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ABSTRACT

Context. The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal
rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Rotation rates in the
central regions of intermediate-mass core helium burning stars (secondary clump stars) have recently been measured.
Aims. Our aim is to exploit the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior
of secondary clump stars using Kepler data in order to place constraints on angular momentum transport in intermediate-mass stars.
Methods. We select a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a
thorough statistical analysis, we show that the splittings of gravity-dominated modes (trapped in central regions) and of p-dominated
modes (trapped in the envelope) can be measured. We then use these splittings to estimate the amount of differential rotation by using
inversion techniques and by applying a simplified approach based on asymptotic theory.
Results. We obtain evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central
regions rotating from 1.8 ± 0.3 to 3.2 ± 1.0 times faster than the envelope. The last target is found to be consistent with a solid-body
rotation.
Conclusions. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the
interior of intermediate-mass stars, either during the short-lived subgiant phase or once He-burning has started in the core. In either
case, this should bring constraints on the angular momentum transport mechanisms that are at work.

Key words. stars: oscillations – stars: rotation – stars: evolution

1. Introduction

Even though rotation is known to have an important impact on
stellar structure and evolution, we still lack a theoretical un-
derstanding of how the internal rotation rates of stars evolve
in time. Several physical processes can transport angular mo-
mentum (AM) in stars: hydrodynamical instabilities and merid-
ional circulation (Zahn 1992; Mathis & Zahn 2004), internal
gravity waves (IGW) excited at the edge of convective regions
(Charbonnel & Talon 2005), and magnetic mechanisms, either
from a buried fossil magnetic field (Gough & McIntyre 1998) or
from magnetic instabilities (Spruit 1999; Rüdiger et al. 2014). It
is now well known that rotationally induced mechanisms of AM
as they are currently understood are far too inefficient to produce
a rigid rotation for the solar radiative interior as found by helio-
seismology (Schou et al. 1998; Chaplin et al. 1999; García et al.
2008).

The asteroseismic measurement of the internal rotation pro-
files of red giants has recently shed some new light on this long-
standing problem. The very high precision reached by the Kepler
space mission has made it possible to measure the rotational
splittings of mixed modes, i.e. of modes that behave both as pres-
sure modes in the envelope and as gravity modes in the core. It
was thus shown that stellar cores spin up during the subgiant

phase (Deheuvels et al. 2014, hereafter D14) and that a signif-
icant radial differential rotation is established by the time stars
reach the red giant branch (RGB; Beck et al. 2012; Deheuvels
et al. 2012; hereafter D12, Beck et al. 2014). This was expected
as a consequence of the severe core contraction that occurs after
the main-sequence turnoff. However, the core rotation rates mea-
sured for red giants are much slower than they would be in the
absence of AM transport. Furthermore, by measuring the core
rotation of several hundreds of red giants, Mosser et al. (2012a)
showed that even though stellar cores keep contracting, they ac-
tually spin down during the evolution along the RGB. These
observations clearly indicate that a very efficient mechanism of
AM transport operates between the core and the envelope of red
giants.

For now it seems that none of the known mechanisms of
AM transport are able to account on their own for the evo-
lution of the rotation profiles of low-mass stars in the RGB
obtained from seismology. Purely hydrodynamical processes
including the effects of meridional circulation and turbulence
shear as currently understood predict core rotation rates that
are 2 to 3 orders of magnitude higher than the observations
(Eggenberger et al. 2012; Marques et al. 2013; Ceillier et al.
2013). Magnetic instabilities were also considered as a possible
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source of AM transport. The instability of toroidal magnetic
fields under the influence of differential rotation (azimuthal
magnetorotational instability, AMRI) is a promising candidate.
Rüdiger et al. (2014, 2015) showed that the resulting effective
viscosity may be high enough to account for the slow core ro-
tation rate of red giants, but stratification needs to be taken
into account in order to quantify its effect. On the other hand,
Cantiello et al. (2014) showed that even if the so-called Tayler-
Spruit (Spruit 2002) dynamo loop exists, which is still debated, it
does not generate sufficient AM transport to reproduce the slow
core rotation rates observed in Kepler red giants. Interestingly,
the transport of AM through IGW excited at the bottom of the
convective envelope could account for the core/envelope decou-
pling during the subgiant phase. During this phase, IGW are ex-
pected to damp out and release their AM before they reach the
stellar core owing to the large increase in the Brunt-Väisälä fre-
quency, which could decouple the core from the envelope (Talon
& Charbonnel 2008; Fuller et al. 2014). However, IGW seem un-
able to then produce the recoupling that is necessary to account
for the spin down of the core observed by Mosser et al. (2012a).

So far, most of the constraints obtained from the seismol-
ogy of red giants involve low-mass stars (M � 2.4 M�) which
ascend the RGB before triggering He-burning in a flash due to
the degeneracy of the core. These stars are known as red clump
stars in reference to their location in the HR diagram. Fewer con-
straints exist on the internal rotation of intermediate-mass stars.
Recently, Kurtz et al. (2014) were able to seismically measure
the internal rotation of a main sequence A-type star and found
that this star rotates almost rigidly. However, it should be noted
that this star might not be representative of all A-type stars since
it has a peculiarly slow rotation rate. After the end of the MS,
intermediate-mass stars cross the subgiant phase and the bot-
tom of the RGB on a Kelvin-Helmoltz timescale, before set-
tling in the clump (they are then referred to as secondary clump
stars). This raises the question whether AM transport can be fast
enough to operate on such a short timescale. If not these stars
should reach the clump with strong differential rotation and very
fast-spinning cores. Mosser et al. (2012a) were able to seismi-
cally measure the mean rotation rate in the g-mode cavity for
secondary clump stars and found periods ranging from 20 to
250 days. One must keep in mind that the He-burning core is
convective, so gravity waves do not propagate inside the core
and the rotation rates obtained by Mosser et al. (2012a) corre-
spond to the layers just above the He-burning convective core.
Assuming solid-body (SB) rotation at the end of the main se-
quence, Tayar & Pinsonneault (2013) showed that the rotation
rates found by Mosser et al. (2012a) are compatible with a SB-
rotation profile in the clump for intermediate-mass stars, which
suggests that an efficient AM redistribution has operated by the
time these stars reach the clump.

In this paper, we aim at testing the hypothesis of a SB-
rotation in the interior of intermediate-mass clump stars with
seismology, using Kepler data. It has been shown that a ratio
between the mean core rotation and the mean envelope rotation
can be estimated from the splittings of mixed modes in subgiants
and young red giants, see Goupil et al. (2013, hereafter G13),
D14. On the other hand, for more evolved red giants the rota-
tional splittings are dominated by the contribution of the central
layers, and no reliable estimate of the envelope rotation can be
obtained (G13). We here show that constraints on the amount of
differential rotation can be obtained for clump stars, provided the
splittings of p-dominated modes can be reliably estimated. This
latter condition is not obviously satisfied for clump stars because
the mode widths of their p-dominated modes are comparable to

the rotational splittings. We thus dedicate special care to estab-
lishing the significance of our estimates of the splittings of these
modes. In Sect. 2, we select the red-clump stars that are the most
likely to provide constraints on the amount of differential ro-
tation among the Kepler targets. We then proceed to estimate
the mode frequencies and rotational splittings in Sect. 3, and we
address the question of the significance of the estimated split-
tings. In Sect. 4, we validate the simplified approach proposed
by G13 to measure the internal rotation using the observed split-
tings and we apply it to all the stars of our sample. We thus
find evidence for a weak radial differential rotation in six of the
seven selected targets, the last one being consistent with a SB ro-
tation. In Sect. 5 we try to obtain complementary information on
the rotation profiles of three stars of the sample based on high-
resolution spectroscopic observations (HERMES spectrograph),
but the constraints we obtain are too loose to test the seismic re-
sults. We finally discuss the implications of our results in terms
of AM transport in intermediate-mass stars in Sect. 6.

2. Selection and characterization of targets

Among the red giants observed with Kepler, we searched for sec-
ondary clump stars that are most likely to provide constraints on
the amount of differential rotation. For this purpose, we used the
complete Kepler dataset available, i.e. 4 yr of data from quarters
Q0 through Q17 with the long cadence mode (integration time
of 29.4 min). The light curves were processed using the Kepler
pipeline developed by Jenkins et al. (2010), and corrections from
outliers, occasional jumps, and drifts were also applied (García
et al. 2011). The power density spectra were obtained by us-
ing the Lomb-Scargle periodogram (Lomb 1976; Scargle 1982),
and we then applied the screening process that is described in
the sections below in order to identify optimal targets.

