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Abstract.

Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code

[V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and

linearized multi-species collision operator has been recently implemented, so that both

neoclassical and turbulent transport channels can be treated self-consistently on an

equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard

expression of the neoclassical impurity flux is shown to be recovered from gyrokinetics

with the employed collision operator. Purely neoclassical simulations of deuterium

plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion

coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms

which quantitatively agree with neoclassical predictions and NEO simulations [E. Belli

et al., Plasma Phys. Control. Fusion 54, 015015 (2012)]. The thermal screening

factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime,

which can be detrimental to fusion performance. Finally, self-consistent nonlinear

simulations have revealed that the tungsten impurity flux is not the sum of turbulent

and neoclassical fluxes computed separately, as usually assumed. The synergy mostly

results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This

result puts forward the need for self-consistent simulations of impurity transport, i.e.

including both turbulence and neoclassical physics, in view of quantitative predictions

for ITER.

1. Introduction

Impurity transport studies have recently gained a renewed interest with the perspective

of using tungsten divertors in ITER [1] and WEST [2, 3] tokamaks. High-Z materials

such as tungsten (ZW = 74) are only partially ionized even in the plasma core despite

high temperatures, so that they can already lead to prohibitive radiative losses at low
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concentrations [4]. These losses then impact dramatically plasma performance and

stability. Actually, on-axis accumulation of tungsten has been reported in several

tokamaks, including H-mode plasmas in JET [5] and ASDEX Upgrade [6]. Conversely,

in Alcator-Cmod, relatively flat electron density profiles combined with peaked electron

temperature in the central region appear to be efficient to prevent tungsten accumulation

in the core [7]. Tungsten is not the only impurity to be present in ITER plasmas. In

addition to helium ashes, extrinsic impurities will also be present, due to medium-Z

(such as neon ZNe = 10 and argon ZAr = 18) impurity seeding aiming at radiating the

power at the edge, and low-Z beryllium (ZBe = 4) due to plasma wall interactions.

Impurity transport is actually a complex issue, even in the relevant limit of trace

impurities where their strength parameter is negligible (α = nZZ
2/niZ

2
i � 1, with

Z the impurity and i the main ion species). The radial impurity flux contains both

a diffusive and a convective contribution: ΓZ = −D∇nZ + V nZ . In the absence

of transport barriers, in L-mode plasmas, impurity transport is usually found to be

dominated by turbulence, at least in the gradient region. Indeed, the experimentally

deduced transport coefficients exceed the ones predicted by the neoclassical theory by

factors or even orders of magnitudes in tokamak plasmas [8, 9, 10, 11] and spherical

tokamaks [12, 13]. Conversely, in the very core region [14, 15, 16] and at the position of

transport barriers, either at the edge or at internal transport barriers, impurity transport

is often found consistent with neoclassical predictions [17, 18, 19]. In such regimes, the

impurity confinement time sometimes appears to scale with the edge density gradient of

the main ion species, as one would expect from neoclassical transport theory [20]. Should

neoclassical transport dominate tungsten transport in ITER H-mode edge plasmas,

tungsten is then expected to exhibit hollow density profiles in the pedestal region [21].

In addition, it has been recently realized that standard neoclassical predictions

for impurity transport can be substantially modified in the highly collisional regime

(Pfirsch-Schlüter), relevant for high-Z impurities, in the case where their density profile

exhibits in-out asymmetry [22, 23, 24, 25]. Such poloidal asymmetries can emerge as a

result of centrifugal force [26] or of anisotropic (i.e. such that T⊥ 6= T‖) radio-frequency

heating, especially Ion Cyclotron Resonance Heating [27, 28, 29].

All in all, it appears that the turbulent and neoclassical coefficients for impurity

transport, both diffusivity and convection velocity, can be of the same order of

magnitude, especially for high-Z impurities such as tungsten. At present, first

principles simulations of these transports are performed with different dedicated codes,

explicitly assuming that both transport channels are additive (see e.g. [7]). One of

the key questions is whether this assumption is valid, or whether neoclassical and

turbulent transports exhibit synergetic effects which would modify our understanding

and predictions of impurity concentration in tokamaks.

In this framework, a multi-species collision operator has been developed for full-

f gyrokinetic codes and successfully implemented [30] in the flux-driven GYSELA

code [31]. In this paper, we first show analytically that this operator allows one to
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recover neoclassical predictions of impurity transport in the Pfirsch-Schlüter regime

(section 2). The numerical benchmark of the code with respect to neoclassical theory

for trace impurity transport is then successfully performed in section 3 in all three

regimes of collisionality (banana, plateau and Pfirsch-Schlüter) by considering different

types of impurities. Last but not least, section 4 presents the first evidence of synergy

between turbulent and neoclassical transport of tungsten. Turbulence driven poloidal

asymmetries are suspected to play a key role in this synergy.

2. Recovering neoclassical fluxes from gyrokinetics

2.1. Radial flux and toroidal momentum conservation

The spatial coordinates are (ψ, θ, ϕ) where ψ is the minus poloidal magnetic flux

normalized to 2π, θ is the poloidal angle and ϕ the toroidal angle. The Jacobian of

this metric is 1/B · ∇θ where the unperturbed magnetic field is

B = I∇ϕ+∇ϕ×∇ψ (1)

We consider the gyrocenter distribution function F (z) where z = (ψ, θ, ϕ, v‖, µ) are the

gyrocenter coordinates. Here v‖ is the gyrocenter parallel velocity and µ the magnetic

moment. To derive the conservation laws, it is convenient to use the gyrokinetic Fokker-

Planck equation [32, 33]

∂F

∂t
+

1

B∗||

∂

∂z
·
(
żB∗||F

)
= C(F ) (2)

where ż = dz
dt

and

B∗|| = B +
mv‖
e

b · (∇× b) (3)

is the Jacobian of the gyrocenter transformation (m is the mass, e the charge and b = B
B

the unit vector along the magnetic field). For an electrostatic case, the gyrocenter

equations of motion are

B∗||
dx

dt
= −B∗||[H,x] = v‖B

∗ +
1

e
b×∇

(
µB + eφ̄

)
(4)

