
HAL Id: cea-01383485
https://cea.hal.science/cea-01383485

Submitted on 18 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical early-warning indicators based on
autoregressive moving-average models

Davide Faranda, Bérengère Dubrulle, Flavio Maria Emanuele Pons

To cite this version:
Davide Faranda, Bérengère Dubrulle, Flavio Maria Emanuele Pons. Statistical early-warning in-
dicators based on autoregressive moving-average models. Journal of Physics A: Mathematical and
Theoretical, 2014, 47, pp.252001. �10.1088/1751-8113�. �cea-01383485�

https://cea.hal.science/cea-01383485
https://hal.archives-ouvertes.fr
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processes
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CEA Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette, France

Flavio Maria Emanuele Pons
Department of Statistics, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy .

We address the problem of defining early warning indicators of critical transition. To this purpose,
we fit the relevant time series through a class of linear models, known as Auto-Regressive Moving-
Average (ARMA(p, q)) models. We define two indicators representing the total order and the total
persistence of the process, linked, respectively, to the shape and to the characteristic decay time of
the autocorrelation function of the process. We successfully test the method to detect transitions
in a Langevin model and a 2D Ising model with nearest-neighbour interaction. We then apply the
method to complex systems, namely for dynamo thresholds and financial crisis detection.

Many experimental or natural systems undergo critical
transitions - sudden shifts from one to another dynamical
regime. In some instances, e.g. global changes in climate
science, species extinction in ecology, spin glasses, it is
of crucial importance to build early warning indicators,
i.e. estimates of the transition threshold based on finite
time-series corresponding to situations where the bifurca-
tion did not happen yet. The statistical approach to this
issue traditionally involves so-called indicators of critical-
ity [1, 2]. They are based on specific properties of ideal
statistical systems (such as the Langevin or Ising model)
near the transition: critical slowing down, modifications
of the auto-correlation function or of the fluctuations [3],
increase of variance and skewness [4], diverging suscepti-
bility [5–7], diverging correlation length. However, it is
known that, in some complex systems, these indicators
fail to detect the transition: in spin glasses, no diverging
correlation length has been found so far, and one has to
resort to finer statistical tools (such as four point dynami-
cal susceptibility [8, 9]) to detect transitions. In addition,
traditional early warning indicators may be inapplicable
in datasets containing a small number of observations
(see e.g. [10, 11]), which is usually the case in several ap-
plications where the experiment is unique (as in financial
or climate time series), difficult to repeat or to sample
for a long time (as for atmospheric measurements, lab-
oratory turbulence, etc). This suggests that indicators
based on single statistical properties may not be sufficient
for detecting transitions in complex systems, so that one
should rather consider all the information contained in
the finite-time series.

The main idea of the present letter is therefore to
introduce a class of indicators of critical transitions
based on a statistical model for the observed data when
approaching a tipping point. To be interesting for appli-
cations, these indicators must satisfy certain properties:
i) they must generalize the well-know indicators based
on single statistical properties and ii) they must be built

using a statistical model that is simple to implement
and works for limited data set. Here, we show that
these properties are satisfied for indicators based on the
auto-regressive moving-average processes of order p, q
ARMA(p, q), modeling a time series Xt(λ), experiencing
a transition at λ = λc. In the first part of the paper,
we first recall some basics on ARMA(p, q) modeling
and define corresponding early-warning indicators. We
then check that these indicators are able to detect the
transition in simple theoretical models, such as Langevin
double-well model or Ising model. We then apply our
indicators to the analysis of complex systems for the
detection of turbulent dynamo thresholds and financial
crisis.

Theory. Let us consider a series of observations Xt

of an observable with unknown underlying dynamics,
controlled by a parameter λ. We further assume that
for λ < λc the time series Xt(λ) represents a station-
ary phenomenon. The critical threshold λc is defined
through the condition that for λ ≥ λc, there is a bifur-
cation, in the sense that there exists no smooth transfor-
mation of the physical measure through the transition.
Since Xt(λ) is stationary, we may then model it by an
ARMA(p(λ), q(λ)) process such that for all t:

Xt(λ) =

p∑
i=1

φi(λ)Xt−i + εt +

q∑
j=1

θj(λ)εt−j (1)

with εt ∼WN(0, σ2) - where WN stands for white noise
- and the polynomials φ(z) = 1 − φ1zt−1 − · · · − φpzt−p
and θ(z) = 1 − θ1zt−1 − · · · − θqzt−q, with z ∈ C, have
no common factors. Notice that, hereinafter, the noise
term εt will be assumed to be a white noise, which is a
very general condition [12]. For a general stationary time
series, this model is not unique. However there are sev-
eral standard procedures for selecting the model which
fits at best the data. The one we exploit in this paper
is the Box-Jenkis procedure [13]. We chose the lowest
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p and q such that the residuals of the series filtered by
the process ARMA(p, q) are delta correlated. This fixes
p and q, and thus our statistical model. There are other
model selection procedures based on information criteria
(Bayesan or Akaike information criteria). Unfortunately,
in our case none of them gives clear indications for dis-
criminating the model to be used as it is not clear which
range p and q must be tested to get reliable results. Intu-
itively, p and q are related to memory lag of the process,
while the coefficients φi(λ) and θi(λ) represent the per-
sistence: the higher their sum (in absolute value), the
slower the system is forgetting its past history. In the
sequel, we now present early warning indicators based on
these parameters.

Early-warning indicators. Far from the transition,
the time series of a generic physical observable can be de-
scribed by an ARMA(p, q) model with a reasonably low
number of p, q parameters and coefficients. On the other
hand, for λ → λc, the critical value corresponding to
a transition, the statistical properties (such as the shape
and/or the persistence of the autocorrelation function) of
the system change, leading to different characteristics of
the ARMA(p, q) model which can describe the data series
or to an inadequacy of the model itself. Specifically, sev-
eral changes in the dynamics occur near the transition,
as the system is allowed to explore a larger portion of
the phase space with higher excursions in the direction
of the new stable state. First, the distributions of the
observables become skewed towards the maxima or the
minima, depending on the direction of the shift. Second,
the system may experience a critical slowing down with
diverging memory effects. This phenomenon is tradition-
ally quantified by the autocorrelation function (ACF) of
the time series Xt defined (assuming a zero-mean pro-
cess) as:

ACF(h) = E[Xt+hXt]/E[X2
t ]. (2)

Far from the transition, the ACF tends to be 0 after
a finite number of lags h̄. As λ → λc, critical in-
crease of memory of the system makes h̄ → ∞. The
ARMA(p(λ), q((λ)) model of the corresponding time se-
ries will then be characterized by two properties:

• ∑p
i=1 |φi| and

∑1
j=1 |θj | increase for λ→ λc as the

direct consequence of h̄→∞.

• p + q increases for λ → λc because of additional
new time scales associated to the trajectories mov-
ing towards the potential barrier between the two
attracting states.

This rather simple observation allows us to define two
indicators: O(λ) = p(λ) + q(λ), which diverges for λ →
λc, and the total persistence of the process:

R(λ) =

p∑
i=1

|φi(λ)|+
q∑

i=1

|θi(λ)|

which also show a divergent behavior at the transition,
unless O(λ) = 1. In this latter case R(λ) = φ1 → 1
for λ → λc. These indicators present several advan-
tages with respect to the traditional ones reported, for
example, in [1]. First, by computing the functional
form for p(λ) and q(λ) and for the coefficients φi(λ)
and θi(λ) one has also an effective statistical toy model
for describing the phenomenon and to produce data
with analogous statistical properties. This may be
very useful for series or data which can hardly be
reproduced (laboratory experiments) or integrated by
new observations (climate datasets, stock market titles).
Second, if several series at different λ’s are available, one
can extrapolate the characteristics of the process at not
yet measured λ’s. This property can be very useful for
devising new experiments knowing the possible location
of the transitions. Third, if the transition is marked by
the fact that R(λ) → O(λ) rather than by a divergence
of O(λ), one may argue that the potential landscape
for the observable X does not change significantly when
approaching the transition and therefore a Langevin
reduction to a double well system is possible. If, on the
contrary, the order changes significantly approaching the
transition, such a low dimensional reduction is not ap-
propriate and one should be very careful in pursuing such
a model as shown, for a relevant climatic example, in [14].