2.1. Selection based on stellar mass

We first applied a mass criterion to select secondary clump
stars. Standard stellar models predict that stars that form with
a mass over 2.4 M� trigger He-burning in a non-degenerate
core. However, non-standard physical processes such as core
overshooting during the MS can have a large influence on this
theoretical threshold (Montalbán et al. 2013). In addition, stars
are expected to lose mass during their ascent of the RGB, so
that the lower limit on the masses of secondary clump stars is
in fact lower than the predicted theoretical threshold. Based on
the properties of the observed mixed modes in Kepler secondary
clump giants, Mosser et al. (2014) observationally estimated the
mass-limit to about 1.9 ± 0.2 M� (see Fig. 1 of their paper). In
this study, we used the upper bound of this observational thresh-
old in order to ensure that only secondary clump stars are re-
tained, and selected stars with masses above 2.1 M�. For this
purpose, we applied seismic scaling relations, which required us
to estimate the mean large separation of acoustic modes Δν and
the frequency of maximum power of solar-like oscillations νmax
in the considered targets. An estimate of the effective tempera-
ture is also needed, which we obtain photometrically following
Pinsonneault et al. (2012; see Sect. 2.1.3).

2.1.1. Estimate of νmax

In order to estimate the frequency of maximum power of the os-
cillations, we fitted a Gaussian envelope to the power spectrum
in the neighborhood of the detected solar-like oscillations using
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Fig. 1. Échelle diagram of KIC7581399, obtained from 4 yr of Kepler
data. The white diamonds correspond to a fit of the asymptotic expres-
sion of radial modes given by Eq. (1) to the observed radial modes. The
gray and red diamonds correspond to a fit of the asymptotic expression
of mixed modes given by Eqs. (2), (4) and (5) (only the red modes were
used to perform the fit).

a maximum likelihood estimate (MLE) method. The central fre-
quency of the fitted Gaussian function provides an estimate of
νmax. The fit required including a description of the background.
The contribution from granulation was modeled as a Harvey pro-
file (Harvey 1985), and white noise was added to account for
photon noise. As was pointed out by Karoff et al. (2013) and
Kallinger et al. (2014), we found that an additional Harvey pro-
file was required to correctly fit the observed background. In ad-
dition to providing an estimate of νmax, this fit yields a model for
the background, which we also use to extract the properties of
the oscillation modes (Sect. 3).

2.1.2. Estimate of Δν

To estimate the mean large separation Δν of the targets, we fol-
lowed the procedure of Mosser et al. (2013). It consists in fitting
a second-order asymptotic expression to the observed modes.
Instead of including the second-order terms as prescribed by
Tassoul (1980), the authors proposed to introduce a constant pa-
rameter α corresponding to a linear variation of the large separa-
tion with radial order n. This yields the following expression for
radial modes:

νn,l=0 =

[
n + εp +

α

2
(n − nmax)2

]
Δν. (1)

The index nmax was chosen so that it matches the frequency of
maximum power of the oscillations νmax, and it is therefore not
necessarily an integer. By smoothing the power spectrum of the
observed stars, we obtained first approximate estimates of the
frequencies of l = 0 modes. The expression given by Eq. (1)
was then fitted to our estimates of the l = 0 mode frequencies,
yielding optimal values of Δν, εp, and α. An example of this fit
is shown in Fig. 1 for one star of the sample. This provides a
precise observational value of Δν, which can be translated in the
asymptotic value if needed.

2.1.3. Seismic scaling relations

We then used seismic scaling relations that relate the global seis-
mic parametersΔν and νmax to stellar properties such as the mass,

radius and surface gravity (Brown et al. 1991). These relations
could be derived because νmax scales to good approximation as
the acoustic cut-off frequency (Brown et al. 1991; Stello et al.
2008; Belkacem et al. 2011). To obtain estimates of the stellar
masses and radii of the considered stars, an estimate of the ef-
fective temperature of the star was also needed. We have used the
photometric estimates of Teff obtained from the recipe proposed
by Pinsonneault et al. (2012) that we applied to the griz photom-
etry in the Kepler input catalog (KIC). As mentioned above, we
retained only the stars that have a mass above 2.1 M�.

2.2. Selection based on the evolutionary stage

To select secondary clump stars, we needed to distinguish core-
He-burning (clump) stars from H-shell-burning (RGB) stars. As
is well known, this cannot be achieved merely from the location
of stars in the HR diagram. However, these two classes of stars
have a very different core structure (clump stars have a convec-
tive core due to core-He burning). As a result, the mean period
spacing of g modes for these two classes of stars are sufficiently
different to distinguish them spectacularly well (Bedding et al.
2011). We thus evaluated the period spacing ΔΠ1 of l = 1 modes
in the considered stars. For this purpose, we followed the recipe
that Mosser et al. (2012b) adapted from the asymptotic expres-
sion of p-g mixed modes of Unno et al. (1989). According to
Eq. (16.50) of Unno et al. (1989), the matching in the evanes-
cent zone of solutions corresponding to g-modes in the core and
to p-modes in the envelope requires that

tan(θp) = q tan(θg) (2)

where

θg ≡
∫ rb

ra

kr dr, and θp ≡
∫ rd

rc

kr dr (3)

and the radii ra and rb (resp. rc and rd) are the inner and outer
turning points of the g-mode (resp. p-mode) cavity. The parame-
ter q corresponds to the coupling between the p- and g-mode cav-
ities. Its variations with frequency are neglected. Mosser et al.
(2012b) have developed the expressions of the phases θp and θg
in order to take into account higher-order terms in the asymptotic
developments of p- and g-modes, yielding

θp =
π

Δν

[
ν −

(
νp

)
n,1

]
(4)

θg = π

(
1
ΔΠ1ν

− εg
)

(5)

where the (νp)n,1 correspond to the frequencies of theoretical
pure l = 1 p-modes. The values of (νp)n,1 can be obtained from
the second-order asymptotic expression of radial p-modes as
follows(
νp

)
n,1
= νn,l=0 + (1/2 − d01)Δν (6)

where d01 corresponds to the mean small separation built with
l = 0 and l = 1 modes. The value of this quantity is not known a
priori since pure l = 1 p-modes cannot be observed.

For a given period spacing ΔΠ1, coupling term q, phase term
εg, and d01 parameter, the mode frequencies can be approxi-
mated by the solutions of Eq. (2) that can be obtained with a
Newton-Raphson algorithm. We then searched for the combina-
tion (ΔΠ1, q, εg, d01) that reproduces the observed modes at best.
The results are given for each star in Table 1. The mode frequen-
cies obtained with the optimal set of parameters for one target of
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Table 1. Period spacings.

KIC-Id ΔΠ1 (s) q εg d01 (μHz)

KIC5184199 239.7 0.22 0.91 0.48
KIC4659821 214.6 0.18 0.66 0.51
KIC8962923 299.8 0.27 0.76 0.34
KIC3744681 233.1 0.41 0.45 0.16
KIC9346602 241.4 0.23 0.43 0.47
KIC7467630 293.5 0.19 0.85 0.39
KIC7581399 222.4 0.18 0.74 0.47

the sample are shown in Fig. 1. We note that we have also used
our estimates of ΔΠ1, q, and εg to evaluate the trapping of the
modes in Sect. 4.2.

We retained only the stars for which the mean period spacing
ΔΠ1 was found to be above 120 s in order to select only clump
stars (see Bedding et al. 2011; Mosser et al. 2014).

2.3. Selection based on the rotational splittings of the modes

Finally, an obvious condition to measure the amount of differen-
tial rotation was that the oscillation modes of the stars should be
clearly split by rotation so that reliable rotational splittings can
be extracted from the power spectra. A first inspection of Kepler
oscillation spectra immediately shows that such stars are harder
to find among clump stars than among RGB stars. There are two
reasons for this: (1) the lifetimes of the modes are shorter for
clump stars, so that they have larger widths, and (2) as shown
by Mosser et al. (2012b), the cores of clump stars have longer
rotation periods than those of RGB stars, which means that their
rotational splittings are smaller. As a result of these two com-
bined effects, the rotational splittings of the modes are often
comparable to their widths, which complicates the measurement
of splittings. This is not so much a problem for g-dominated
modes, which have larger inertias and therefore shorter widths.
However, the situation is more complicated for p-dominated
modes. We stress that the splittings of these latter modes are ab-
solutely necessary to estimate the amount of differential rotation
between the core and the envelope. We therefore performed a
first pre-selection of targets based on a visual inspection of the
échelle diagrams of all the considered giants to identify those
whose mixed modes are most clearly split. We note that the most
favorable stars are those that are seen equator-on (inclination an-
gle i = 90◦), because in this case only the m = ±1 components
of l = 1 modes, which are separated by twice the rotational split-
ting, are visible.