B∗||m
dv‖
dt

= −B∗||[H,mv‖] = −B∗ · ∇
(
µB + eφ̄

)
(5)

where

B∗ = B +
mv‖
e
∇× b (6)

and

H =
1

2
mv2‖ + µB + eφ̄ (7)

is the Hamiltonian, φ̄ = J · φ are the gyro-average electric potential. It was shown by

several authors [34, 35, 36, 37] that the toroidal momentum conservation equation reads

∂tLϕ + ∂ψΠψ
ϕ = e

(
Γψ − ΓψE

)
+

〈
I

B
R‖

〉
ψ

(8)
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where

Lϕ = m

∫
dτuϕF (9)

Πψ
ϕ = m

∫
dτFuϕv

ψ (10)

ΓψE =

∫
dτF∂ϕφ̄ (11)

Γψ =

∫
dτvψF = 〈Γ⊥ · ∇ψ〉ψ (12)

where R‖ is the collisional drag force

R‖ =

∫
d3vmv‖C(F ) (13)

with d3v = 2π
m
B∗||dµdv‖. Γ⊥ is the perpendicular flux. Here uϕ = I

B
v‖ is the toroidal

covariant component of the gyrocenter velocity (dimensionally: [uϕ] = L2.T−1), while

vψ = vG · ∇ψ is the radial projection (or the radial contra-variant component) of the

gyrocenter velocity vG. The phase space volume element in between two magnetic

surfaces ψ and ψ + dψ is

dτ = d3v
dθdϕ

B · ∇θ
(14)

The bracket 〈...〉ψ indicates a flux surface average

〈...〉ψ =

∫
dθdϕ
B·∇θ ...∫
dθdϕ
B·∇θ

(15)

The collision friction force (last term in the r.h.s. of Eq.(8)) did not appear in earlier

derivations of the momentum conservation equation, either because the collisionless

problem was treated, or because an unique species was considered. It is however easy

to add. The flux ΓψE is the radial flux due to the E × B drift velocity. The sum over

all species is a polarization flux, which can be neglected for now. The divergence of

the Reynolds stress ∂ψΠψ
ϕ contains a turbulent contribution, which is expected to be

ρ∗ smaller than the flux in the gyrokinetic ordering k‖R ' o(ρ∗). The neoclassical

contribution to Πψ
ϕ is predicted to be even smaller. In steady-state, the flux average of

Eq.(8) then gives

Γψ = ΓψE + Γψcoll (16)

Γψcoll = −I
e

〈
R‖
B

〉
ψ

(17)

This equation is often recast as

Γψcoll = ΓψBP + ΓψPS (18)

where

ΓψPS = −I
e

〈
R‖

(
1

B
− B

〈B2〉ψ

)〉
ψ

(19)
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and

ΓψBP = −I
e

〈
R‖B

〉
ψ

〈B2〉ψ
(20)

are respectively the Pfirsch-Schlüter and Banana-Plateau fluxes. This splitting

anticipates the fact that, in the Pfirsch-Schlüter regime, the collisional drag force R‖
is governed by the compressibility of both parallel velocity and parallel heat flux (cf.

eqs.(35),(37)) due to the inhomogeneity of the magnetic field. In absence of turbulence,

the flux ΓψE due to the E × B drift velocity is small since the poloidal asymmetries

of the electric potential are small. The flux Γψcoll then coincides with the conventional

definition of the neoclassical flux.

2.2. Collision operator

We address now the multi-species case. The collision operator for a species ”a” that

is implemented in the GYSELA code [31] is a simplified one [30], namely Ca (Fa) =∑
bCab (Fa) where the contribution from collisions species ”a” colliding with species

”b” is

Cab (Fa) =
1

B∗||

∂

∂v‖

[
B∗||Dd,abFM0a

∂

∂v‖

(
fa −

mav‖U‖d,a
Ta

)]
− νs,ab

mav‖
Ta

(
U‖d,a − U‖ba

)
FM0a

+
2

3

qab
NaTa

(
mav

2

2Ta
− 3

2

)
FM0a (21)

where fa = Fa

FM0a
. Expression of the deflection diffusion Dd,ab and the collisional friction

rate νs,ab are given in Appendix A. The distribution FM0a is the unshifted Maxwellian

built with the density Na and the temperature Ta

FM0a (x,v, t) = Na (x, t)

(
ma

2πTa (x, t)

)3/2

exp

(
− E

Ta (x, t)

)
(22)

The single species restoring momentum coefficient is

mav

Ta
U‖d,a(v) =

3

4π

∫
dΩξfa(v, ξ, γ)) (23)

where ξ = v‖/v and dΩ = 2πdξ is the element of solid angle in the velocity space. The

inter-species momentum restoring coefficients are

U‖ab =

〈
νs,abv‖fa

〉
a〈

νs,ab
mav2‖
Ta

〉
a

(24)

where

〈...〉a =
1

Na

∫
2π
B∗||
B
v⊥dv⊥dv‖FM0a... =

2√
π

∫ ∞
0

dxax
2
ae
−x2a
∫ +1

−1
dξ... (25)
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The energy restoring coefficient is

qab = NaTa 〈σabfa〉a +QM
ab (26)

where QM
ab = −3Na

ma

ma+mb
νab(Ta − Tb) is the energy exchange between two centered

Maxwellians and σab(v) is given by

σab(v) = −νd,ab
mav

2

2Ta
v‖
∂

∂v‖
ln
(
Dd,abFM0av‖

)
(27)

Standard GYSELA simulations use a limited number of mesh points in the µ space

(typically 16). Therefore, so as to minimize the error when computing the friction force,

the distribution function is projected on the two first Sonine polynomials (generalized

Laguerre L
(m)
j polynomials of orderm = 3/2) in the velocity modulus space (cf. reference

[36], appendix D). The friction part of the field particle collision operator (2nd line of

Eq.(21)) then reads

Cs,ab (Fa) = − νs,ab
mavξ

Ta
FM0a

{
V‖a − V‖b

+
2

5

(
mav

2

2Ta
− 5

2

)
q‖a
NaTa

+
3

5

1

1 + x2ba

q‖b
NbTb

}
(28)

where V‖a and q‖a are the parallel velocity and heat flux. The friction force can then be

written as

R‖ab = −Namaνab

(
V‖a − V‖b −

3

5

1

1 + x2ab

q‖a
NaTa

+
3

5

1

1 + x2ba

q‖b
NbTb

)
(29)

where xab = vTb

vTa
.

