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ABSTRACT

Aims. The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises
questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse
sampling strategy could be a powerful substitute for the – usually favoured – contiguous observation of the sky. In our previous paper,
regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of
the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales.
Methods. In this paper, we use a Bayesian experimental design to investigate a “random” sparse sampling approach, where the
observed patches are randomly distributed over the total sparsely sampled area.
Results. We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in
the window function.
Conclusions. This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation
equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the
overall galaxy power spectrum and the cosmological parameters.

Key words. methods: data analysis – cosmological parameters – cosmology: observations

1. Introduction

The accurate measurement of the cosmological parameters relies
on accurate measurements of a type of power spectrum that de-
scribes the spatial distribution of an isotropic random field. The
power spectrum is enough to completely define the perturbations
when the perturbations are assumed uncorrelated Gaussian ran-
dom fields in the Fourier space. A power spectrum (or its Fourier
transform, the correlation function) is what the surveys measure,
from which cosmological parameters are inferred. These spectra
are normally a convolution of the primordial power spectrum and
a transfer function, which depends on the cosmological parame-
ters. One of the most important observed spatial power spectra is
the galaxy power spectrum, first formulated by Peebles (1973),
which is defined as

Pg(k) = 2π2k b2(k) T 2(k)Pp(k), (1)

where Pp(k) = Askns−1 is the primordial power spectrum, which
measures the statistical distribution of perturbations in the early
Universe – for example, just after the inflationary era. The trans-
fer function T (k) is responsible for the evolution of the Universe
and depends on the cosmological parameters, such as the cold
dark matterΩc and the baryonic content of the UniverseΩb. The
galaxy power spectrum, which is the observed quantity, is re-
lated to the underlying matter power spectrum via the bias b
(Kaiser 1984) – galaxies trace dark matter up to this b factor.
The galaxy power spectrum is very rich in terms of constrain-
ing a wide range of cosmological parameters. On large scales,
it probes the structures that are less affected by clustering and
evolution and hence have a “memory” of the initial state of the
Universe. On intermediate scales, the spectrum informs us about

the evolution of the Universe; for example, the epoch of matter-
radiation equality. On relatively small scales, there is a great deal
of information about galaxy clustering via the baryonic acous-
tic oscillations (BAO), which, for example, encodes information
about the sound horizon at the time of recombination. Therefore,
measuring the galaxy power spectrum on a wide range of scales
helps us constrain a range of cosmological parameters.

For accurate measurements of the galaxy power spectrum,
surveys aim to maximize the observed number of galaxies to
overcome the Poisson noise. Considering the large investments
in time and money for these surveys, one would like to know the
optimal survey strategy. For example, to investigate larger scales,
it may be more efficient to observe a larger but sparsely sampled
area of sky instead of a smaller contiguous area. In this case,
one gathers a higher density of states in Fourier space, but at the
expense of an increased correlation between different scales –
aliasing. This would smooth out features on certain scales and
decrease their statistical significance. The sparse sampling ap-
proach was investigated in a previous paper (Paykari & Jaffe
2013), where the advantages and disadvantages of such a de-
sign was studied. It was shown that sparse sampling could be
a powerful substitute for the usually favoured contiguous sam-
pling. In particular, it was shown that for a survey similar to
the Dark Energy Survey (DES)1, a sparse design could help re-
duce the observing time – and hence cost – of the survey with-
out significantly reducing the constraining power of the survey.
Alternatively, for the same amount of observing time, one can
observe a larger but sparsely sampled area of the sky to improve
the constraining power of the survey.

1 http://www.darkenergysurvey.org/
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In Paykari & Jaffe (2013), the observed patches were regu-
larly distributed over the total sampled area of the sky. The fixed
and determined position of the patches introduces a periodic pat-
tern in the window function, which induce a periodic aliasing of
scales: This means that certain scales, corresponding to the fixed
distances between the patches, are more aliased than other scales
(Fig. 8 in Paykari & Jaffe 2013). As a result of this effect, the
regular design may not be desirable.

In this paper, we investigate the optimal strategy for sparse
sampling. We study and compare the advantages and disadvan-
tages of random vs. regular sparse sampling. As in Paykari &
Jaffe (2013), we used a Bayesian experimental design and vari-
ous figures of merit (FoMs) to select the optimal design for con-
straining the galaxy power spectrum bins and a set of cosmolog-
ical parameters.

