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We analyze the intermittent dynamics of cracks in heterogeneous brittle materials
and the roughness of the resulting fracture surfaces by investigating theoretically and
numerically crack propagation in an elastic solid of spatially-distributed toughness. The
crack motion splits up into discrete jumps, avalanches, displaying scale-free statistical
features characterized by universal exponents. Conversely, the ranges of scales are
non-universal and the mean avalanche size and duration depend on the loading
microstructure and specimen parameters according to scaling laws which are uncovered.
The crack surfaces are found to be logarithmically rough. Their selection by the fracture
parameters is formulated in term of scaling laws on the structure functions measured on
one-dimensional roughness profiles taken parallel and perpendicular to the direction of
crack growth.
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1. INTRODUCTION
Understanding how solids break continues to pose significant
fundamental challenges. For brittle solids broken under tension,
Linear Elastic Fracture Mechanics (LEFM) tackles the difficulty
by reducing the problem to the destabilization and subsequent
growth of a dominant pre-existing crack (see e.g., [1] for an
introduction to LEFM). The theory is based on the idea that,
in an elastic material, all dissipative and damaging processes are
localized in a small zone around the crack tip, so-called frac-
ture process zone, FPZ. Crack destabilization and further motion
are then governed by the balance between the flux of mechanical
energy released in the FPZ from the surrounding material and the
dissipation rate into this zone. The former is computable within
linear elasticity theory and connects to the stress intensity fac-
tor, which characterizes the near-tip stress field and depends on
the external loading and specimen geometry only. The dissipa-
tion rate is quantified by the fracture energy required to expose a
new unit area of cracked surfaces. Equivalently, it can be quanti-
fied by the fracture toughness, i.e., the onset value for the stress
intensity factor above which crack starts to grow. Within LEFM
theory, both the fracture energy and the fracture toughness are
assumed to be material constants, to be measured experimentally.

LEFM framework provides a coherent framework to describe
fracture in homogeneous solids. In contrast, heterogeneous solids
remain unclear. Stress concentration at the crack tip makes the
behavior observed at the continuum-level scale extremely sen-
sitive to material’s small scale inhomogeneities. Consequences
include crackling dynamics for fracture with discrete pulses
(avalanches) of a variety of sizes and erratic crack paths (see [2]
for review). A generic observation in this field is the existence
of scale free statistics: (i) Direct imaging of the crack motion in

paper sheets [3, 4] or along heterogeneous interfaces [5, 6] has
revealed power-law distribution for the size of the crack jumps;
(ii) the acoustic [7–9] or seismic [10, 11] events going along
with fracture are characterized by power-law distribution for the
energy; and iii) fracture surfaces are found to exhibit self-affine
morphological features [12–16] or logarithmic [17] roughness.

These observations, by essence, cannot be addressed by con-
ventional LEFM continuum approaches. In this context, over the
past 25 years, promising alternative approaches have emerged
from statistical and non-linear physics: Statistical lattice mod-
els like fiber bundle models (see [57] for review) or random
fuse models (see [18] for review), for example, were found to
reproduce, with a minimal set of ingredients, crackling dynam-
ics in failure [19–21] and self-affine fracture roughness [22–24],
in qualitative agreement with some of the experimental observa-
tions. However, these approaches remain too minimal to provide
quantitative predictions for situations of engineering interests.

A different approach consists in considering the crack propa-
gation in a solid with spatially-distributed toughness. The avail-
ability of asymptotic formulas [25–28] for the variations of stress
intensity factors along a slightly distorted crack can explicitly take
into account the microstructural disorder in a continuum-level
scale LEFM-like description [29–32]. Within this framework,
referred thereafter to as the Random-Toughness Continuum-
Mechanics (RT-CM) approach, the fracture onset can be mapped
to a critical depinning transition [2, 33–35]. Depending on the
situation, this approach yields logarithmically rough [32] or
self-affine [36] fracture surfaces. It can also explain the crack-
ling dynamics sometimes observed as a consequence of a self-
adjustment of the driving force around the depinning value [37].
The main advantage here is that the external parameters involved
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in the depinning model can be mapped to conventional LEFM
parameters. This has been used to relate effective toughness
and microstructural disorder [38, 39], or to unravel the specific
conditions required to observed crackling in brittle fracture [40].