The characteristics of the selected targets are listed in
Table 2. Only the targets that provided enough reliable splittings
(see Sect. 3) to estimate differential rotation are mentioned. The
following study is based on this sample of seven targets.

3. Extraction of rotational splittings

In order to measure the amount of differential rotation in the se-
lected targets, we needed to extract the rotational splittings of
the modes. For this purpose, we used a maximum likelihood es-
timate (MLE) method in the same way as D14, which we briefly
summarize here. We performed individual fits of each rotational
multiplet (modes of same radial order n and degree l). Among
the multiplets, the m-components were modeled as Lorentzian
profiles. The components were assumed to have a common
width Γ. Within the multiplets, the height ratios between the

components are given by a visibility factor that depends on the
inclination angle i of the star (Gizon & Solanki 2003; Ballot
et al. 2006). Finally, we assumed that the multiplets are sym-
metric with respect to the central m = 0 component. They are
thus equally spaced by the rotational splitting whose expression
is given by

(δνs)n,l =

∫ R

0
Kn,l(r)

Ω(r)
2π

dr (7)

where the functions Kn,l(r) are the rotational kernels, which de-
pend on the eigenfunctions of the modes.

As was mentioned in Sect. 2, one of the main challenges
of this work was to establish that the splittings of p-dominated
modes can be recovered for clump stars. For the selected tar-
gets, several p-dominated modes are visually split (see Fig. 2)1.
However, owing to the larger linewidths of these modes, it is
not clear at first sight whether this is caused by the rotational
splitting of the modes, or only the result of stochastic excitation.
To distinguish between these two cases, we performed statistical
tests, following both a frequentist and a Bayesian approach in a
complementary way.

3.1. Frequentist approach

The frequentist approach consists in computing a false-alarm
probability using the so-called H0 test. For each of the observed
l = 1 multiplets in the oscillation spectra of the selected targets,
we performed two MLE fits using successively the two follow-
ing hypotheses:

– H0 hypothesis: the observed multiplet has a splitting much
smaller than the mode width (δνs � Γ). In this case, the
mean profile of the whole multiplet corresponds to a sin-
gle Lorentzian profile and is described by n0 = 3 parame-
ters (frequency ν0 of the central component, linewidth Γ, and
height H).

– H1 hypothesis: the rotational splitting of the mode is at least
on the order of magnitude of the mode width (δνs � Γ). The
mean profile then corresponds to a well-separated multiplet
and is described by n1 = 5 parameters (the same used for the
H0 hypothesis plus the inclination angle i and the splitting
δνs).

We denote as �0 and �1 the likelihoods of the best fits obtained
under the H0 to the H1 hypotheses, respectively. We note that fit-
ting the power spectrum in the neighborhood of the considered
multiplet under the H1 hypothesis necessarily gives an agree-
ment with the data at least as good as fitting under the H0 hy-
pothesis. Indeed, the best fit under the H0 hypothesis can also
be obtained with the H1 hypothesis and a pole-on inclination
(i = 0◦). As a consequence, the likelihood �0 is always lower
than the likelihood �1. To determine whether or not the H0 hy-
pothesis can be rejected, one needs to assess the significance
of the likelihood improvement when switching from the H0 to
the H1 hypothesis. Wilks (1938) has shown that the quantity
ΔΛ ≡ −2 [ln(�1) − ln(�0)] follows the distribution of a χ2 with
(n1−n0) degrees of freedom (see also Appourchaux et al. 1998).
We have verified in our particular case that ΔΛ indeed follows
the distribution of a χ2 with n1 − n0 = 2 degrees of freedom by
performing Monte Carlo simulations (see Appendix A).

Supposing that we have computed the value ΔΛ for a given
mode, the false-alarm probability is estimated by computing the

1 The trapping of the modes is evaluated in Sect. 4.
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Fig. 2. Section of the oscillation spectrum of KIC3744681 in the neighborhood of 4 p-dominated modes. The red curves represent the best fits to
the data.

Table 2. Global parameters of selected targets.

KIC-Id Δν (μHz) νmax Teff (K) M/M� R/R� log g

KIC5184199 7.89 ± 0.13 94.7 ± 0.4 5197 ± 89 2.18 ± 0.23 8.60 ± 0.40 2.907 ± 0.012
KIC4659821 8.26 ± 0.09 101.5 ± 0.3 5160 ± 98 2.21 ± 0.18 8.39 ± 0.29 2.935 ± 0.013
KIC8962923 6.90 ± 0.13 79.3 ± 0.3 5253 ± 91 2.23 ± 0.26 9.48 ± 0.49 2.832 ± 0.013
KIC3744681 5.47 ± 0.13 61.1 ± 0.5 5084 ± 68 2.45 ± 0.35 11.43 ± 0.73 2.712 ± 0.015
KIC9346602 5.10 ± 0.13 55.7 ± 0.3 5162 ± 79 2.51 ± 0.36 12.06 ± 0.79 2.675 ± 0.013
KIC7467630 6.04 ± 0.09 70.6 ± 0.4 5114 ± 103 2.57 ± 0.27 10.87 ± 0.49 2.776 ± 0.015
KIC7581399 6.58 ± 0.13 80.9 ± 0.4 5301 ± 80 2.90 ± 0.34 10.67 ± 0.57 2.843 ± 0.013

probability that a mode in the H0 hypothesis (i.e. not rotationally
split) can produce such a high value of ΔΛ. This probability is
given by

p = P(χ2(2 degrees of freedom) � ΔΛ) (8)

and is commonly referred to as the p-value. Low p-values indi-
cate that a mode described as a sing Lorentzian profile is unlikely
to produce the observations.

For each observed l = 1 mode, we computed the p-value us-
ing Eq. (8), and we rejected all the modes for which a p-value
higher than 0.05 was found. We applied this process to all the tar-
gets that were pre-selected in Sect. 2, and kept only the stars for
which at least five significant splittings were obtained. This left
us with seven targets, which are listed in Table 2, with a number
of significant splittings ranging from 6 to 14. The extracted fre-
quencies and rotational splittings of the selected multiplets are
given along with their p-values in Tables 3 and 4 for all the stars
of this sample. To each multiplet corresponds an estimate of the
inclination angle i. We note that for every star the angles found
for each mode agree quite well with one another and consistently
point toward inclination angles close to 90◦ (see Tables 3 and 4).
This is understandable considering that the stars were selected so

that the modes are clearly split, which greatly favors stars with
high inclination angles, as pointed out in Sect. 2. We note that
in two cases (mode at ν ∼ 89.1 μHz for KIC7581399 and mode
at ν ∼ 92.6 μHz for KIC5184199), the best-fit solutions point
toward a solution with an inclination angle around i = 55◦ and
a splitting around twice the value obtained for the other modes.
This is likely caused by the influence of a higher-degree mixed
mode nearby (see discussion about these modes in Sect. 3.2),
and these two modes were discarded in the following.

3.2. Bayesian approach

The limits of the H0 test used in the frequentist approach are
well known. To summarize in our case, a low p-value ensures
that noise (in our case a multiplet where the splitting is much
smaller than the mode width) has little chances to produce the
observed signal. However, it says nothing about the probability
of producing the observations under the H1 hypothesis (i.e. when
the multiplet is detectably split by rotation).

This can be remedied by applying a Bayesian approach,
which produces an estimate of the consistency between a given
model M j and a dataset D. In the present case, the dataset D
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Table 3. Extracted frequencies ν0 and rotational splittings δνs for the l = 1 modes of KIC5184199, KIC4659821, KIC8962923, and KIC3744681.