Chiang et al. (2013) also investigated regular and random
sparse sampling of redshift surveys. They found a bias in the
power spectrum recovery when a regular mask is randomly per-
turbed. Such a bias can be eliminated by explicitly accounting
for the window function corresponding to the particular mask
(selection function) used with an appropriate unbiased estimator
(e.g., Feldman et al. 1994) to recover the power spectrum. Here,
we focus on comparing the induced aliasing of power amongst
scales due to regular and random sampling.

Paper content

In Sect. 2 we present a brief introduction to our methodology.
A full description can be found in Paykari & Jaffe (2013). In
Sect. 3 we present the regular and random sparse designs. Our
results are presented in Sect. 4, and in Sect. 5 we conclude and
give some potential perspectives.

2. Methodology

Bayesian methods have recently been used in cosmology for
model comparison and for deriving posterior probability distri-
butions for parameters of different models. Bayesian statistics
can be used to investigate the performance of future experiments,
based on our knowledge from current experiments (Liddle et al.
2006; Trotta 2007a,b; Mukherjee et al. 2006). We will use this
strength of Bayesian statistics to optimise the observing strategy
for galaxy surveys. For such an optimisation, we need to satisfy
three requirements: 1. specify the parameters that define the ex-
periment; 2. specify the parameters to constrain (with respect to
which the survey is optimised); 3. specify a quantity of inter-
est, generally called the figure of merit (FoM), associated with
the proposed experiment. We wish to extremise the FoM subject
to constraints imposed by the experiment or by our knowledge
about the nature of the Universe.

We assume e denotes the different experimental designs,
Mi are the different models with their parameters θi, and ex-
periment o has already been performed. The posterior P(θ|o) of
experiment o forms our prior probability function for the new
experiment. The FoM depends on the parameters of interest, the
previous experiment (data), and the characteristics of the future
experiment, U(θ, e, o). From this, we can build the expected FoM
E [U] as

E[U |e, o] =
∑

i

P(Mi|o)
∫

dθ̂i U(θ̂i, e, o)P(θ̂i|o, Mi), (2)

where θ̂i represents the fiducial parameters for model Mi. Our
knowledge of the Universe is described by the current posterior

distribution P(θ̂|o). Averaging U over the posterior accounts for
the present uncertainty in the parameters and summing over all
the available models would account for the uncertainty in the
underlying true model. The aim is to select an experiment that
extremises the FoM (or its expectation). One of the common
choices for the FoM is some scalar function of the Fisher ma-
trix, which is the expectation of the inverse covariance of the
parameters in the Gaussian limits (this is explained further in
this section)2. The three common FoMs (Hobson et al. 2009) we
use here are

– A-optimality = log(trace(F)); trace of the Fisher matrix F (or
its log), which is proportional to sum of the variances.

– D-optimality = log (|F|); determinant of the Fisher matrix F
(or its log), which measures the inverse of the square of the
parameter volume enclosed by the posterior.

– Entropy (also called the Kullback-Leibler divergence)

Entropy =
∫

dθ P(θ|θ̂, e, o) log
P(θ|θ̂, e, o)

P(θ|o)

=
1
2

[
log |F| − log |Π| − Tr(I −ΠF−1)

]
, (3)

where P(θ|θ̂, e, o) is the posterior distribution with Fisher ma-
trix F and P(θ|o) is the prior distribution with Fisher ma-
trix Π. The posterior Fisher matrix is F = L + Π, where
L is the likelihood Fisher matrix, which is the current sparse
survey we have designed.

Here, the FoMs are defined so that they need to be maximised
for an optimal design. For a detailed comparison between the
above FoMs we refer to Hobson et al. (2009) and Paykari & Jaffe
(2013). We note that these are not the “expected” FoM – in our
current models of the Universe, we do not expect a significant
difference between the parameters of the same model.

The Fisher matrix (e.g., Kendall & Stuart 1977; Tegmark
1997) has frequently been used for optimisation and forecast-
ing. The Fisher matrix is defined as the ensemble average of the
curvature of the likelihood function L (i.e., it is the average of
the curvature over many realisations of signal and noise),

Fi j =
〈
Fi j

〉

=

〈
−∂

2 lnL
∂θi∂θ j

〉

=
1
2

Tr[C,iC
−1C, jC

−1] , (4)

where subscript,i means differentiation with respect to param-
eter i. The last equality is appropriate for a Gaussian distribu-
tion with correlation matrix C determined by the parameters θi.
The inverse of the Fisher matrix is an approximation of the co-
variance matrix of the parameters, by analogy with a Gaussian
distribution in the θi, for which this would be exact. The Cramer-
Rao inequality states that the smallest frequentist error measured
for θi by any unbiased estimator is 1/