In the present work, depinning models unravel how the load-
ing rate, specimen geometry, and microstructural disorder quan-
titatively select the statistics of continuum-level scale avalanches
(as measured in conventional experimental fracture mechanics)
and of the crack roughness (as recorded in conventional frac-
tography). Section 2 presents the derivation of the depinning
model from LEFM. This section details the successive assump-
tions and their implications. Section 3 assesses the statistics
of the continuum-level scale avalanches, i.e., bursts evidenced
in the time evolution of the spatially-averaged crack veloc-
ity. Statistics on the avalanche’s size and duration demonstrate
a power-law characterized by universal exponents. Conversely,
the associated cutoffs do depend on the loading, microstruc-
ture, and specimen parameters according to scaling laws which
are uncovered. Two regimes can be distinguished: A regime of
pseudo-isolated avalanches not so different from what is pre-
dicted in the quasi-static limit (vanishing loading rate); and a
regime where avalanches coalesce with each other. Section 4 ana-
lyzes the statistics of fracture roughness. The structure functions
measured along profiles parallel and perpendicular to the direc-
tion of crack growth exhibit logarithmic scaling with prefactors
and characteristic length-scales depending on the Poisson’s ratio
and microstructure parameters according to scaling which are
uncovered.

2. MATERIALS AND METHODS
In LEFM theory, the crack velocity v is governed by the balance
between the mechanical energy G and the (material constant)
fracture energy � (Griffith criterion). For slow cracks, v/μ =
G − � where μ = cR/� relates the mobility μ to the Rayleigh
wave speed cR. The principle of local symmetry (PLS) governs
the growth direction [41]. This imposes a zero stress intensity
factor condition for mode II (KII = 0) all along the fracture. As
consequences, an initially straight crack in an ideal homogeneous
material gently loaded in mode I would continuously grow within
its plane, without any jerky motion or roughness. But inhomo-
geneities at the microstructure scale yield distortions of the crack

front, which, in turn, induce perturbations δKI , δKII , and δKIII in
the local loading of the front.

In the RT-CM approach, the effect of material inhomo-
geneities is taken into account by introducing a random spatially-
distributed component for the fracture energy and for the shear
part of the loading. Then, Griffith criterion and PLS combined
with an asymptotic estimation of the perturbations in the loading
induced by the front distortion describes the crack growth. This
approach was pioneered by Gao and Rice [29] and subsequently
developed [30–32, 37, 40, 42–44]. Here, the model is reviewed
with an emphasis on the relation between the model parameters
and experimentally measurable quantities. We also pay special
attention to list the various assumptions and discuss the implied
limits.

2.1. FROM FRONT DISTORTIONS TO THE PERTURBATIONS IN THE
CRACK-TIP LOADING

Let one consider a crack embedded in an isotropic elastic solid
of size L × H × W under tension. In the following, we adopt the
usual convention of fracture mechanics and the axes �ex, �ey and �ez

align with the direction of crack propagation (L direction), ten-
sile loading (H direction), and mean crack front (W direction),
respectively. For a straight crack, the mode I stress intensity factor
K0 fully characterizes the near-tip stress field loading. Let one now
consider the situation depicted in Figure 1: left where the pres-
ence of inhomogeneities yields small in-plane and out-of-plane
crack distortions, f (z, t) and h(x = f (z, t), z) respectively. The
first step in the RT-CM approach is to estimate how these distor-
tions perturb locally the loading. To make the problem tractable,
simplifying hypothesis are needed:

Hyp. 1 The Young modulus E and Poisson ratio ν of the solid are
considered as homogeneous.

Hyp. 2 The spatial distribution of �(x, y, z) and the PLS noise are
narrow enough such that a first-order perturbation anal-
ysis can characterize the coupling of the local perturba-
tions δKI(z), δKII(z) and δKIII(z) to the front distortions
{f , h}.

Then, Rice [25] and Movchan et al’s [26] formula relate δKi(z) to
the front distortions:

FIGURE 1 | Left: Sketch and notation of a crack front propagating in a heterogeneous solid. Right: Decomposition of the crack path into infinitesimal
straight kinks.
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⎧⎪⎪⎪⎪⎨
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δKI(z, {f }, {h}) = K0
2π

∫
front

f (ζ,t) − f (z,t)
(ζ−z)2 dζ

δKII(z, {f }, {h}) = K0
2

∂h
∂x

(
x = f (z, t), z

)
− K0

2 − 3ν
2π(2 − ν)

∫
front

h(x = f (z,t),ζ )−h(x = f (z,t),z)
(ζ − z)2 dζ

δKIII(z, {f }, {h}) = K0
2(1 − ν2)