2.3. Neoclassical impurity flux

We consider now the case of two ion species only: the main ion ”i” and a heavy impurity

”Z”, which is supposed to be in a collisional (Pfirsch-Schlüter) regime. We consider here

a neoclassical case, i.e. we ignore the flux due to the E×B drift velocity in Eq.(16). The

impurity flux is calculated by using the relationship between the flux and the parallel

collisional drag force Eq.(17)

〈ΓZ · ∇ψ〉ψ = − I

Ze

〈
R‖Zi
B

〉
ψ

(30)

Since xZi = vT i/vTZ � 1, the contribution from the parallel impurity flux in R‖Zi
Eq.(29) is negligible so that

R‖Zi = −NZmZνZi

(
V‖Z − V‖i +

3

5

q‖i
NiTi

)
(31)

In principle, the parallel flows should be calculated by solving a kinetic equation for each

species. The calculation is demanding for ions in weakly collisional regime because of the
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boundary layer near the transition from passing to trapped particles [42, 43, 23, 24]. The

complete calculation is delicate and we give here an approximate derivation, which allows

recovering the Hirshman expression of the thermal screening coefficient. For passing

particles, an acceptable solution of the Fokker-Planck equation is Fa = FMa + δFa,

where δFa is of the form

δFa = FMa

mav‖
Ta,eq

[
WaB −

ITa,eq
e

∂ lnFM0a

∂ψ

(
1

B
− B

〈B2〉ψ

)]
(32)

where

Wa =

〈
V‖aB

〉
ψ

〈B2〉ψ
+

2

5

(
E

Ta,eq
− 5

2

)
1

Pa,eq

〈
q‖aB

〉
ψ

〈B2〉ψ
(33)

and

Ta,eq
∂ lnFM0a

∂ψ
=

(
1

Na,eq

∂Pa,eq
∂ψ

+ ea
∂Φeq

∂ψ

)
+

(
E

Teq
− 5

2

)
∂Ta,eq
∂ψ

(34)

The approximate distribution function Eq.(32) yields the following expressions of the

parallel velocities and heat fluxes

V‖a =

〈
BV‖a

〉
ψ
B

〈B2〉ψ
− ΩaI

(
1

B
− B

〈B2〉ψ

)
(35)

where

Ωa(ψ) =
1

Na,eqea

∂Pa,eq
∂ψ

+
∂Φeq

∂ψ
(36)

and

q‖a =

〈
Bq‖a

〉
ψ
B

〈B2〉ψ
− 5

2
Pa,eq

1

ea

∂Ta,eq
∂ψ

I

(
1

B
− B

〈B2〉ψ

)
(37)

where Na,eq, Ta,eq and Pa,eq are the unperturbed density, temperature and pressure, Φeq

the unperturbed electric potential. These expressions can then be plugged into Eq.(31).

However one problem remains: the flux surface average of the parallel velocity and heat

flux are unknown. Since heavy impurities are supposed to be in the fluid regime (i.e.

such that the pressure anisotropy can be neglected: ∇ : Π ' ∇P , with Π the pressure

tensor and P the scalar pressure), the parallel force balance equation reads

R‖Zi = ∇‖PZ +NZ,eqZe∇‖Φ (38)

which implies 〈
BR‖Zi

〉
ψ

= 0 (39)

and therefore 〈
BV‖Z

〉
ψ

=
〈
BV‖i

〉
ψ
− 3

5

〈
Bq‖i

〉
ψ

(40)

Hirshman et al. [42] showed that 〈
q‖B

〉
ψ
' ε1/2q∗‖B0 (41)
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where q∗‖ = q
ε
NeqTeq

Teq
eBLp

is the parallel diamagnetic heat flux . So
〈
q‖B

〉
ψ

can be

neglected in the limit of small inverse aspect ratio ε� 1. This leads to the well known

constraint of equal average velocities of ions and impurities〈
BV‖Z

〉
ψ

=
〈
BV‖i

〉
ψ

(42)

This is actually the weak point of the demonstration. The limit of large aspect ratio is

indeed a poor one, and never fulfilled in actual numerical simulations. We nevertheless

pursue the calculation in that framework to find an explicit expression of the friction

force (accounting for the fact that ∂ψ lnTZ,eq � Z∂ψ lnTi,eq at equal temperature)

R‖Zi = νZi
mZTZ,eq
Ze

I

(
1

B
− B

〈B2〉ψ

)

NZ,eq

[
∂ lnNZ,eq

∂ψ
− Z∂ lnNi,eq

∂ψ
+
Z

2

∂ lnTi,eq
∂ψ

]
(43)

and consequently the impurity flux

〈ΓZ · ∇ψ〉ψ = − νZi
mZTZ,eq
Z2e2

I2

(〈
1

B2

〉
ψ

− 1

〈B2〉ψ

)

NZ,eq

(
∂ lnNZ,eq

∂ψ
− Z∂ lnNi,eq

∂ψ
+
Z

2

∂ lnTi,eq
∂ψ

)
(44)

In circular concentric geometry, large aspect ratio, dψ
dr

= r
q

and

I2

(〈
1

B2

〉
ψ

− 1

〈B2〉ψ

)
' 2r2 (45)

This formula then reads

ΓneoZ = 〈ΓZ · ∇r〉ψ = −NZ,eqD
neo
z

{
∂ lnNZ,eq

∂r
− Zz

∂ lnNi,eq

∂r
− ZzHneo

z

∂ lnTi,eq
∂r

}
(46)

The neoclassical diffusion coefficient is Dneo
z = 2q2νZiρ

2
Z in the Pfirsch-Sclüter regime,

where νiZ =
√

2νi
NZ,eqZ

2

Ni,eq
and ρZ = mZvTZ

ZeB0
. We recall that NZ,eqmZνZi = Ni,eqmiνiZ .

The last two terms of eq. (46) are the main off-diagonal terms of the transport matrix.

The pinch velocity often refers to V pinch
z = Dneo

z Zz ∂r(lnNi,eq). The thermal screening

factor Hneo
z is expected to be equal to −1/2 in the Pfirsch-Schlüter regime [40, 47].