√
Fii or

√
(F−1)ii, for non-

marginalised and marginalised one-sigma errors, respectively.
The derivatives in Eq. (4) generally depend on where they are
calculated in the parameter space, and hence the Fisher matrix is
a function of the fiducial parameters. We furthermore note that

2 One can refer to the Dark Energy Task Force (DETF; Albrecht et al.
2006) FoM, which uses Fisher-matrix techniques to investigate how
well each model experiment would be able to restrict the dark energy
parameters w0, wa, ΩDE for their purposes.
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any results obtained from the Fisher matrix must be taken with
the caveat that these relations only map onto realistic error bars
for a Gaussian distribution, usually most appropriate in the limit
of high signal-to-noise ratios, where the conditions of the central
limit theorem hold. In case of no extremely degenerate parame-
ter directions, we expect that our results are indicative of a full
analysis (Trotta 2007b).

Following Tegmark (1997), the data in pixel i is defined as
Δi ≡

∫
d3x ψi(x)

[
n(x) − n̄

]
/n̄, where n(x) is the galaxy density

at position x and n̄ is the expected number of galaxies at that
position. The weighting function, ψi(x), which determines the
pixelisation and the shape of the survey, is defined as a set of
Fourier pixels

ψi(x) = S (x)
eιki .x

V
×
{

1 x inside survey volume
0 otherwise,

(5)

where V is the total volume of the survey and S (x) is the mask,
which, for example, defines the distribution of the observed
patches. We design the sparsely sampled area of the sky as a
distribution np × np square patches of size M × M, as shown in
Fig. 1. Therefore, the structure of the mask S on the sky is de-
fined as a series of top-hat functions in both x and y directions
and a single top-hat function in the z direction3

S (x) = Θ(z) ×
∑
n,m

Π(x − xn, y − ym), (6)

where xn and ym mark the centres of the patches in our coordi-
nate system and the top-hat functions are defined as

Π(x − xn, y − ym) =

{
1 |(x − xn, y − ym)| < M/2
0 otherwise,

(7)

Θ(z) =

{
1 zmin < z < zmax

0 otherwise.
(8)

Dividing the survey volume into sub-volumes i, Δi is then the
fractional over-density in pixel i. Using this pixelisation, we can
define a covariance matrix as

〈
ΔiΔ

∗
j

〉
= C = (CS )i j + (CN)i j,

where CS and CN are the signal and noise covariance matri-
ces, respectively, and are assumed independent of each other.
For generality, we take the complex conjugate of one member
of the pair. By equating the number over-density

[
n(x) − n̄

]
/n̄

with the continuous over-density δ(x) =
[
ρ(x) − ρ̄] /ρ̄, the signal

and the noise covariance matrices can be defined as

(CS )i j =
〈
ΔiΔ

∗
j

〉
=

∫
dk

(2π)3
k2P(k)Wi j(k), (9)

(CN)i j =
〈
NiN

∗
j

〉
=

∫
dk

(2π)3
k2 1

n
Wi j(k), (10)

where the window function Wi j(k) is defined as the angular av-
erage of the square of the weighting function in the Fourier
space ψ̃i(k),

Wi j(k) =
∫

dΩkψ̃i(k)ψ̃∗j(k) . (11)

This prescription gives us a data covariance matrix for a galaxy
survey, from which we can obtain a Fisher matrix for the pa-
rameters of interest using Eq. (4) above. For a full analysis of
these equations we refer to Dodelson (2003) or Paykari & Jaffe
(2013).

3 We assumed a volume-limited survey so that the top-hat function in
the z direction is a valid approximation.

Fig. 1. Design of the mask for random (left) and regular (right) sparse
sampling. The patches (we observe through the white square patches in
the figure) are distributed randomly and regularly on the surface of the
sky. The fractional sky coverage, fsky, is the same in both designs – we
verified that the patches do not overlap to satisfy this condition.

3. Survey design

We chose a geometrically flat ΛCDM model with adiabatic per-
turbations with a five-parameter model: Ωc = 0.214, Ωb =
0.044, ΩΛ = 0.742, τ = 0.087 and h = 0.719, where H0 =
100h km s−1 Mpc−1. We expect our results to be fairly insensitive
to the exact values of the parameters in theΛCDM model. As ex-
plained above, the FoMs we used here are entropy, A-optimality
and D-optimality, where a SDSS-LRG-like survey was chosen as
the prior Fisher matrixΠ. As in Paykari & Jaffe (2013), we used
a flat sky approximation to sparsify our survey. We divided the
total sparsely sampled area of the sky into small square patches
and distributed them randomly (left panel of Fig. 1) and regu-
larly (right panel of Fig. 1). The total observed area is the sum of
the areas of all the patches, (np×M)2, and the total sampled area
is the total area that bounds both the masked and the unmasked
areas. Hence the fractional sky coverage is fsky = (np×M)2/Atot,
which is the same in both designs. The patches have a size of
41 Mpc in both x and y directions. This patch size avoids enter-
ing the non-linear regime.