A toy model for critical transitions. We start consid-
ering a classical system featuring bistability under the
effect of random noise, i.e.

dX = −V ′(X)dt+ εdW (3)

with potential V (X) = aX4−bX2+λX, where λ ≥ 0 and
W is a Wiener process with unit variance. We consider
system (3) for values of λ such that, in the determinis-
tic limit, it features two stable fixed points (X̄1 < 0 and
X̄2 > 0) and an unstable fixed point X̃. The asymptotic
behavior of the system can be assessed in terms of the
solution of a Fokker-Plank equation [15]. Here we are
rather interested in the finite-time behavior and we con-
sider only the simulations such that the noise does not
push the system across the bifurcation, i.e. the system is
confined in one of the two wells. For this system we per-
form the following numerical experiments: for each value
of λ we compute an ensemble of 500 trajectories X(λ)
finding, for each of them, the best ARMA(p(λ), q(λ)) in
the sense specified by the Box-Jenkins procedure [13].
Then, 〈O(λ)〉 and 〈R(λ)〉 have been computed, here 〈·〉
stands for the ensemble average.
In Fig. 1-a we report the results of this analysis, which
clearly show that the average order is not affected in
this case and 〈O(λ)〉 ' 1, whereas the transition is well
highlighted by 〈R(λ)〉 which approaches 〈O(λ)〉 = 1 for
λ → λc . There is a simple way to understand this be-
havior by linking the orders p, q and of the coefficients φi
to the autocorrelation function ACF (see [12]- Chapter
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FIG. 1: (a):〈O〉 and 〈R〉 for the system defined in Eq. 3.
Each error-bar represents the average of 15 realizations and
the standard deviation of the mean. b) ACF for (λ−λc)/λc =
−0.271. c) ACF for (λ− λc)/λc = −0.05 .

3 for more details). The orders are linked to the func-
tional form of the ACF whereas the values of φi depend
on the decay rate. In the case of system given by Eq. 3,
the shape of the ACF is exponential both far from the
transition (Fig 1-b) and when approaching it (Fig 1-c).
However, in the latter case, the decay is much slower,
this causing the increase R(λ)→ 1.
The Ising model. As a second test of the indicator, we

consider a classical 2-D Ising dynamics with a nearest-
neighbor interaction on a square lattice of size L. At
each site j, a discrete spin is allowed to have two values
σj ∈ {+1,−1}. The energy of the configuration is given
by the Hamiltonian:

H = −J
∑

neighbors

σiσj (4)

under the interaction J . We consider only the case J = 1
and evolve the system by using Metropolis algorithm [16].
A second order phase transition is expected at the tem-
perature T = Tc = 2/ ln(1 +

√
2) ' 2.269. To apply our

early warning indicators, we performed 100 simulations
for a square lattice of size L = 256 at different T > Tc.
We checked that our results do not depend sensitively
on the size of the lattice, provided that L > 128. Af-
ter discarding 100000 time iterations necessary to reach
a clearly identifiable stationary state, for each tempera-
ture, an ensemble of 15 time series consisting of 200000
time units of H(t, T ) is analyzed with the procedure de-
scribed above. Stationarity has been tested performing
a Dickey-Fuller test on each time series. The results for
〈O〉 and 〈R〉 are reported in Fig. 2. It is evident that
〈O〉 and 〈R〉 increase when moving towards the critical
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FIG. 2: 〈O〉 and 〈R〉 for the system defined in Eq. 4, L=256.
Each error-bar represents the average of 15 realizations and
the standard deviation of the mean.

temperature Tc. In this case, not only the persistence of
the correlations R, but also the number of terms O nec-
essary to describe the process increases. This means that
the transition cannot be modeled by a simple Langevin
equation as other time scales become important. In other
words, this transition is associated to a non-trivial un-
known potential landscape.

An example of complex system. Up to now we have
analyzed toy systems, extensively studied both analyt-
ically and numerically and for which the threshold are
analitically predictable. However, interesting systems,
such as turbulence or finance, lie on another level of com-
plexity and one naturally wonders whether the technique
provides reliable results. We focus on the data of the Von
Kármán Sodium (VKS) experiment, a successful attempt
to get a transition to dynamo in a laboratory turbulent
liquid-metal experiment. The control parameter for the
transition is the magnetic Reynolds number Rm. The
interesting characteristic of this experiment is that sev-
eral dynamo and no dynamo configurations have been
obtained by changing the material of the impellers and
of the cylinder [7, 17]. Here we focus on two different
configurations: (i) one producing a well-documented sta-
tionary dynamo at Rm ≈ 44, thereby providing a fair
test of our method and (ii) one that failed to produce
the dynamo within the accessible values of Rm. The time
series is constructed using the modulus of the magnetic
field |B|(t) as a function of time t, measured within six
detectors in the core of the vessel. From this, we extract
the quantities O and R, averaged over the six detectors.
The results are plotted in Fig. 3: the main figure for
the configuration (i), the inset for the configuration (ii).
They depend quantitatively on the sensors chosen, but
not qualitatively as the transition is always detected at
the same Rm. The transition is very net in terms of di-
vergence of O and R and can be located at Rmf = 47,
when the dynamo is observed. In the non-dynamo case,
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FIG. 3: Averaged O and R for the Von Karman - Sodium
experiment. Solid lines refer to the experiments for increas-
ing values of Rm. Inset: same as the main figure but for a
configuration where the dynamo has not been observed.