This expression eq. (46) agrees with Hirshman-Sigmar [40, 47]. It must be noted

that the rule
〈
BV‖Z

〉
ψ

=
〈
BV‖i

〉
ψ

is not very accurate without external sources

of momentum. Fülöp and Helander [23] showed that diamagnetic corrections are

important. It turns out that the Hirshman-Sigmar result still holds in the case

where impurity poloidal asymmetries are small. When they are accounted for, large

differences are found in the coefficients (diffusion and screening factor) of the impurity

flux [22, 23, 24].
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3. Neoclassical transport in the 3 collisionality regimes

The objective of this section is to benchmark the implemented collision operator against

the predictions of neoclassical theory regarding the impurity flux, eq. (46). Three

neoclassical predictions will be checked hereafter:

• the dependence of Dneo
z with respect to the collisionality ν∗z ,

• the dependence of the pinch velocity V pinch
z with respect to the impurity effective

charge Z,

• the thermal screening factor Hneo
z in the Pfirsch-Schlüter regime.

To this end, purely neoclassical impurity transport is studied with the GYSELA

code by performing axisymmetric simulations. This means that all non-axisymmetric

modes (n 6= 0, with n the toroidal mode number) are filtered out at each time step,

thus preventing any turbulence to develop, whatever the temperature and density

gradients. The main ion species is deuterium. Three different impurities are considered:

helium (AHe = 4), carbon (AC = 12) and tungsten (AW = 184). A single ionization

state is considered for each of them: helium and carbon are assumed fully ionized

(ZHe = 2, ZC = 6), and tungsten only partially (ZW = 40). The collisionality of

deuterium is chosen equal to ν∗D = 0.1 at the center of the simulation domain, denoted

rp. Assuming equal temperatures, the collisionality of the various impurities scales

like ν∗z ≈
√

2 (Zz/ZD)2 (AD/Az)
1/2 ν∗D = 2ν∗D Z

2
z/A

1/2
z , with z = {He,C,W}. The

collisionalities at mid-radius are given in Table 1. With this choice of ν∗D, it appears that

they cover the entire range of the collisionality regimes: while deuterium and helium

are in the banana regime, carbon is in the plateau regime, and tungsten in the Pfirsch-

Schlüter regime. The collisionality profiles are plotted on Fig. 1. These impurities are

kept at a trace level, i.e. such that the ratio α = (nzZ
2
z/nDZ

2
D) is much smaller than

unity. Taking this ratio of the order of α ≈ 10−3 leads to the concentrations listed in

Table 1.

A simulation with deuterium only (without any impurity) is first run on about

one collision time so as to reach neoclassical equilibrium. It is then restarted with the

addition of the chosen impurity. These simulations are performed at the reference (i.e.

for hydrogen) normalized gyroradius value equal to ρ∗0 = ρH/a = 1/150 ≈ 6.67 10−3.

Assuming equal temperatures, the ρ∗ values of deuterium and of the chosen impurities

then scale like ρ∗z = (A
1/2
z /Zz) ρ∗0. The corresponding values are given in Table 1. The

aspect ratio is 3.2, and the safety factor typically ranges from 1.5 to 2.5. The number

of grid points is the following: (Nr, Nθ, Nϕ) = (256, 256, 32), Nv‖ = 128 → 256, and

Nµ = 16 → 32. Note that Nϕ is increased up to 128 in the case of turbulent simula-

tions, discussed in section 4.
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Figure 1. For a given radial profile of deuterium collisionality (blue dashed line),

corresponding profiles of the collisionality of 3 trace impurities: helium (He), carbon

(C) and tungsten (W, ZW = 40 here). The limits of the three collisionality regimes

(banana, plateau, Pfirsch-Schlüter) are also displayed.

Species D He C W

Collisionality ν∗z 0.1 0.4 ∼ 2.1 ∼ 23.6

Concentration cz 1 2.10−4 10−5 4.10−6

Norm. gyroradius ρ∗z ∼ 9.43 10−3 ∼ 6.67 10−3 ∼ 3.85 10−3 ∼ 2.26 10−3

Table 1. Collisionality, concentration and ρ∗ value of the 4 species of the various

simulations discussed in the paper. The values are given at the center of the radial

domain.

3.1. Diffusion and pinch velocity

The first component of the impurity flux to be studied is the diffusion coefficient Dz.

The only non-vanishing gradient is the impurity density gradient ∂rNZ,eq. A single

simulation would typically require to run on a particle confinement time to allow one

to extract accurately the Dz value. So as to save computation time, three simulations

have been run at three different values of R/Lnz = {0.7; 1.4; 2.1}, measured at rp (with

1/Lnz = −∂r lnNZ,eq). The profiles are plotted on Fig. 2 (left). Once the impurity has

been injected, and after a short reorganization time, the impurity flux reaches a well

defined value, which slowly decreases in time with R/Lnz . The value recorded at rp is

plotted on Fig. 2 (right) for the 3 impurities and the 3 gradients. The impurity flux

contains both contributions of the E×B drift and of the magnetic (curvature and ∇B)

drift. Each series of points defines a line that passes by zero, as it should. The slope,

equal to Dz, is obtained by a least squares fit.

On Fig. 3, the Dz values obtained with GYSELA in this way are successfully com-

pared with the ones predicted by Hirshman-Sigmar [45] and the ones obtained with the

NEO code [48] (adiabatic electrons, Hirshman-Sigmar type of collision operator).

So as to estimate the pinch velocity, a non-vanishing value of the deuterium density
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Figure 2. Left: the 3 impurity density profiles considered for GYSELA simulations.

Right: the time averaged neoclassical flux computed for each of these profiles is plotted

versus the normalized density gradient in the case of 3 impurities (He, C and W) in a

deuterium plasma. The slope gives the neoclassical diffusion coefficient.

Figure 3. Diffusion coefficient of 3 impurities (He, C and W) in a deuterium plasma

versus the impurity collisionality ν∗z . The GYSELA results (o) are compared with the

values predicted by Hirshman-Sigmar [45] (+) and the ones obtained with the NEO

code (x).

gradient is considered in addition to ∂rNZ,eq. The deuterium density profile is homothetic

to the one of impurities, with R/LnD
= 0.7 at rp. The steady state impurity density

profiles would be obtained when the flux vanishes (points on the x-axis on Fig. 4). In

this case, they can reveal extremely peaked, as a result of ambipolarity. Indeed, they

scale as NZ,eq/NZ,eq(r = a) = (Ni,eq/Ni,eq(r = a))Zz . In the case of tungsten (ZW = 40),

such a strongly peaked profile would require prohibitive numerical resources, namely

large number of radial grid points. Also, too short density gradient lengths Lnz can

conflict with one of the gyrokinetic assumptions, stating that ρz/Lnz � 1. Conversely,

using the same procedure as the one used for the diffusion coefficient does not suffer
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such difficulties.