KIC5184199

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

69.466 ± 0.009 0.105 ± 0.009 90.00 ± 9.60 0.019 92.0
76.319 ± 0.008 0.086 ± 0.009 90.00 ± 6.70 0.003 95.0
82.640 ± 0.011 0.098 ± 0.011 90.00 ± 12.98 0.039 55.8
84.883 ± 0.009 0.080 ± 0.009 89.99 ± 67.88 0.008 99.1
91.505 ± 0.007 0.093 ± 0.007 90.00 ± 10.56 0.000 100.0
92.614 ± 0.009 0.130 ± 0.012 54.09 ± 6.90 0.010 86.2
94.115 ± 0.010 0.102 ± 0.009 90.00 ± 9.93 0.000 98.2
98.241 ± 0.004 0.093 ± 0.004 79.98 ± 4.10 0.000 100.0
101.195 ± 0.009 0.076 ± 0.010 90.00 ± 17.27 0.003 96.7
105.753 ± 0.014 0.106 ± 0.013 90.00 ± 17.29 0.043 99.6

KIC4659821

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

80.659 ± 0.007 0.088 ± 0.008 74.27 ± 7.66 0.002 93.2
94.645 ± 0.004 0.082 ± 0.005 78.71 ± 5.16 0.000 99.8
96.193 ± 0.009 0.069 ± 0.009 90.00 ± 16.60 0.019 91.7
110.366 ± 0.008 0.085 ± 0.008 90.00 ± 9.88 0.006 99.5
112.513 ± 0.012 0.082 ± 0.017 79.58 ± 22.04 0.011 83.5
113.765 ± 0.010 0.084 ± 0.013 71.38 ± 10.90 0.006 94.8

KIC8962923

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

57.275 ± 0.004 0.070 ± 0.004 70.68 ± 8.97 0.015 49.3
70.532 ± 0.004 0.069 ± 0.004 81.46 ± 6.65 0.000 99.1
71.883 ± 0.006 0.058 ± 0.006 90.00 ± 14.54 0.004 98.3
72.932 ± 0.010 0.080 ± 0.010 90.00 ± 10.66 0.027 91.2
73.958 ± 0.004 0.065 ± 0.005 68.92 ± 6.47 0.001 99.5
77.046 ± 0.004 0.077 ± 0.004 72.66 ± 6.30 0.005 97.5
78.672 ± 0.006 0.083 ± 0.006 65.72 ± 7.83 0.020 94.9
81.110 ± 0.008 0.056 ± 0.008 90.00 ± 15.31 0.042 67.9
84.792 ± 0.007 0.079 ± 0.007 80.62 ± 7.29 0.001 99.8

KIC3744681

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

51.747 ± 0.002 0.093 ± 0.002 70.30 ± 8.08 0.000 71.6
52.286 ± 0.009 0.108 ± 0.010 77.16 ± 6.49 0.018 75.5
57.558 ± 0.010 0.082 ± 0.009 90.00 ± 8.51 0.015 92.6
58.093 ± 0.007 0.082 ± 0.007 90.00 ± 17.37 0.000 96.4
61.856 ± 0.004 0.090 ± 0.004 73.38 ± 9.17 0.000 99.3
62.822 ± 0.007 0.095 ± 0.007 79.48 ± 5.76 0.000 99.7
63.542 ± 0.009 0.088 ± 0.010 74.02 ± 8.09 0.000 97.8
64.215 ± 0.009 0.109 ± 0.009 80.26 ± 8.43 0.001 93.3
67.845 ± 0.009 0.097 ± 0.009 90.00 ± 142.99 0.000 98.8
68.803 ± 0.010 0.074 ± 0.011 80.16 ± 12.18 0.017 70.8
69.560 ± 0.011 0.121 ± 0.011 69.23 ± 7.10 0.020 72.6
73.660 ± 0.008 0.088 ± 0.007 90.00 ± 11.93 0.000 92.3
74.545 ± 0.009 0.100 ± 0.010 67.17 ± 7.29 0.004 58.8
75.537 ± 0.013 0.098 ± 0.011 79.17 ± 12.22 0.036 69.1

Notes. Column 3 gives the estimate of the inclination angle i obtained from each mode. Only modes whose splitting was found significant with
a p-value (given in Col. 4) below 0.05 are given. Column 5 gives the posterior probability obtained from a Bayesian analysis that the rotational
splitting of the mode is detected (see Sect. 3.2). The modes whose parameters are shown in italics were discarded (see text).

corresponds to the observed power spectrum in the neighbor-
hood of a given detected l = 1 mode, and we aim at testing the
two models of power spectrum M0 and M1 that correspond to the
hypotheses H0 and H1 defined in Sect. 3.1. In other words, model
M0 is built assuming of a single Lorentzian profile, whereas
model M1 corresponds to a triplet of Lorentzian profiles. Each
model M j relies on a set of free parameters θ, which contains

for both models the background level, the central frequency ν0,
the mode linewidth Γ, and the mode amplitude A, and addition-
ally for model M1 the inclination angle i and the rotational split-
ting δνs.

Within a Bayesian approach, we must define a prior proba-
bility law π(θ|M j, I), based on a certain number of assumptions
on the signal that are here summarized as I. The chosen priors
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Table 4. Same as Table 3 for targets KIC9346602, KIC7467630, and KIC7581399.

KIC9346602

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

43.638 ± 0.005 0.073 ± 0.005 82.85 ± 7.72 0.000 96.4
44.324 ± 0.005 0.067 ± 0.005 90.00 ± 10.53 0.000 98.6
48.203 ± 0.006 0.083 ± 0.006 90.00 ± 14.14 0.001 91.8
48.688 ± 0.007 0.070 ± 0.007 78.18 ± 8.28 0.007 70.2
53.694 ± 0.004 0.080 ± 0.004 90.00 ± 4.77 0.000 100.0
54.119 ± 0.005 0.074 ± 0.005 82.59 ± 6.82 0.000 99.8
54.678 ± 0.004 0.077 ± 0.005 78.11 ± 5.24 0.000 99.4
57.587 ± 0.007 0.098 ± 0.008 76.24 ± 6.34 0.023 78.7
58.334 ± 0.007 0.073 ± 0.007 90.00 ± 5.94 0.006 91.6
60.037 ± 0.003 0.071 ± 0.004 77.90 ± 5.35 0.019 58.1
62.775 ± 0.003 0.080 ± 0.003 72.70 ± 7.46 0.000 99.4
64.942 ± 0.008 0.074 ± 0.008 90.00 ± 17.27 0.038 65.6
67.956 ± 0.005 0.082 ± 0.005 81.02 ± 7.68 0.000 90.1
73.922 ± 0.002 0.079 ± 0.003 78.09 ± 6.60 0.000 97.5

KIC7467630

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

61.557 ± 0.002 0.059 ± 0.001 58.65 ± 47.98 0.032 60.7
67.666 ± 0.004 0.064 ± 0.003 89.99 ± 16.34 0.000 59.0
68.903 ± 0.008 0.064 ± 0.007 90.00 ± 13.72 0.011 97.1
69.891 ± 0.010 0.076 ± 0.010 89.99 ± 23.16 0.005 94.6
70.769 ± 0.008 0.071 ± 0.008 90.00 ± 20.24 0.003 98.7
82.877 ± 0.010 0.101 ± 0.012 69.44 ± 7.59 0.011 70.3

KIC7581399

ν0 (μHz) δνs (μHz) i (◦) p-value Posterior probability (%)

63.546 ± 0.006 0.084 ± 0.006 74.69 ± 7.28 0.005 95.7
67.852 ± 0.006 0.086 ± 0.004 90.00 ± 10.37 0.001 50.5
68.811 ± 0.005 0.079 ± 0.005 80.13 ± 8.35 0.031 49.7
76.375 ± 0.010 0.083 ± 0.011 78.07 ± 12.43 0.003 88.8
81.297 ± 0.005 0.082 ± 0.005 90.00 ± 16.03 0.000 92.3
82.502 ± 0.009 0.072 ± 0.012 78.81 ± 15.49 0.023 89.4
83.314 ± 0.010 0.095 ± 0.009 89.98 ± 19.56 0.001 98.4
89.056 ± 0.010 0.155 ± 0.011 60.01 ± 6.93 0.001 94.7

are explicited below. We used the Bayes theorem to define the
posterior probability density function of a given set of parame-
ters θ assuming model M j and knowing the dataset D through
the relation

π(θ|D,M j, I) =
π(θ|M j, I)π(D|θ,M j, I)

P(D|M j, I)
(9)

where π(D|θ,M j, I) corresponds to the likelihood already intro-
duced in Sect. 3.1, π(θ|M j, I) corresponds to the afore-mentioned
priors, and P(D|M, I) is the evidence of model M j knowing the
data D and is defined as

P(D|M j, I) =
∫
π(θ|M j, I)π(D|θ,M j, I)dθ. (10)

We assumed the following prior probability laws for the free pa-
rameters θ:

– amplitude A: uniform prior for the variable ln πA2 over
[ln(P0/1000), ln(1.2P0)] where P0 is the total power in the
fitting window. This non-informative prior is very loose.

