 1/2
(
∂ jvi + ∂iv j

)
the strain rate tensor and δi j the

Kronecker symbol. The bracketed term on the righthand side
of the momentum equation is initially zero since the sys-
tem begins in hydrostatic balance. For this equation, we used
the Lantz-Braginsky-Roberts (LBR) form (e.g., Lantz 1992;
Braginsky & Roberts 1995) advocated by Brown et al. (2012),
who have shown that the classical anelastic formulation may
introduce a bias in the conservation of energy, in the case of
strongly stably stratified atmospheres. In this formulation, we
use the reduced pressure ω̃ = P/ρ̄ instead of the fluctuating
pressure P and neglect the buoyancy term ρ̄ω̃∇

(
S̄ /cP

)
associ-

ated with the non-adiabatic reference state in the radiative zone.
Thus, the new buoyancy term ρ̄gS/cp only contains the contri-
bution of entropy fluctuations, and the contribution due to pres-
sure perturbations is included in the reduced pressure gradient.
In the energy Eq. (A.3c), κr is the radiative diffusivity based on
a 1D solar structure model, and ν and κ are effective diffusivities
modeling momentum and heat transport by subgrid-scale (SGS)
motions that are unresolved by the simulation. Their profiles are
represented in Fig. A.1.

The diffusivity κ0 is also part of the SGS treatment in the
convective zone and is chosen such that the entropy flux carries
the solar flux outward at the top of the domain. It is negligible in
the radiative zone (Miesch et al. 2000). Finally, the volume heat-
ing term ρ̄ε represents the energy generation by nuclear burning
with ε = ε0T k. The constant ε0 is set such that the radially in-
tegrated heating term equals the solar luminosity at the base of
the convection zone, and k = 9 allows us to take both contribu-
tions of the p-p chains and CNO cycles into account (Brun et al.
2002).

The computational domain extends from rbot = 0 to rtop =

0.97 R� where R� = 6.9599 × 1010 cm is the solar radius. The
boundary conditions at the top of the domain are torque-free ve-
locity conditions and constant heat flux (Brun et al. 2011). The
inner boundary conditions are chosen to deal with the central
singularity at rbot = 0. Conditions on the poloidal and toroidal
components of the mass flux impose that only ` = 1 mode can

go through the center, and thermal condition are also adapted.
This treatment is explained in detail in Alvan et al. (2014).

In the model presented here, the spatial resolution is Nr×Nθ×

Nϕ = 1581×512×1024, with a non-uniform radial grid chosen to
resolve the turbulent convection, the oscillations of IGWs in the
radiative zone, and the steep drop of diffusivities at the interface
between both zones (Alvan et al. 2014).

The 3D simulation is initialized using a reference state
derived from a 1D solar structure model (Brun et al. 2002).
The set of Eqs. (A.3) is then solved in expanding the velocity
and thermodynamic variables in spherical harmonics Y`,m(θ, ϕ)
for their horizontal structure and using a fourth-order finite-
difference approach on a nonuniform grid for their radial part.
For the time integration, we use an explicit Adams-Bashforth
scheme for the advection and Coriolis terms and a semi-implicit
Crank-Nicolson treatment for the diffusive and buoyancy terms
(Glatzmaier 1984; Clune et al. 1999). The reference state is up-
dated during the simulation with the spherically averaged pertur-
bation fields.

After a few convective overturning times, a balance is estab-
lished between the contributions to the total flux of the different
physical processes (Brun et al. 2011; Alvan et al. 2014). It al-
lows us to see that the convective flux becomes negative at the
base of the convective zone, which is the signature of the over-
shoot process (e.g., Zahn 1991), where downflows penetrate the
radiative zone slightly owing to their inertia. This induces a per-
turbation in velocity and temperature at the top of the radiative
zone, which propagates in the form of a gravity wave. With the
bulk excitation process (Lecoanet & Quataert 2013), overshoot
is responsible for the excitation of IGWs in solar-like stars.

Appendix B: Understanding the cut-off frequency
between modes and progressive waves

The goal of this appendix is to derive the dependence of the cut-
off frequency that separates modes and progressive waves, ωc,
on their latitudinal degree (`).

We develop the radial component of the velocity on spherical
harmonics:

ur =
∑
`,m

ur;`,m (r) Yl,m (θ, ϕ) exp (iωt) . (B.1)

Next, we get from the system formed by the linearized momen-
tum, continuity, and heat transport equations in the adiabatic
case

d2Ψ`,m (r)
dr2 + k2

V;` (r) Ψ`,m (r) = 0, (B.2)

where Ψ`,m = ρ
1
2 r2ur;`,m, and

k2
V;` =

(
N2

ω2 − 1
)
` (` + 1)

r2 · (B.3)

From then on, we focus on the low-frequency asymptotic regime
in which ω � N. We follow Zahn et al. (1997) by applying the
JWKB and the quasi-adiabatic approximations that allows us to
derive the expression for ur;`,m:

ur;`,m = A`,mr−
3
2 ρ−

1
2

(
N2

ω2

)− 1
4

P|m|l (cos θ)

× cos
(
ωt + mϕ ±

∫ r̂out

r
kV;`dr′

)
exp

[
−
τ (r, `, ω)

2

]
,(B.4)
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where A`,m is an amplitude coefficient, which includes the nor-
malization of spherical harmonics, and Pm

` are the associated
Legendre polynomials. We recall the radiative damping expres-
sion (Eq. (8))

τ (r, `, ω) = [`(` + 1)]
3
2

∫ r̂out

r
κ

N3

ω4

dr′

r′3
· (B.5)

Since the JWKB approximation falls at the two turning points
(rin, rout), we introduce the two radius (r̂in, r̂out, with rin < r̂in and
r̂out < rout) between which it can be applied (see the detailed
discussion in Berry & Mount 1972; and Alvan et al. 2013).

Then, we derive the horizontally averaged kinetic energy of
IGWs using results derived by Zahn et al. (1997):

EK;`,m (r) =
1
2
ρ
〈
u2
`,m

〉
θ,ϕ

=
1
2

N2

ω2 ρ
〈
u2

r;`,m

〉
θ,ϕ
, (B.6)

where 〈···〉θ,ϕ = 1/4π
∫
θ,ϕ

sin θdθdϕ. Using Eq. (B.4), it becomes

EK;`,m (r) =
1
4

A2
`,m

N
ω

〈[
P|m|l (cos θ)

]2
〉
θ

r−3 exp [−τ (r, `, ω)] .

(B.7)

We then define the cut-off frequency that separates modes and
progressive waves with the following criterion:

EK;`,m (r̂in) = KEK;`,m (r̂out) . (B.8)

When K � 1, the wave has lost a large part of its kinetic energy
and cannot reflect to form a standing mode. Using Eq. (B.7), it
becomes

exp [−τ (r̂in, `, ω)] = K
N (r̂out) r̂−3

out

N (r̂in) r̂−3
in

= α. (B.9)

Assuming that r̂in and r̂out vary weakly with ωc for ωc � N, we
finally obtain

ωc ≈

−
∫ r̂out

r̂in

κN3 dr′

r′3

lnα
[`(` + 1)]

3
2


1
4

≡ β [` (` + 1)]
3
8 (B.10)

as observed in power spectrum of our direct 3D nonlinear ASH
simulations (Fig. 2).
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