Figure 4. Detail of the method used to retrieve the pinch velocity of 3 impurities

(He, C and W) in a deuterium plasma (no temperature gradient). The slope provides

the diffusion coefficient, the intersection with the y-axis gives the pinch velocity.

Intersection points with the x-axis correspond to the expected equilibrium gradient of

the impurity density profiles as a result of the sole main ion density gradient (density

peaking).

Figure 4 shows the results of the 9 simulations. The extrapolated values on the

y-axis provide the estimate of pinch velocities in GYSELA. These values are plotted

on Fig. 5 as a function of collisionality. Theoretically, the normalized pinch velocity is

expected to scale like RV pinch
z /Dneo

z = −ZzR/LnD. The scaling with collisionality ν∗z as

well as the magnitude of the pinch velocity are successfully recovered.

Figure 5. Normalized pinch velocity of 3 impurities (He, C and W) in a deuterium

plasma versus the impurity collisionality ν∗z . The GYSELA results (o) are compared

with the values predicted by Hirshman-Sigmar (+) and the ones obtained with the

NEO code (x).
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3.2. Thermal screening in the P-S regime

When the main ion species exhibits a non-vanishing temperature gradient, there is an

additional contribution to the convective part of the flux, due to thermodiffusion. It

is expressed in terms of the neoclassical thermal screening factor Hneo
z (cf. eq. (46)):

V thermo
z = ZzD

neo
z Hneo

z ∇r log T . The associated velocity is expected to be outwards

(positive) in the Pfirsch-Schlüter regime, for which the value Hneo
z = −1/2 is commonly

admitted (limit of large aspect ratio, provided ν∗ is not too large [48]). Should tungsten

transport be governed by neoclassical physics in the Pfirsch-Schlüter regime, this term

could reveal essential to prevent its accumulation in the core of tokamak plasmas, where

its strong radiation critically limits fusion performance. Evidence of impurity outward

flow due to thermal screening has already been reported experimentally for low- to

medium-Z (helium, nitrogen, neon) materials [49]. Some of the observed outflow of

impurities when applying Electron Cyclotron Resonant Heating could well proceed from

the same physics [50].

A deuterium-tungsten simulation has been performed with equal initial density

and temperature gradient lengths: R/LnD = R/LnW = 0.1 and R/LTD = R/LTW = 1.

Also, temperatures are the same. In this case, the tungsten neoclassical flux is mostly

governed by the density and temperature gradients of deuterium only, because they are

weighted by the charge of tungsten ZW = 40 (cf. eq. (46)). The following procedure

is used to retrieve the thermal screening factor Hneo
W from the GYSELA simulation.

The neoclassical diffusion coefficient is assumed to be equal to the Hirshman-Sigmar

theoretical prediction [45]. Given the actual density and temperature gradients, Hneo
W

is then such that the right hand side of eq. (46) matches the measured tungsten flux.

Notice that the finite discrepancy between Dneo
W found in GYSELA simulations and the

one predicted by the theory (cf. Fig. 3) impacts the evaluation of Hneo
W with the adopted

method. The theoretical screening factor integrates the contributions from the various

regimes, namely “banana-plateau” (BP) and Pfirsch-Schlüter (PS):

HW =
DBP
W HBP

W +DPS
W HPS

W

DBP
W +DPS

W

(47)

It is plotted on Fig. 6 (red line), where it appears to be dominated by the PS contribu-

tion. Its slight departure from −1/2 is mainly due to the finite value of ε (ε ' 0.13 at

rp). At r/a = 0.45, it is compared a with 2 NEO simulations using two different versions

of the collision operator (cf. Tab. 2): the most advanced one (Fokker-Planck), and the

one retaining only the pitch-angle part. The latter one corresponds to the limit in which

the analytical predictions have been made. It already appears that there is a mismatch

between both (pitch-angle NEO and analytic theory), of the order of 18%. Part of the

explanation likely comes from the ε → 0 limit which is considered in the analytical

derivation: corrections of order ε1/2, which is equal to
√

0.13 ∼ 0.36 in the present case,

would be expected. Also, the F-P operator leads to a less effective screening than an-

alytically predicted. This is detrimental to fusion performance: temperature gradients

might well be less efficient in screening the natural peaking effect of high Z impurities.
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Overall, as expected, the screening factor obtained with GYSELA is negative, i.e. leads

effectively to an outward transport of tungsten. It has also the right order of magnitude,

although it is about 34% smaller than the NEO prediction with the F-P operator. As

already stated, part of this discrepancy is due to the uncertainty regarding the diffusion

coefficient Dneo
W .

GYSELA NEO (Fokker-Planck) NEO (pitch-angle) Theory (H-S)

HW value: −0.211 −0.321 −0.377 −0.461

Table 2. Thermal screening factor HW for the D-W case at r/a = 0.45.

Figure 6. Profile of the thermal screening factor H from a D-W simulation of GYSELA

(dots) compared to the value predicted by Hirshman-Sigmar (line).

We review hereafter some of the foundations of the neoclassical theory in the P-S

regime, on which rely the derivation of Hneo
z , among others.

One of the important results of neoclassical theory in the P-S regime is that the

parallel velocities and heat fluxes exhibit a poloidal left-right asymmetry due to the

magnetic field inhomogeneity. This asymmetry, due the inhomogeneity of the magnetic

field, is responsible for their parallel compressibility. Besides, the asymmetry scales with

the pressure and temperature gradients, as evident in eqs. (35),(37). The poloidally fluc-

tuating part of the parallel deuterium (left) and tungsten (middle) velocities are plotted

on Fig. 7, as well as that of the deuterium parallel flux (right). The top row shows

the instantaneous 2-dimensional values of these fields at the end of the simulation. The

bottom row corresponds to the expected asymmetry, proportional to (1/B −B/〈B2〉ψ)

and weighted by the radial gradients. The agreement between the modeling (top row)

and theoretical results (bottom row) looks satisfactory, both in terms of magnitude and

in shape. With the adopted collision operator, parallel flows in GYSELA turn out to

exhibit the right structure.
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Figure 7. Top row: poloidal fluctuations of the actual parallel velocities and flux

obtained with GYSELA. Bottom row: same quantity computed from the radial

gradients (cf. eqs.(36-38)). The agreement between theory and modeling looks

satisfactory.