– width Γ: uniform prior for lnΓ over the range [ln r,
ln(0.4 μHz)] with Gaussian decays around these bound-
aries. r is the frequency resolution of the spectrum (about
0.008 μHz) and 0.4 μHz corresponds to an upper limit of ra-
dial mode widths observed in these stars. With this prior, we

assumed that the widths of l = 1 mixed modes cannot excess
those of l = 0 modes, which are purely acoustic.

– central frequency ν0: uniform prior for ν0 spanning an inter-
val of 0.6 μHz around the middle of the fitting window.

– rotation splitting δνs: uniform prior for δνs over [0,0.3 μHz].
– inclination angle i: uniform prior for cos i over [0, 1]. This

prior derives from the assumption of isotropy of the inclina-
tions of stars.

– background level: we used as a prior the result of a global fit
of the background as described in Sect. 3.1. By doing so, we
used information coming from outside the fitting window.

To compare two different models Mi and M j we used the ev-
idence of these models as introduced in Eq. (10) to define the
so-called odd ratio

Oi j =
P(Mi|D, I)
P(M j|D, I)

=
P(Mi|I)
P(M j|I)

P(D|Mi, I)
P(D|M j, I)

· (11)

By assuming that the two competing models Mi and M j are
equiprobable, i.e. P(Mi|I) = P(M j|I) = 1/2, the odd ratio is
equivalent to the Bayes factor

Oi j = Bi j =
P(D|Mi, I)
P(D|M j, I)

· (12)
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The relative probability to favor model M j over Mi is then
given as

P(M j|D) = (1 + Oi j)−1 (13)

which derives from Eq. (11) if we assume that no other model
than models Mi and M j is possible.

To calculate the evidences of models M0 and M1, we de-
veloped an automated parallel tempering Markov chain Monte
Carlo similar to the one developed by Benomar et al. (2009).
We then computed the odd ratio O01 for all the modes that were
found to have a p-value below 0.05 in Sect. 3.1, and derived the
probability P(M1|D) to favor model M1. The results are listed
in the last column of Tables 3 and 4. All the modes for which
the obtained probability was higher than 85% were considered
as reliable and used to probe the rotation profiles of the selected
targets.

We stress that the approach followed here is conservative. In
particular, we have assumed that either model M0 or model M1
is correct, i.e. that the contribution from only one l = 1 mode
is present in the fitting window. If other non-negligible compo-
nents (such as higher-degree modes) are also present then model
M1 can appear nearly as bad as model M0 in describing the spec-
trum, even though a clear l = 1 multiplet is present. This occurs
especially for g-dominated modes, which lie in a region of the
spectrum where mixed l = 2 and l = 3 modes can be present.
For these modes, the relatively low posterior probability does not
mean that the splitting cannot be measured, but that the model
would need to be improved. In the present case, we did not seek
to improve it because enough g-dominated modes were found
significant with the current approach to estimate the amount of
differential rotation (see Sect. 4).

By imposing that the measured splittings should produce
both a low p-value (frequentist approach) and a high posterior
probability P(M1|D) (Bayesian approach), we ensured that only
very robust splitting detections are validated, at the expense of
potentially discarding good data. However, a robust selection
process was needed to clearly establish that the splittings of p-
and g-dominated modes can be reliably extracted, which is a nec-
essary condition to estimate the amount of differential rotation.
With this double selection process, we retained between 3 and
10 significant splittings for the stars of the sample. In the fol-
lowing only these splittings are used to infer the internal rotation
profile, but the splittings that passed only the frequentist test are
also shown on the plots.

4. Measuring the amount of differential rotation

Two different approaches have been proposed to obtain informa-
tion on the internal rotation profile of red giants using the mode
splittings that were selected in Sect. 3.

1. The first one requires a stellar model that closely matches
the observed mode frequencies, as well as the classical con-
straints on the star (atmospheric parameters). If such a model
can be found, one gains access to the eigenfunctions of
the modes, which makes it possible to determine where the
modes are trapped and to compute the rotational kernels of
the modes. Information on the rotation profile can then be
obtained either by performing inversions of Eq. (7) (D12,
D14), or by applying forward techniques (Beck et al. 2014).
In spite of these advantages, this method is time-consuming
because it requires computing a model that matches the ob-
served mode frequencies. More importantly, it is model-
dependent. This can be a problem here since the high val-
ues of ΔΠ1 that are observed for a good proportion of Kepler

clump stars fail to be reproduced by several evolution codes
(e.g. Montalbán et al. 2013), although some codes might not
have this problem (Lagarde et al. 2012). It was suggested that
this discrepancy could be solved by adding overshooting at
the boundary of the convective core induced by He-burning
(Montalbán et al. 2013), but this is still a matter of debate.

2. A simplified approach was proposed by G13. By using
asymptotic developments from Unno et al. (1989), they
showed that estimates of the mean rotation rate in the g-mode
and p-mode cavities can be obtained using only the mode fre-
quencies, i.e. without having to compute a stellar model of
the observed target. This constitutes an appealing alternative
to the first method in the cases where the observed ΔΠ1 can-
not be reproduced by stellar models. The downside is that it
relies on several layers of approximations and needs to be
tested in the case of clump stars.

We applied both approaches to one test-target of our sample. We
chose KIC7581399 because it has a value of ΔΠ1 that is low
enough to be satisfactorily reproduced by current stellar models,
so that the first approach can be applied. We note that the internal
structure of the best-fit models obtained for KIC7581399 (see
Sect. 4.1) is probably not entirely correct because we know that
current models underestimate the values of ΔΠ1 of clump stars.
However, it has been shown that the rotation profiles obtained
from inversions do not critically depend on the input physics of
the reference model, provided the frequencies of the observed
modes are well reproduced (D12, D14). Our objectives were
twofold. First, we wanted to verify that the rotational splittings
that were extracted in Sect. 3 are sufficient to provide a con-
straint on the ratio between the core and the envelope rotation
rates. Secondly, we aimed at testing the simplified method of
G13 on red clump stars, in order to determine whether it can be
applied to all targets.

4.1. Model-dependent method: the test case of KIC7581399

4.1.1. Modeling KIC7581399

In order to perform inversions of Eq. (7), one needs to have ac-
cess to the rotational kernels of the modes, and therefore to a
stellar model of the star. For this purpose, we used the evolution-
ary code MESA (Paxton et al. 2011). We used the OPAL 2005
equation of state (Rogers & Nayfonov 2002) and opacity tables.
The nuclear reaction rates were computed using the NACRE
compilation (Angulo et al. 1999). We assumed the classical so-
lar mixture of heavy elements of Grevesse & Noels (1993).
Convection was described using the classical mixing length the-
ory (Böhm-Vitense 1958) with a mixing length parameter cali-
brated on the Sun (αMLT = 2.08). The effects of microscopic dif-
fusion and overshooting from convective regions were neglected
in this study.

To model KIC7581399, we followed the procedure proposed
by Deheuvels & Michel (2011) to model subgiants with mixed
modes, and later adapted to red giants by D12. We refer to these
papers for more details about the method, which is only briefly
summarized here. The authors showed that the combined knowl-
edge of the mean large separation 〈Δν〉 and mean period spacing
of l = 1 modes 〈ΔΠ1〉 yields tight constraints on the stellar mass
and age when other physical inputs are fixed. To model a red gi-
ant, they thus advocated to vary all physical parameters except
for the mass and age, which are determined each time through
an iterative process so that the observed 〈Δν〉 and 〈ΔΠ1〉 are
correctly reproduced. In practice, the constraint given by 〈Δν〉
is advantageously replaced by the observed frequencies of the
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Fig. 3. Échelle diagram of the best-fit model for KIC7581399. The open
circles correspond to the observed frequencies and the colored filled
symbols represent those of the model (blue squares: l = 0 modes, red
triangles: l = 1 modes).

Table 5. Parameters of the best-fit model of KIC7581399.

Mass (M�) Age (Myr) Yi (Z/X)i Radius (R�) Teff (K)

2.65 5686 0.29 0.035 10.38 5129

lowest-order radial modes because the latter are less sensitive
to near-surface effects. For the models, the mean period spacing
〈ΔΠ1〉 was estimated from the approximate expression

〈ΔΠ1〉 ≈ π2
√

2

(∫ rb

ra

NBV

r
dr

)−1

, (14)

where NBV is the Brunt-Väisälä frequency. We note that 〈ΔΠ1〉
could in principle be estimated from the mode frequencies them-
selves by following the procedure described in Sect. 2.2. This
would, however, require the frequencies of l = 1 modes to
be computed for a large number of models, which is time-
consuming. It was shown that there is a good agreement with
the estimate of 〈ΔΠ1〉 obtained from Eq. (14) and that obtained
from the mode frequencies (Mosser et al. 2012b; D14).