no sign of transition is visible.

Financial crisis. We conclude by discussing the per-
formances of the ARMA early warning indicators applied
to the EUR/USD exchange rate hourly datasets (Figure
4-b). The chosen observable is the log-return of the time
series, a quantity commonly examined in finance as the
series obtained this way do not contain non-stationarities:

R(t) = log(Xt)− log(Xt−1).

Here Xt is the EUR/USD exchange hourly rate. Monthly
values for O and R have been extracted from the time se-
ries of R(t) and results are shown in figure 4-a. Our anal-
ysis can be safely performed on these series since they are
stationary, as it results from the Dickey-Fuller test [18].
The technique clearly points to three distinct warnings
(marked by the red dotted lines). Interestingly, they are
followed after a few months delay, by official warnings
of the European Central Bank (ECB). The first warning
corresponds to the Sub-prime American crisis, the sec-
ond to the Greek crisis, and the third one to the Irish
crisis. The crisis for the real market falls immediately af-
ter the ECB announcements. If we compare these results
with the ones arising from physical systems, the warning
seems to appear too early. We may argue that indicators
which provide similar warnings are available also at the
ECB. The time between the early warning discover and
the ECB announcements may serve to the ECB for trying
corrections and avoid an immediate financial crisis which
is announced only when the crisis itself is unavoidable.
Similar behaviors have been discovered for early warn-
ing indicators applied to financial datasets, as reported
in [19, 20] .

Discussion. In this work we have proposed a new
method to detect early warnings of critical transitions via
a statistical approach which allows also for incorporat-
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FIG. 4: Upper panel: Average O and R for the log-return
series R(t) of the EUR/USD hourly exchange rate. Central
panel: EUR/USD hourly exchange rate. Lower panel: R(t).
Red dotted lines correspond to early warning of the crisis.
Black continuous lines correspond to actions taken by the
ECB.

ing the information of several statistical indicators anal-
ysed in [2]. Here, we exploit the properties of linear (i.e.
stationary and invertible) autoregressive moving-average
processes, denoted ARMA(p(λ), q(λ)), being λ the sys-
tem control parameter. More specifically, we have de-
fined two indicators representing the total order and the
total persistence of the stochastic process. An increase
of the former is indicative of the impossibility to repre-
sent the data series in a parsimonious way, thus leading
to the idea that the linearity hypothesis fails and the de-
cay of the autocorrelation function of the process is no
longer exponential; an increase of the latter is linked to
a longer decay time of the correlation, and can be due
to the increase of the total order or just of the persis-
tence itself. The two phenomena are very different and,
up to our knowledge, the traditional indicators exploit
only the increase of the memory of the system (criti-
cal slowing down) to identify the threshold λc. Here,
the possibility of detecting substantial modifications to
the shape of the autocorrelation function via the change
in the orders p, q, allows for understanding whether re-
ductions to simple low dimensional models are relevant
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or not for describing the dynamics. We have combined
these two indicators to detect critical transitions both in
models and in real systems. In all the cases considered,
the behavior of the indicators has shown to be an effec-
tive way to investigate the proximity of the system to a
critical transition; thus, they seem to be a useful tool to
study critical transitions, since their estimation involves
well-known, standard statistical techniques characterized
by a low computational cost and applicable to relatively
short time series.
The application to finance seems promising. It would be
interesting to extend this approach to other financial in-
dicators as well as to climate data. On a theoretical level,
one could use the technique to understand how transi-
tions are modified when systems originally in equilib-
rium are driven out of equilibrium by forcing-dissipation
mechanisms, starting from conceptual toy model of out-
of-equilibrium Ising dynamics [21, 22].
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