In summary, this set of purely neoclassical simulations − where the sole axi-

symmetric modes n = 0 have been retained − has shown that the reduced collision

operator implemented in GYSELA, eq. (21), allows one to recover the main results of

the neoclassical theory regarding impurity transport in all three collisionality regimes,

banana, plateau and Pfirsch-Schlüter. This includes the diffusion coefficient, the pinch

velocity due to the main ion density gradient, and the thermal screening factor due to the

main ion temperature gradient. This latter term has been found to slightly depart from

the analytical estimate, which is close to HZ = −1/2 in the Pfirsch-Schlüter regime. The

reason is twofold. Firstly, numerical simulations with the dedicated neoclassical code

NEO also predict a negative value for HZ , but closer to zero. This strongly suggests that

the analytical estimate is probably too optimistic. Secondly, the uncertainties in the

determination of the diffusion coefficient in GYSELA do affect the computed value of

HZ . The next section explores the interplay between neoclassical and turbulent channels

for impurity transport.

4. Evidence of synergy between neoclassical and turbulent impurity

transport

In tokamak plasmas, the radial transport of matter and energy, governed by collisions

and turbulence, is intrinsically multi scales. While neoclassical transport results from

stationary large scale structures, namely static (m,n) = (1, 0) modes (m,n being the

poloidal and toroidal Fourier wave numbers, respectively), turbulence develops fluctu-

ating small scale modes m,n � 1. On the basis of this scale separation, it is usually
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assumed that both contributions are additive. In turn, these two transport channels

are modeled with different dedicated codes (see e.g. [5, 6, 7, 52, 12]). One of the key

questions is whether this assumption is valid, or whether neoclassical and turbulent

transports exhibit synergistic effects.

This section gives the first evidence of synergistic effects between neoclassical

physics and ITG (Ion Temperature Gradient) turbulence with respect to impurity

transport. Previous evidences of such a synergy have been reported in the literature.

They deal with poloidal flow [51], heat transport [53, 54] and parallel momentum

transport [36, 55]. Also, drift wave turbulence has been shown analytically to be able

to significantly contribute to the bootstrap current through direct modification of the

axisymmetric plasma current distribution via turbulence-induced electron detrapping

[56]. This mechanism could reveal particularly vigorous during transient bursts of

turbulent transport. In all of these studies, identifying any synergy between turbulent

and neoclassical transports depends on the definition which is given to both transport

channels. Obviously, in experiments − like in self consistent simulations including both

turbulence and neoclassical physics − the total flux is simply the sum of turbulence and

neoclassical contributions. The question is then the following: can this self-consistent

flux be recovered by adding up the fluxes coming from two independent simulations,

one dealing with turbulence physics only, the other one with neoclassical physics only?

If the answer is “No”, this means that both channels then exhibit some kind of synergy,

which would remain being understood. The adopted GYSELA set up which led to

the conclusion that there exists synergy between these transport channels is detailed in

section 4.2.

4.1. Impurity transport in collisional turbulence

The transport of 3 impurities (He, Ne and W ) is studied in the ITG turbulent regime.

They find themselves in the three regimes of neoclassical transport, namely banana,

plateau and Pfirsch-Schlüter, respectively. The total impurity flux is then the sum of

two contributions, carried by the electric and magnetic drifts:〈
Γtotz
〉
ψ

=

〈∫
d3v Fz (vD,z + vE,z) ·∇r

〉
ψ

(48)

Here, the magnetic vD,z and electric vE,z drifts are defined by:

vD,z =
mzv

2
G‖ + µzB

ZeB∗||

b×∇B

B
(49)

vE,z =
b×∇(Jz.φ)

B∗||
(50)

with b = B/B and Jz the gyro-average operator. There is not a one-to-one

correspondence between these two contributions, those of the magnetic and electric

drifts on the one hand, and the definitions of the neoclassical and turbulent fluxes on
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the other hand. Indeed, part of the neoclassical flux is carried by the electric drift, more

precisely by its axi-symmetric component n = 0. This point will be taken into account

when looking for possible synergies between neoclassical and turbulent transports, in

section 4.2.

The simulations are performed as follows. They consist in two consecutive phases.

First, GYSELA is run in the single-species mode, evolving the distribution function of

the main ion (deuterium) only, until the saturated regime of turbulence is reached. This

phase typically lasts several tens of turbulence auto-correlation times. In a second phase,

the simulation is restarted in the two-species mode, where the full distribution functions

of deuterium fD and impurity fz are self-consistently advanced in time. In the present

cases, there is no source of particles. Impurities are initialized with a density profile nz
homothetic to the one of deuterium nD, but at low concentration (cz = nz/ne0 � 1,

with ne0 the constant-in-time electron density) so that the impurity remains at a trace

level. Although this is not critical for trace impurities, the deuterium concentration is

reduced in the quasi-neutrality equation, so that the sum (cD + Zcz) remains equal to

one. By doing so, one ensures that no charge is injected in the system.

Figure 8. Time and flux-surface average of the radial impurity flux in D-Helium, D-

Neon and D-Tungsten simulations. The total flux (red) is decomposed into its electric

(blue) and magnetic (black) drift components.

The flux-surface average of the radial impurity flux is plotted in Fig. 8 for each of

the 3 simulations. It is time-averaged on several turbulence correlation times during

the turbulence saturation phase. Two main observations can be made. First, the

fluxes carried by the electric and magnetic drifts are of the same order of magnitude,

and tend to compensate each other. This trend seems to be more pronounced for the
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lighter impurity, helium. Such a behavior has also been reported for parallel momentum

transport [36, 55], although no clear explanation has been proposed so far. Second, this

compensation is however not complete so that, for this set of parameters, the total flux

is outward for helium, and inward for neon and tungsten. This latter observation is

potentially detrimental to fusion performance in tungsten divertor machines like WEST

and ITER, but a more systematic study as function of plasma parameters is clearly

needed. This is left for future work.