We computed a grid of models, varying both the initial he-
lium content Yi and the initial metallicity (Z/X)i. For each point
of this grid, the procedure described above was applied to es-
timate the mass and age. The mode frequencies of each model
were then computed using the oscillation code losc (Scuflaire
et al. 2008). Before comparing them to the observed frequencies,
we corrected them from the well-known near-surface effects us-
ing the recipe proposed by Kjeldsen et al. (2008), which consists
of adding to the mode frequencies a power law whose exponent
is calibrated in the Sun. As was pointed out by Kjeldsen et al.
(2008), mixed modes have a larger inertia in the core than pure
acoustic modes. Therefore, for these modes the correction terms
were weighted by the ratio between the inertia of the closest ra-
dial mode to the inertia of the mode itself (Aerts et al. 2010).

We found a model that reproduces the surface parameters
of the stars and closely matches the observed mode frequen-
cies and the star’s effective temperature. An échelle diagram of
its mode frequencies corrected from near-surface effects as de-
scribed above is shown in Fig. 3. This model, whose main prop-
erties are listed in Table 5 is used as a reference model in the
following.

Fig. 4. Extracted rotational splittings for l = 1 modes of KIC7581399
(open black circles indicate modes that passed both frequentist and
Bayesian significance tests and open gray circles modes that passed the
frequentist test only). The colored circles indicate theoretical splittings
for linear rotation profiles that reproduce the rotation of KIC7581399
in the g-mode cavity as obtained from the OLA method, and with ratios
Ωcore/Ωsurf of 1 (purple), 2 (blue), 10 (red), or 100 (green) from top to
bottom.

4.1.2. Mode trapping

The eigenfunctions of our reference model of KIC7581399 were
used to estimate the trapping of the modes. For each mode, we
computed the parameter ζ defined as the ratio between the ki-
netic energy of the mode in the g-mode cavity and the total ki-
netic energy

ζ ≡ Ig
I
=

∫ rb

ra
ρr2

[
ξ2r + l(l + 1)ξ2h

]
dr∫ R


0
ρr2

[
ξ2r + l(l + 1)ξ2h

]
dr
, (15)

where ξr and ξh are the radial and horizontal displacements. A
value of ζ close to 1 indicates that the mode is mainly trapped in
the g-mode cavity, and a value of ζ close to 0 that it is trapped
in the p-mode cavity2. Figure 4 represents the rotational split-
tings of KIC7581399 that passed the statistical test of signifi-
cance described in Sect. 3 as a function of the mode trapping ζ.
We clearly observe that the splittings of p-dominated modes are
comparable to the splittings of the g-dominated modes. This is a
striking difference with the RGB stars, for which p-dominated
modes have a splitting about half that of g-dominated modes
(Mosser et al. 2012a). This already suggests that there might
be less differential rotation in secondary clump stars than in
RBG stars.

4.1.3. Rotation in the g-mode cavity

It was shown for RGB stars that the mean rotation rate in the
g-mode cavity can be precisely determined using the splittings
of mixed modes (D12, Mosser et al. 2012a). For this purpose
it is very convenient to use the OLA (optimally localized aver-
ages) method to invert Eq. (7). This method, which was already
successfully applied to the Sun (Schou et al. 1998; Chaplin et al.
1999) as well as to subgiants and RGB stars (D12, D14), con-
sists of building combinations of the rotational kernels such that

2 The p-mode cavity depends on the degree l of the mode. Since we
here consider l = 1 modes only, the p-mode cavity refers to the cavity
of l = 1 p-modes throughout the paper.
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Fig. 5. Averaging kernel obtained for KIC7581399 with the OLA
method in the g-mode cavity.

the resulting averaging kernels K(r; r0) =
∑

k ck(r0)Kk(r) are
as localized as possible around a target point r0. When setting
r0 = rg, where rg is the mean radius of the g-mode cavity, we
obtain an averaging kernel that is well localized in the g-mode
cavity (see Fig. 5). In particular, the contribution from the en-
velope is efficiently suppressed. This can be used to obtain a
precise estimate of the mean rotation in the g-mode cavity 〈Ωg〉.
For KIC7581399, we obtained 〈Ωg〉/(2π) = 173 ± 20 nHz.

We must stress that unlike RGB stars, the core of clump stars
is convective owing to He-burning. The convective core is very
small because of the high temperature sensitivity of the 3α re-
action (it represents less than 0.2% of the stellar radius and less
than 4% of the stellar mass for KIC7581399); nonetheless, the
most central layers are not probed by g modes, which are evanes-
cent in convective regions. So we must keep in mind that the
rotation in the very core cannot be probed by seismology.

4.1.4. Core-envelope contrast

One crucial point in this study, which aims at estimating the
amount of radial differential rotation in clump stars, is to deter-
mine whether or not we can also obtain an estimate of the mean
envelope rotation rate. For this purpose, we considered simple
“two-zone” models that rotate as solid bodies with a rate Ωg
in the g-mode cavity, and with a rate Ωp in the p-mode cavity.
Naturally, we used for Ωg the estimate that was obtained from
the observations in Sect. 4.1.3. We chose values of Ωp such that
the ratio Ωg/Ωp is equal to 1, 2, 10, and 100 successively. These
synthetic rotation profiles along with the rotational kernels of
the best-fit model for KIC7581399 were plugged into Eq. (7)
to obtain theoretical splittings, which are plotted as a function
of the mode trapping ζ in Fig. 4. This figure clearly shows that
the splittings of p-dominated modes can be used to constrain the
mean rotation in the p-mode cavities. For KIC7581399, a SB ro-
tation profile throughout the star (Ωg = Ωp) can be excluded, as
well as rotation profiles with a large amount differential rotation
(Ωg/Ωp � 10). The observations appear to be consistent with a
core-envelope rotation contrast around 2 (blue curve).

This can be further quantified by searching for the parame-
ters (Ωg,Ωp) that reproduce the observed splittings at best. For
this purpose, we minimized the reduced χ2

red defined as

χ2
red =

1
M − 2

M∑
k=1

[
δνk −ΩpAk(r0) − ΩgBk(r0)

σk

]2

, (16)

Fig. 6. Comparison between the mode trapping parameter ζ of the
l = 1 modes of the best-fit model for KIC7581399 computed from the
mode eigenfunctions (Eq. (15), black solid line) and the approximate
expression ζ̃ computed from the mode frequencies using the prescrip-
tion of G13 modified in Appendix B (Eq. (B.4), red filled circles and
red dashed line). For reference, we also show the ζ̃ computed with the
original prescription of G13 (gray dotted line and open circles).

where δνk are the M observed splittings, σk the corresponding
error bars, r0 is the limit between the p-mode and g-mode cav-

ities, Ak(r0) ≡ ∫ r0

0
Kk(r) dr and Bk(r0) ≡ ∫ R

r0
Kk(r) dr. We note

that r0 can be chosen anywhere in the evanescent zone between
the p-mode and g-mode cavities with very little change in the
results. For KIC7581399, we obtained Ωg/(2π) = 156 ± 12 nHz
and Ωp/(2π) = 95 ± 15 nHz. The mean rotation rate in the
g-mode cavity is fully consistent with the result obtained with
the OLA method. We thus obtained a core-envelope rotation
contrast of 1.6±0.4 for KIC7581399. This shows that the amount
of differential rotation in the secondary clump star KIC7581399
is much lower than for RGB stars.

4.2. Testing the Goupil et al. (2013) approach
on KIC7581399

We then tested the simplified model-independent approach pro-
posed by G13 on our test-target KIC7581399 in order to deter-
mine whether it can be applied to the targets of our sample. The
method of G13 relies on two consecutive approximations.

The first step consists in approximating the mode trapping
parameter ζ by an expression ζ̃ that depends solely on the mode
frequencies, with the advantage that ζ̃ can be estimated from the
observations. To establish this relation, the authors used approx-
imate expressions of the eigenfunctions derived from JWKB
analysis. For all the modes whose splittings could be reliably ex-
tracted in KIC7581399, we computed ζ̃ following the prescrip-
tion of G13 (Eqs. (A.27) and (A.28) of their paper). As can be
seen in Fig. 6 (gray symbols), we obtained a quite good agree-
ment with the values of ζ computed from the mode eigenfunc-
tions in Sect. 4.1.2, at the exception of nearly pure-g modes for
which ζ̃ slightly overestimates ζ. As described in Appendix 4.2,
we found that the agreement could be improved by releasing
one of the approximations made by G13. We therefore propose
a slightly modified expression for ζ̃ given by Eq. (B.4) (see
Appendix B for more detail). The ζ̃ computed with this latter
expression are in excellent agreement with the actual ζ parame-
ters (red symbols in Fig. 6). This new expression for ζ̃ was tested
on several other models of clump stars and systematically gave
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Table 6. Mean rotation rates in the g- and p-mode cavities obtained for
the selected targets with the method of G13.