We note that there are three scales that control the behaviour
of the window function; one is the size of the patches, the other
is the distance between them, and the third one is total size of
the survey, that is, the extent of the survey. In both the regular
and the random designs, the size of the patches and the total
size of the survey is exactly the same. In this scenario, the only
difference between the two designs is the distribution of the dis-
tances/separation between the patches; in the regular design, the
patches are placed at 180 Mpc from one another, while in the
random case the distances span a range.

We also note that we had the same number of patches in
both designs, and we verified that the patches did not overlap.
This is so that the fractional sky coverage fsky is the same in
both cases to ensure that we have the same information gain for
both surveys. We note that in practice, random pointings on the
sky may not be optimal from the instrument point of view (for
example, taking into account the overheads). However, in this
work we aim to optimise a survey for our cosmological purposes.
Optimising the instruments to best match the cosmologically
optimised survey is beyond the scope of this paper.
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Table 1. Figure of merit (FoM) for the galaxy power spectrum and the
cosmological parameters for regular and random sampling.

FoM Power spectrum Cosmological parameters

Design Regular Random Regular Random

Entropy 39.3 39.2 3.5 3.5
D-optimality −1415.5 −1415.9 11.2 11.3
A-optimality −20.6 −20.6 7.8 7.8

Notes. The FoMs are defined so that they need to be maximised for an
optimal design.

4. Results

In Fig. 2 we compare the power spectrum Fisher matrix Fi j for
regular and random sampling. The main peak in the middle is the
expected inverse error of the middle bin of the power spectrum,
that is, 1/σii. Moving away from the main peak, each point rep-
resents the correlation between that bin and the middle one, that
is, 1/σi j. In the case of regular sampling, there are secondary
peaks at other scales in addition to the main peak at the cen-
tre, which indicates an induced correlation at these scales. The
position of the secondary peaks is a consequence of the fixed dis-
tances between the patches in the mask. The patches are placed
at 180 Mpc from one another, meaning the distance between the
peaks in Fourier space are at 2π/(180 Mpc) � 0.035 Mpc−1, as
shown in Fig. 2. The regularity in the mask introduces a periodic
pattern in the window function, which in turn induces correla-
tions at that period. In this design, certain scales are therefore
measured with less statistical significance. This could be a dis-
advantage if we wish to constrain the behaviour of the power
spectrum at a certain scale, such as the BAO scale.

On the other hand, the patches are placed at random positions
in the case of random sampling. As there is no preferred scale in
the mask, all scales are on average constrained with almost the
same statistical significance. This means that the power leakage
from the main peak is evenly distributed amongst all scales.

The amplitude and the width of the main peak are controlled
by the fractional sky coverage fsky and the total sparsely sampled
volume Vtot, respectively. As fsky and Vtot are the same in both
regular and random sampling, the amplitude and width of the
main peaks are the same in both cases.

Table 1 shows the FoM for the galaxy power spectrum bins
on the left and the cosmological parameters on the right. As can
be seen, both regular and random designs have very similar val-
ues for both the power spectrum bins and the parameters. This
shows that for the same fsky, the arrangement of the patches does
not play an important role in constraining the galaxy spectrum
bins or the parameters. Therefore, the constraining power of the
survey is not controlled by the distribution of the patches, but, as
investigated in Paykari & Jaffe (2013), by the total extent of the
sampled area. We also note that the FoMs we chose are only sen-
sitive to the integrated constraining power over all scales of the
spectrum; that is, the total information gain of the survey, which
is proportional to fsky. As this is the same for both designs, we
do expect similar values for the FoMs for both cases. However, if
we are interested in any particular scale, random sampling would
be the preferred approach as it causes evenly distributed leakage
of power into all scales, as demonstrated in Fig. 2. That is, the
error at any particular scale has low correlations with all other
scales.

To this end, we summarise the main features of Fig. 2:

1. The width of the main peak in both designs (and the sec-
ondary peaks in the regular case) is controlled by the total
size of the survey. As this is the same in both designs, the
width is the same in both cases.

2. The position of the secondary peaks in the regular case is
controlled by the position of the patches in the mask. We note
that apart from the periodicity in x and y directions, there is
also periodicity at all angles, especially at the 45◦ line.