Figure 9. Flux-surface average of the neon radial flux as a function of time and

normalized radius. The total flux (c) is decomposed into its electric (b) and magnetic

(a) drift components.

Interestingly, as evident on Fig. 9, the magnetic (a) and electric (b) drift components

exhibit a rich dynamics: the former due to the turbulent fluctuations of the electric

potential, the latter due to the dynamics of both the corrugated equilibrium gradients

and of the m = 1 modes (see below). As a result, the total flux Fig. 9(c) features complex

dynamical patterns, with large deviations from the mean: small scale avalanche-like

events can even lead, locally and temporarily, to the sign reversal of the flux.

4.2. Evidence of synergies

The level − and existence − of synergy between neoclassical and turbulent transports

largely relies on the definition of these two terms. Obviously, in experiments as well as

in self-consistent simulations, the total flux is the sum of neoclassical and turbulent

contributions. Then how to capture any possible synergy? This question makes

sense when realizing that present estimates of these two transports are performed with

different dedicated numerical codes. Then, our strategy aims at assessing whether, and

in which regimes, the total flux can effectively be simply obtained by adding up the

numerical calculations which are currently performed in the literature. GYSELA allows

one to run reduced sets of simulations, either retaining the sole neoclassical contribution

or the turbulent one, to be compared to self-consistent simulations where neoclassical

and turbulent transports are treated on an equal footing.
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In that spirit, for each of the 3 considered trace impurities He, Ne and W , 3

simulations have been performed:

(i) Purely neoclassical (called “neoclassical” hereafter): in this case, all non-

axisymmetric toroidal modes are filtered out at each time step (i.e. all Fourier

modes with n 6= 0 are set to zero, with n the toroidal mode number). The

neoclassical flux is then the sum of both E×B and magnetic drift contributions (the

need to account for both terms is consistent with neoclassical theory, as discussed

in [57, 58]):

〈Γneoz 〉ψ =

〈∫
d3v Fz (vD,z + vn=0

E,z ) ·∇r)

〉
ψ

(51)

This definition departs from the more common understanding where neoclassical

transport is carried by the magnetic drift vD,z only.

(ii) Mainly turbulent (called “turbulent” hereafter): in this case, single-species

collisions only are retained (namely νii and νzz) , so that momentum or energy

exchange between species is not taken into account. The fact that νZi = 0 in this

simulation implies that the parallel friction force is also vanishing: R‖Zi = 0. As a

result, in virtue of eq. (30), the radial neoclassical flux is exactly zero. Retaining

intra-species collisions is however important and sufficient to account, among others,

for the collisional damping of zonal flows, which are known to contribute efficiently

to turbulence saturation. In the case of trace impurities, the collision operator for

the main ions only is important. Indeed, impurity-impurity collisions are negligible

in this case. The turbulent flux is then governed by the electric drift:〈
Γturbz

〉
ψ

=

〈∫
d3v Fz (vE,z ·∇r)

〉
ψ

(52)

(iii) Full (called “total” hereafter): in this case, no simplification is made to the collision

operator, nor any filtering applied to the electric potential. More precisely, all

terms of the collision operator are retained, involving both intra- and inter-species

collisions, in the turbulent regime.

As an example, the case of tungsten is considered hereafter. The same trend is

observed for the two other impurities. In Fig. 10, the total tungsten flux (red) from

the self-consistent simulation is compared to the sum of the neoclassical and turbulent

fluxes (black), coming from the reduced simulations. First, conversely to the magnetic

and electric drift components of the flux, the neoclassical and turbulent contributions

do not exhibit any clear sign of partial compensation. Second, the total flux of tungsten

turns out to be inward in this case. However, this result should not be considered

as a general statement. A thorough exploration of the parameter space (including

density and temperature gradients, collisionality and the source of tungsten) should

be performed before reaching more general conclusions. This is left for future work.

Third and most importantly, it appears that the total flux differs from the sum of the

neoclassical and turbulent fluxes, by more than a factor two at some radial locations.
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Figure 10. Time-averaged radial tungsten flux in neoclassical (blue), turbulent

(green) and full (red) simulations. The sum of the fluxes of the neoclassical and

turbulent simulations is shown in black.

This result shows that neoclassical and turbulent impurity transports are not additive,

in the sense that they cannot be computed separately and then simply added up.

One of the explanations of this synergy comes from the impact of turbulence on the

magnitude and radial shape of poloidal asymmetries, i.e. of the m = 1 Fourier mode.

Indeed, in/out asymmetries of the impurity density profile are able to greatly modify

neoclassical coefficients, up to one or two orders of magnitude, as predicted theoretically

[22, 23, 24, 25]. The time-averaged (m,n) = (1, 0) component of the electric potential

(actually, this is not exactly the n = 0 component: the Fourier transform is performed

at a given toroidal location. However, the m = 1 spectrum exhibits a large peak at

n = 0, so that the axisymmetric mode is dominant) is plotted on Fig. 11, for the three

simulations with tungsten: neoclassical, turbulent and total. The magnitude of the

(1, 0) mode is larger in the presence of turbulence, and exhibits smaller radial scales

(b,c) than in the neoclassical case (a). Its magnitude turns out to be of the order of

ρ∗ = 1/150.

In these simulations, the parallel Mach number of the main ion M‖D is fairly small,

so that the one of tungsten does not exceed 10% (M‖W ≈ (AW/AD)1/2M‖D). In this case,

centrifugal effects are sub-dominant. One thus expects tungsten density fluctuations to

have an adiabatic response, namely δNW/〈NW 〉FS ≡ NW/〈NW 〉FS − 1 ∼ −Z(e δφ/TZ)

[6]. As a matter of fact, this is exactly the order of magnitude which is obtained in this

simulation, as evident on Fig. 12(b). There, the large scale m = 1 mode emerges from

the small scale turbulent structures. Interestingly, δNW peaks at about 4.5 10−8, while

the flux-surface averaged tungsten density (not shown here) is about 1.1 10−7. The ratio

δNW/〈NW 〉FS is well in the expected range Z(e δφ/TZ) ≈ 0.4. Further notice that the

poloidal asymmetry is larger in the turbulent regime than in the purely neoclassical

simulation, Fig. 12(a), the extrema being larger by 40% to 80%.