KIC-Id
〈Ωg〉
2π

(nHz)
〈Ωp〉
2π

(nHz)
〈Ωg〉
〈Ωp〉

5184199 200 ± 13 63 ± 20 3.2 ± 1.0
4659821 165 ± 14 79 ± 15 2.1 ± 0.4
8962923 138 ± 8 79 ± 10 1.8 ± 0.3
3744681 194 ± 20 63 ± 36 3.1 ± 1.8
9346602 164 ± 6 53 ± 15 3.1 ± 0.9
7467630 121 ± 18 96 ± 28 1.3 ± 0.4
7581399 164 ± 12 87 ± 14 1.9 ± 0.3

an agreement as good as the one shown in Fig. 6. We thus con-
firm that an estimate of the mode trapping can be obtained from
the frequency modes without having to compute a seismic model
of the star, as was claimed by G13.

In principle, the rotational kernels of the modes are required
to extract information about the rotation profile from the mode
splittings. However, G13 showed that the rotational splittings
can be related to the parameter ζ through a linear dependence
whose coefficients depend only on the mean rotation rate in the
g-mode cavity 〈Ωg〉 and the mean rotation rate in the p-mode
cavity 〈Ωp〉:

δνs =

( 〈Ωg〉/(2π)
2

− 〈Ωp〉/(2π)
)
ζ + 〈Ωp〉/(2π) (17)

Estimates of 〈Ωg〉 and 〈Ωp〉 can thus be obtained by performing a
linear regression of the function δν(ζ). This was already applied
to early red giants by D14, who found that it provided results in
excellent agreement with the inversions performed from stellar
models. However, they had been using the trapping parameters ζ
computed from stellar models. We here tested the method when
replacing the parameters ζ by their approximate expression ζ̃
computed with Eq. (B.4). For KIC7581399, such an approach
yielded

〈Ωg〉/(2π) = 164 ± 12 nHz

〈Ωp〉/(2π) = 87 ± 14 nHz

〈Ωg〉/〈Ωp〉 = 1.9 ± 0.3.

These results are in very good agreement with the values ob-
tained the mode eigenfunctions of the best-fit model in Sect. 4.1.
This validates the simplified approach proposed by G13.

4.3. Constraints on the core-envelope contrast for seven
Kepler secondary clump star

To estimate the amount of differential rotation for the seven tar-
gets selected in our sample, we have used the simplified ap-
proach of G13 that was described and validated with the test-
case of KIC7581399 in Sect. 4.2. For each star, the trapping
of the mode was estimated by computing the parameter ζ̃ us-
ing Eq. (B.4). Figure 7 shows the mode splittings that passed
the statistical test described in Sect. 3 as a function of ζ̃. As was
already observed for KIC7581399 in the previous section, it is
striking to see how little the splittings vary with the mode trap-
ping. For one star of the sample (KIC7467630), the splittings of
p-dominated modes are found to be larger than the splittings of
g-dominated modes.

We then used Eq. (17) to obtain estimates of 〈Ωg〉 and 〈Ωp〉
for all the stars of the sample. The results are given in Table 6.

The ratios 〈Ωg〉/〈Ωp〉 were found to vary from 1.3 to 3.2 for
all the targets. This clearly confirms that the radial differential
rotation in secondary clump stars is much weaker than it is for
RGB stars, as was suggested by the analysis of KIC7581399.
However, we can exclude the scenario of a SB rotation for six
of the seven selected targets, the last one (KIC7467630) being
marginally consistent with a SB-rotating profile.

5. Spectroscopic observations

To complement seismic estimates of the rotation profile, we tried
to obtain constraints on the surface rotation rate using high-
resolution spectroscopic observations. For this purpose, we have
observed three stars of the sample with the High Efficiency and
Resolution Mercator Échelle Spectrograph (HERMES, Raskin
et al. 2011; Raskin & Van Winckel 2014) mounted on the 1.2 m
Mercator Telescope at the Spanish Observatorio del Roque de
los Muchachos of the Instituto de Astrofísica de Canarias, with
a resolving power of RHERMES = λ/Δλ � 85 000, where λ and
Δλ are the wavelength and the width per wavelength bin, re-
spectively. The raw spectra were reduced and wavelength cal-
ibrated through thorium–argon reference spectra with the cur-
rent version of the HERMES data reduction pipeline (version 5,
Raskin et al. 2011). The radial velocities (RV, Table 7) were ob-
tained through a weighted cross-correlation of the wavelength
range between 478 and 653 nm of each spectrum with a dis-
crete G2 template (Raskin et al. 2011; Raskin & Van Winckel
2014). The post-processing and renormalization of the spectra
were performed following Beck et al. (2015).

The total line broadening LB was determined from the equiv-
alent width of seven unblended Fei lines, following the proce-
dure of Gray (2005) and Hekker & Meléndez (2007). The av-
erage broadening and its uncertainty, reported in Table 7 for the
three stars were derived from the average and standard deviation
of the individual total line broadening of the seven unblended
FeI lines and deconvolved with the instrumental broadening of
1.76 km s−1. The stellar line broadening consists in contributions
of the projected surface velocity, v sin i and the macro turbulence,
vmacro such that

LBstellar sin i =
√

(v sin i)2 + v2macro. (18)

Disentangling the two contributions is challenging for red giant
stars, as they have very narrow lines and vmacro was shown to
have substantial contributions for this type of stars. Following
the scaling relations from Hekker & Meléndez (2007) for the
value of vmacro, we estimated the contributions of both param-
eters to be on the order of ∼6 km s−1. However, owing to the
large scatter in the data from which the scaling relations were
obtained, we refrain from deriving a v sin i for each star. Instead,
we use the stellar line broadening as an upper limit to the value
of v sin i by assuming that vmacro = 0.

In the present case, the inclination angles i of the stars can be
estimated from seismology. For each star, the extraction of each
rotational splitting provided an estimate of i (see Tables 3 and 4).
By bringing these estimates together, we obtained estimates of i
for the three stars, which are listed in Table 7. We used these
values to correct the stellar line broadening from the inclination
effect, and thus obtained upper limits to the surface velocity of
these stars. Since estimates of the radius of the three stars were
already obtained from seismic scalings (see Table 2), we could
translate these velocities into upper limits for the surface rotation
rates, which are given in the last column of Table 7. These upper
limits are on the order of the core rotation rates found through
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Fig. 7. Rotational splittings as a function of the parameter ζ̃ which is an estimate of the mode trapping (see text). The circles correspond to the
observed splittings (black symbols indicate modes that passed both frequentist and Bayesian significance tests and gray symbols modes that passed
the frequentist test only). The black dot-dashed line shows a linear regression of the observed splittings as a function of ζ̃ and the gray shaded
area indicates the uncertainties on the regression parameters. The dashed lines indicate theoretical splittings for 2-zone models that reproduce the
observed rotation in the g-mode cavity and with Ωcore/Ωsurf of 1, 2, 10, or 100 from top to bottom (same colors as in Fig. 4).
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Table 7. Spectroscopic results for the three targets that were observed with the HERMES spectrograph.

KIC RV LBstellar sin i Inclination i LBstellar Upper limit on Ωsurf/(2π)
(km s−1) (km s−1) (◦) (km s−1) (nHz)

4659821 −35.32 ± 0.01 8.5 ± 0.5 79 ± 4 8.6 ± 0.6 232 ± 25
9346602 −11.90 ± 0.01 8.4 ± 0.5 83 ± 2 8.5 ± 0.5 158 ± 21
7581399 −23.81 ± 0.01 8.9 ± 0.7 79 ± 5 9.1 ± 0.9 193 ± 29

seismology (see Table 6), so the spectroscopic observations can
be used only to rule out that the surface might be rotating faster
than the core, but unfortunately not to test the core-envelope ratio
that was obtained from seismology in Sect. 4.

6. Discussion and conclusion

The aim of this paper was to measure the amount of differen-
tial rotation in secondary clump stars (intermediate-mass core
helium burning stars) from seismology. This required the rota-
tional splittings of g-dominated and p-dominated modes to be
computed from the oscillation spectra of these stars. This was a
challenge because the splittings of clump stars are comparable
to the mode widths, particularly for p-dominated modes whose
lifetimes are shorter. We followed both a frequentist approach
using a maximum likelihood (MLE) method and a Bayesian ap-
proach with a Markov chain Monte Carlo method to select only
the statistically reliable splittings. We found a sample of seven
Kepler secondary clump stars with both g- and p-dominated re-
liable splittings.