3. The size of the patches generates an envelope function over
the whole k range. As the sizes of the patches are so much
smaller than the total size of the survey, their effect over our
k range is negligible. The patches also have the same size in
both designs, therefore their effect in the window function is
exactly the same.

4. As the random mask has been designed as a reflection of
a smaller random mask in x and y and is hence not com-
pletely randomised over the whole area, some regularities
are expected. For example, the symmetric shoulders at k �
0.037 Mpc−1 and k � 0.06 Mpc−1 on the main peak of the
random case is due to the patches placed at the edges of the
mask.

5. As fsky is the same in both designs, the total information
gained in both surveys is the same. We note that an average
over the positions of the patches in the mask is constant:〈

S (x)
〉

nm
∼ 〈Π(x − xn, y − ym)〉nm,

=

∫
dxn dym p(xn)p(ym)Π(x − xn, y − ym),

=
1

4XY

∫ X

−X

∫ Y

−Y
dxn dymΠ(x − xn, y − ym),

= constant, (12)

where 2X and 2Y are the total extent of the survey in x and
y directions, respectively, and p(xn) and p(ym) are the proba-
bility distribution of the patches in x and y directions. We note
that this equation is correct in the case where fsky is constant
in each realisation, or in other words, we verified that we have
the same number of non-overlapping patches for each reali-
sation. Therefore, in terms of the FoMs, both designs have
the same constraining power for the galaxy power spectrum
and the cosmological parameters.

5. Conclusion

For future surveys, one would like to know the optimal invest-
ment of time and money. In the current era, where statistical
errors have been greatly reduced and compete with systematic
errors, observing a greater number of galaxies (to overcome the
Poisson noise) may not necessarily improve our results. One de-
sires more strategic ways to make observations and take control
of systematics. This inspired a new approach in making obser-
vations (see Paykari & Jaffe 2013), in which the sampled area
was covered sparsely as opposed to contiguously. In this case,
one gathers a higher density of states in Fourier space, but at the
expense of an increased correlation between different scales –
aliasing. This would smooth out features on certain scales and
decrease their statistical significance. In the previous work, the
area of the sky was divided into small square patches, regularly
distributed across the total area. It was shown that the loss of the
constraining power of the survey induced by the sparse sampling
is negligible.

A113, page 4 of 6
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Fig. 2. Top panel: middle row of the power spectrum Fisher matrix Fi j for five realisations of the random sparse sampling. The main peak in the
middle is the inverse error of the middle bin of the power spectrum 1/σii. Moving away from the main peak, each point represents the correlation
between that bin and the middle one 1/σi j. Bottom panel: same for regular (black) and average of the realisations of the random (blue) sampling.
In the case of regular sampling, there are secondary peaks at specific scales, which is a consequence of the fixed position of the patches. On the
other hand, for random sampling, there is no preferred scale and correlation is evenly distributed between all scales. The symmetric shoulders on
the main peak, at k � 0.037 Mpc−1 and k � 0.06 Mpc−1, in the random case are due to the design of the random mask, which has been obtained by
a reflection in the x and y plane for simplicity (see main text). Note that the y-axis is in log scale.

More interestingly, it was shown that for the same amount of
observing time, one could sparsely sample a larger total area of
sky, which improves the constraining power of the survey. One
therefore gains a great deal by spending the same amount of time
on a larger but sparsely sampled area. Hence the sparse sampling
could be a promising substitute for the contiguous observations
and the way forward for designing future surveys.

In this work, we have investigated the best strategy for sparse
sampling. One constraint in this previous design was the fixed
and determined positions of the observed patches. The regular
design of the mask introduces a periodic pattern in the window
function, which induces periodic correlations at specific scales
corresponding to the distances between the patches. This can be
a problem if we are interested in a specific scale in the power
spectrum. Here, we compared random sparse sampling to regular
sparse sampling. Because there is no preferred scale in the mask
in the random design, we found that all scales are constrained
with almost the same level of statistical significance. This means

that the power leakage from the main peak is evenly distributed
amongst all scales. Hence the random sparse sampling is the pre-
ferred approach if we are interested in any specific scale.

Moreover, in terms of constraining the power spectrum over
all scales or constraining the cosmological parameters, there is
no difference between regular or random sampling. This means
that the arrangement of the patches does not control the con-
straining power of the survey for the galaxy power spectrum
or the cosmological parameter measurements. This therefore
means we can design our mask in a way that is practically or cos-
mologically more suitable. This helps because in realistic cases
there are always regions in the sky one would like to avoid, such
as the plane of the Milky Way.

Acknowledgements. The authors would like to thank A. Woiselle and F. Lanusse
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