In summary, the large scale poloidal structures of the impurity density, which

are generated by turbulence (via the turbulence-induced m = 1 mode of the electric



Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport 21

potential), add-up and/or compete with those governed by neoclassical physics, so that

neoclassical and turbulent transports are not additive (in the sense already defined). A

more systematic exploration of the parameter space, especially in terms of temperature

and density gradients, as well as the charge and mass of the impurity, is currently

performed to assess the conditions for and magnitude of this synergy. This will be the

subject of a forthcoming paper, including a more detailed analysis of the mechanism for

this synergy (including possible kinetic effects).

Figure 11. Time-averaged poloidal cross-sections of the (m,n) = (1, 0) component of

the electric potential for the 3 simulations in the case of a deuterium-tungsten plasma.

Figure 12. Instantaneous poloidal cross-sections of tungsten density fluctuations

δNW = NW − 〈NW 〉FS (with 〈...〉FS the flux-surface average) for the 2 reduced

simulations in the case of a deuterium-tungsten plasma.

5. Conclusions

Impurity transport is likely to play a key role in limiting ITER performance. ITER

plasmas will face intrinsic impurities with helium ashes, and extrinsic impurity influxes

due to either edge impurity seeding (neon, argon) which aim at radiating most of the

power or due to plasma-wall interaction (tungsten, beryllium). The case of tungsten is

particularly severe, since core accumulation leads to strong radiation that can prevent

the access to high performance discharges, and can even lead to radiative collapses.

Quantitative predictions of impurity transport is therefore critical, as well as the search

for possible control mechanisms to prevent too large impurity concentration in the

plasma core.
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Both collisional (neoclassical) and turbulent transport contribute to the impurity

flux. Their respective magnitude depends mainly on the mass and charge state of the

impurity, on the main ion density and temperature gradients, on the level (with or

without transport barrier) and nature (e.g. ITG versus TEM) of turbulence, and on the

heating scheme (isotropic or not, with or without torque injection). It is suspected that

both transport channels could exhibit similar magnitudes in ITER plasmas for high-Z

impurities like tungsten.

The flux-driven gyrokinetic GYSELA code is used to study impurity transport

without any scale separation assumption between neoclassical and turbulent transport

channels. Conversely to the usual hypothesis that they are uncorrelated and additive,

both are treated on an equal footing in GYSELA. The implemented multi-species

collision operator has been shown analytically to allow one to recover neoclassical

predictions for impurity transport in the Pfirsch-Schlüter regime. The impurity flux

of purely neoclassical simulations (performed by filtering out non-axisymmetric modes)

of deuterium plasmas with trace impurities of helium, carbon and tungsten has been

successfully benchmarked with respect to both neoclassical theory and NEO simulations

in the three collisionality regimes. Especially, the neoclassical diffusion coefficient, the

inward pinch velocity due to density peaking, and the thermo-diffusive contribution have

been recovered. Interestingly, it appears that the thermal screening coefficient departs

from the analytical estimate of −1/2 in the Pfirsch-Schlüter regime. The computed

screening efficiency is less, which is detrimental to fusion performance. Finally, first

nonlinear simulations in the turbulent regime show that the self-consistently computed

impurity flux is not the sum of turbulent and neoclassical contributions computed

independently, as usually assumed in the literature. The mismatch can reach up to

a factor of two at some radial locations. The discrepancy comes from the excitation of

(m,n) = (±1, 0) modes of the electric potential by turbulence, resulting in turbulence-

driven in-out poloidal asymmetries of the impurity density profile. Forthcoming

simulations will explore and quantify this synergy in a more systematic way by scanning

the parameter space. Such results put already forward the need for self-consistent

simulations of impurity transport in view of providing quantitative predictions for ITER.
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Appendix A. Collision operator: details

The diffusion coefficients in the velocity Dv,ab is related to the deflection collision

frequencies νd,ab via the relation

Dd,ab(v) =
1

2
νd,ab(v)v2 = v2Tax

2
aνd,ab(xa) (A.1)

where v is the velocity modulus (i.e. E = 1
2
mav

2) and xa is a normalized velocity

modulus

xa =

√
E

Ta
=

v√
2vTa

(A.2)

We introduce a normalizing self-collision frequency νaa for the species ’a’

νaa =
4
√
π

3

ln Λ

(4πε0)
2

NaZ
4
ae

4

m2
av

3
Ta

(A.3)

With these notations, the velocity, deflection and slowing-down collision frequencies are

νd,ab(xa) = νHSab

vTa
vTb

Ψ (xb)

x2a
(A.4)

νs,ab(v) = νHSab

Ta
Tb

(
1 +

mb

ma

)
vTa
vTb

Θ (xb) (A.5)

where

νHSab =
√

2
NbZ

2
b

NaZ2
a

νaa (A.6)

Here xb is a function of xa, i.e.

xa =
v√

2vTa
(A.7)

xb = xbaxa =
v√
2vTb

(A.8)

xba =
vTa
vTb

(A.9)

The functions Ψ, G,Φ depend on the velocity modulus only and are defined as

Ψ(x) =
3
√
π

4

1

x
[Φ(x)−G(x)] (A.10)

Θ(x) =
3
√
π

2

G(x)

x
(A.11)

G(x) =
1

2x2
(Φ(x)− xΦ′(x)) (A.12)

Φ(x) =
2√
π

∫ x

0

dy exp
(
−y2

)
(A.13)

The function Φ(x) is the error function, and the function G(x) is the Chandrasekhar

function, in accordance with Hirshman-Sigmar [45, 46] and Hinton-Hazeltine [39, 44]
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papers. These definitions have been chosen such that the deflection and slowing-down

frequencies νd,ab and νs,ab coincide with the definitions given by Hirshman and Sigmar

[45]. The notation νHSab refers to the interspecies collision rate 1/τab defined in [40, 47].

Hence νHSab is different from the inter-species momentum transfer rate νab. In particular

νHSaa differs from νaa by a factor
√

2, i.e. νHSaa =
√

2νaa. Useful asymptotic limits are

slow particle (x→ 0) : Ψ(x)→ 1; Θ(x)→ 1 (A.14)

fast particle (x→∞) : Ψ(x)→ 3
√
π

4
1
x
; Θ(x)→ 3

√
π

4
1
x3

(A.15)
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