To measure the amount of differential rotation in the selected
stars using the mode splittings, we used an approach based on
asymptotic theory proposed by G13, which has the advantage
of being model-independent. We first validated this method on
secondary clump stars by confronting it to the results of classical
inversion techniques for one target of the sample (KIC7581399),
and we proposed a slight modification to it. We applied this
method to the selected stars and found evidence for a weak dif-
ferential rotation in six out of the seven stars of the sample, with
ratios between the core and envelope rotation rates ranging from
1.8±0.3 and 3.2±1.0. The last target was found to be marginally
consistent with a solid-body (SB) rotation profile. We tried to
complement the seismic measurement of the internal rotation
with spectroscopic measurements of the surface velocity. High-
resolution spectra were obtained for three of the selected targets,
from which we deduced upper limits to the surface rotation rate.
These limits confirmed that the surface cannot spin faster than
the core, but they were not sufficient to test the amount of differ-
ential rotation found with seismology.

Our results clearly show that secondary clump stars have a
much milder differential rotation than their RGB counterparts,
for which core-envelope rotation ratios above 20 were observed
(e.g. G13). Following the approach of Tayar & Pinsonneault
(2013), we compared the total AM of the secondary clump stars
of our sample to the estimated AM at the terminal-age main se-
quence (TAMS). Assuming SB rotation at the TAMS and typical
surface rotation rates (50 to 150 km s−1), we expect3 a total AM
at the end of the MS around (4 ± 2) × 1049 erg s. By compari-
son, using the mean core and envelope rotation rates derived in
this study and our optimal model of KIC7581399 as a reference

3 To derive this estimate, we used the moment of inertia of the opti-
mal model derived for KIC7581399 (Sect. 4.1.1) whose evolution was
stopped at the TAMS.

model for secondary clump stars, we obtained estimates of the
total AM on the clump around 2 × 1049 erg s for the seven stars
of the sample. This value is of the same order of magnitude as
the total AM expected at the TAMS, and the slightly lower AM
found on the clump might be caused by mass loss, which is ex-
pected to occur between the TAMS and the triggering of core-He
burning (not taken into account by Tayar & Pinsonneault 2013).

The weak radial differential rotation that we find for sec-
ondary clump stars means that a very efficient redistribution of
AM occurs either before or right after these stars settle on the
clump. If this strong coupling occurs before He-burning is trig-
gered in the core, it has to operate on a very short timescale since
these stars cross the subgiant phase on a thermal timescale. To il-
lustrate this point, a 3-M� star evolves from the MS turnoff to the
clump in only 15 Myr, which amounts to about 5% of the time
it spends on the MS. For comparison, it takes around 700 Myr
for a 1.5 M� star, i.e. about 34% of the time spent on the MS.
So if the same mechanism is responsible for AM redistribution
in low-mass and intermediate-mass stars, the present results pro-
vide more stringent constraints on its timescale. The other pos-
sible explanation is that AM could be redistributed after the trig-
gering of He-core burning. Internal gravity waves (IGW) excited
at the bottom of the convective envelope and at the top of the
convective core generated by He-burning could efficiently cou-
ple the core to the envelope (Talon & Charbonnel 2008; Fuller
et al. 2014). Maeder & Meynet (2014) have also recently shown
from order-of-magnitude estimates that a fossil magnetic field
attached to the core could produce efficient coupling between
the core and the envelope during the He-burning phase. To de-
termine at which stage the coupling occurs would require finding
intermediate-mass stars in the subgiant phase or at the bottom of
the RGB. Even though this phase is very fast, there might be a
handful of such targets among the Kepler targets.

Regardless of when the AM redistribution occurs, it has to
happen on a very short timescale, which should provide valuable
observational constraints to theoretical models of AM transport
mechanisms in intermediate-mass stars. It is important to note
that even though an efficient AM transport is needed, it does not
generally lead to SB rotation since the SB rotation case was sig-
nificantly ruled out for six of the seven targets of our sample.
Interestingly, the two targets that were found to have the low-
est core-envelope rotation contrast are the ones with the largest
values of ΔΠ1. Since ΔΠ1 increases during the core He-burning
phase4 (see e.g. Mosser et al. 2014), this could mean that SB ro-
tation progressively builds up during this period. More data are
required to confirm this hypothesis. In this context, the observa-
tions of the selected space mission Plato (Rauer et al. 2014) will
be particularly useful.
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4 The increase in ΔΠ1 is due to the increasing core mass as the
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Brunt-Väisälä frequency.
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Appendix A: Monte Carlo

To verify thatΔΛ is distributed as a χ2 with 2 degrees of freedom
under the H0 hypothesis, we performed a Monte Carlo simula-
tion. We generated a mode profile with frequency, height, and
linewidth typical of oscillation modes of stars in the clump. For
each iteration, we included noise following the distribution of
a χ2 with 2 degrees of freedom to simulate an observed power
spectrum. Two fits were performed, either under the H0 hypoth-
esis (best likelihood �0) or under the H1 hypothesis (best likeli-
hood �1), and we stored the value of ΔΛ = −2 [ln(�1) − ln(�0)]
for each iteration. Figure A.1 shows the distribution that we ob-
tained for ΔΛ. For comparison, the distribution of a χ2 with
2 degrees of freedom is overplotted (red). We confirm that the
two distributions are indeed very similar, which validates the as-
sertion of Wilks (1938) in our particular case.

Fig. A.1. Distribution of ΔΛ obtained with a Monte Carlo simulation
with 500 iterations (black curve). The distribution of a χ2 with 2 degrees
of freedom is overplotted (red curve).

Appendix B: Modification of the Goupil et al. (2013)
formula

We start by briefly summarizing the method proposed by G13.
By using approximate expressions of the eigenfunctions in the
p-mode and g-mode cavities through asymptotic analysis, they
approximated the mode trapping parameter ζ by the quantity

ζ̃ =

[
1 +

( c
a

)2 θp

θg

]−1

(B.1)

where θp and θg were defined in Eq. (3). The coefficients a
and c are the amplitudes of the eigenfunctions in the g-mode
and p-mode cavities, respectively. The matching of the solutions
in the evanescent zone provides the following relation between
a and c (see Unno et al. 1989):

c
a
= 2

cos(θg)

cos(θp)
exp (θe) (B.2)

where

θe ≡
∫ rc

rb

κ dr (B.3)

and κ2 = −k2
r in the evanescent zone. We note that the factor

2 exp(θe) corresponds to q−1/2, where the parameter q was intro-
duced in Eq. (2) and whose value was already estimated from the
mode frequencies for all the stars of the sample (see Sect. 2.2).
We here made minor modifications to the expression of ζ̃ pro-
posed by G13 by releasing three approximations that they made.

– First, in their equivalent of Eq. (B.2), G13 argued that
cos θp ≈ 1 since θp ≈ npπ. Technically, this is true only
when the modes are p-dominated and should therefore not
be assumed for all modes. We kept this term in the expres-
sion of ζ̃.

– Secondly, the approximate expressions for θp and θg used by
G13 (Eqs. (A12) and (A18) of their paper) in the phases of
the cosine functions in Eq. (B.2) neglect the phase shifts εp
and εg. Since we have included them to obtain estimates of
Δν, Δπ1 and q in Sect. 2.2, we used Eqs. (4) and (5) for θp

and θg respectively in Eq. (B.2), in order to be consistent.
– Finally, G13 assumed that the factor exp(θe) in Eq. (B.2)

was close to 1 owing to the narrow evanescent zones in
red giants. As mentioned above, this factor corresponds to
(4q)−1/2, where q has been measured from the mode frequen-
cies. We found that this factor is indeed not far from unity (it
varies from 0.7 to 1.1 for the stars of the sample) but taking it
into account slightly improves the agreement with the actual
values of ζ.

In the end, we obtained the following modified expression for ζ̃

ζ̃ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 +

1
q

cos2
[
π
(

1
νΔΠ1
− εg

)]
cos2

[
π

(ν−νp)
Δν

] ν2ΔΠ1

Δν

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

−1

· (B.4)

This expression was used to estimate the mode trapping in a
model of KIC7581399 in Sect. 4.2 and an excellent agreement
has been obtained with the ζ parameter computed with the mode
eigenfunctions and Eq. (15) (see Fig. 6).
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