2 − ν
∂h
∂x

(
x = f (z, t), z

)
(1)

where
∫

denotes a principal value integral. Note that δKI depends
only on the in-plane distortions {f }, and δKII , δKIII depend on the
out-of-plane distortions {h}. Here, several additional assumptions
were required:

Hyp. 3 In the expressions of δKII and δKIII , we have omitted
the terms brought by the non-singular stresses near the
reference straight crack front (the so-called T-stress and
the third term A of the asymptotic expansion of near-
tip stress field). This assumption remains valid for stable
crack paths (T ≤ 0 [45]) when the roughness wavelength
is small with respect to the system size and the charac-
teristic distances defined by the external loading [31, 36].
A complete form of the omitted terms can be found in
Movchan et al. [26];

Hyp. 4 Rice’s formula for δKI assumes a sample with infinite
width W and thickness H. It remains valid as long as
one considers front corrugations the wavelength of which
are small with respect to H and W . A more accurate for-
mula proposed in Legrand et al. [46] addresses the case of
finite H. To the very best of our knowledge, there does not
exist any formula taking into account the effect of finite
width, W .

2.2. GRIFFITH CRITERION AND EQUATION OF MOTION
The above expression for the local perturbations δKi leads to a
first order expression of the energy release rate G(z) as a function
of the front distortions:

G(z) = G0

(
1 + δKI(z)

K0

)
, (2)

where G0(t, f ) = K0(t, f )2/E is the reference energy release rate
which, as K0(t, f ), would result from the same loading with a
straight crack front within the mean plane y = 0 at the mean posi-
tion x = f (t). Henceforth, the operator a indicates averaging of
the variable a(z) over the spatial coordinate z. The two quantities
G0 and K0 coincide with the ones that would have been defined
in the conventional LEFM approach when ignoring front distor-
tions. They only depend on the specimen geometry and imposed
load (of which both evolve with t) and can be determined using
continuum mechanics (e.g., finite element analysis).

Slow cracking (as considered herein) implies that the solid
is loaded by imposing external displacements rather than exter-
nal stresses (the opposite would yield dynamic fracture with
crack at speed on the order of the sound speed). This induces
additional constraints: G0 should decrease with f (t) (specimen
compliance always increases with crack length) and increase with
t (to drive a crack, external displacement can only increase with
time). Without loss of generality, we set t = 0 at a time when the
crack has just stopped and x = 0 is the crack tip’s position at this

time. G0(t = 0, f = 0) = � where � = 〈�(x, y, z)〉 is the mean
value of fracture energy. Considering the subsequent variation
f (z, t) to be small with respect to the crack length at t = 0, we
can write:

G0(t, f ) = � + Ġt − G′f (t), (3)

where Ġ = ∂G0/∂t (driving rate) and G′ = −∂G0/∂f (unload-
ing factor) are positive constants characterizing the loading rate
and the specimen geometry, respectively. Inserting Equations 1
and 3 in Equation 2, and the resulting expression for G(z) into
Griffith criterion, the equation of motion for the in-plane front
displacement is:

1

μ

∂f

∂t
(z, t) = Ġt − G′f + �

π

∫
front

f (ζ, t) − f (z, t)

(ζ − z)2
dζ

+γ
(
x = f (z, t), y = h(x = f (z, t), z), z

)
, (4)

where γ (x, y, z) = �(x, y, z) − � is the fluctuating part of the
fracture energy. The solution of this equation provides the space-
time dynamics of the in-plane projection of the crack front.
Subsequently, it gives the time evolution of the fracture velocity
at the continuum-level scale, v(t) = df /dt. This is the relevant
observable characteristics of the crack dynamics in standard
experiments of fracture mechanics.

2.3. PRINCIPLE OF LOCAL SYMMETRY AND EQUATION OF PATH
We now derive an equation of path by making use of the princi-
ple of local symmetry [41]. To do so, we take inspiration from the
work of Katzav et al. [44, 47] to model crack path in a model 2D
situation and extend it for three-dimensional solids. The idea is
to decompose the front propagation along x-axis into infinitesi-
mal straight kinks of length 	, identified with the microstructural
length-scale characterizing the spatial distribution of �(x, y, z)
(see Figure 1:right). Consider now the kink occurring at the front
location z between time t and t + dt. Leblond et al’s formulas [48]
relate the stress intensity factors after kinking K ′

i (z) (i = I, II, III)
to the stress intensity factors before kinking Ki(z) and to the kink
angle δθ = θ(z, t + dt) − θ(z, t) = 	∂2h/∂x2(x = f (z, t), z) via:

K ′
i (z) =

∑
j = I,II,III

Fi,j(δθ)Kj(z), (5)

where Fi,j(δθ) are universal functions that were computed in
Leblond [27] for three-dimensional solids. The principle of local
symmetry implies that K ′

II must be uniformly zero, which leads to:

FII,I(δθ)KI(z) + FII,II(δθ)KII(z) = 0. (6)

Now, to first order in δθ , FII,I(δθ) and FII,II(δθ) are given
by Leblond [27]: FII,I(δθ) = δθ + O(δθ2) and FII,II(δθ) = 1 +
O(δθ2). The kink angle is then related to K0, δKI(z) and δKII(z)
via: δθ ≈ −δKII(z)/(K0 + δKI(z)). Finally, by keeping only the
first order loading perturbations , it writes:

	
∂2h

∂x2
(x = f (z, t), z) = −δKII(z)

K0
. (7)
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To introduce the effect of microstructural disorder, a spatially
distributed noise term K0ϑ(x, y, z) is added to the right-handed
side of the equation. In the situation of inter-granular crack
growth in a material made of sintered grains (e.g. sandstone),
for example, this additional term would translate the difference
between the kink angle predicted by the principle of local symme-
try and that truly selected so that the crack propagates between
the cemented grains. Finally, combining the resulting equation
with the asymptotic formula for stress intensity factors (Equation
1), one gets:

2	
∂2h

∂x2
(x, z) = −∂h

∂x
(x, z) + 1

π

2 − 3ν

2 − ν

∫
front

h(x, ζ ) − h(x, z)

(ζ − z)2
dζ

+ ϑ(x, y = h(x, z), z) (8)

The solution of this equation provides the topography of the post-
mortem fracture surfaces, h(x, z). This is the quantity of interest
in fractography science. Note that this equation differs from that
given in Larralde [31] and Bonamy et al. [36] as it includes an
additional curvature term ∂2h/∂x2.

2.4. RELEVANT PARAMETERS AND NUMERICAL ASPECTS
Equations 4 and 8 predict deterministically the fracture dynam-
ics and the morphology of fracture surfaces using the following
inputs:

Input 1 The loading rate Ġ;
Input 2 The specimen geometry (unloading factor G′ and speci-

men width W)
Input 3 The material constants (fracture energy �, Poisson ratio

ν, and mobility μ),
Input 4 The microstructure disorder (microstructure length-

scale 	 and the spatial distribution of the two noise terms
γ (x, y, z) and ϑ(x, y, z)).

Statistically, the two noise terms are characterized by the prob-
ability density functions p(γ ) and p(ϑ) and the spatial correla-
tion functions Cγ (�r) = 〈γ (�r0 + r)γ (�r0)〉�r0 and Cϑ (�r) = 〈γ (�r0 +
r)γ (�r0)〉�r0 . Additional assumptions simplify the problem:

Hyp. 5 The two noise terms are not correlated; At first glance,
such an assumption may appear odd since both terms
originate from the material heterogeneities. But due to
the tensorial nature of elasticity, these heterogeneities
will affect the equation of motion and the equation
of path independently. As an illustrative example, let
us consider again the situation of intergranular crack
growth in a solid made of sintered grains. Two distinct
space-dependent noise terms are required to describe the
microstructural texture: The first one quantifies the local
variations of adhesion between grains and mainly affects
the equation of motion; the second one describes the local
variations of joint orientation and affects the equation of
path.

Hyp. 6 Both probability density functions are Gaussian of zero
mean and standard deviation γ̃ and θ̃ , respectively;

Hyp. 7 In both cases, the correlation function C decreases lin-
early with |r| over the microstructure distance 	 and is
zero above.

Note that, in elastic interfaces equations as that proposed in
Equations 4 and 8, the scaling properties remain unaffected upon
changes in the probability functions (p(γ ) and p(ϑ)) and in the
correlation functions (Cγ (|r|) and Cϑ (|r|)) [43]. Thanks to this
series of assumptions, the two spatially distributed noise terms
are fully characterized with 3 parameters: γ̃ , θ̃ and 	.

At this point, the Equations 4 and 8 are coupled via the two 3D
noise terms γ (x, y, z) and ϑ(x, y, z), since they both depend on
the in-plane and out-of-plane positions of the crack front. A last
assumption permits the decoupling of the two equations:

Hyp. 8 The 3D spatially distributed terms γ (x, y, z) and
ϑ(x, y, z) reduce to their in-plane projection γ (x, z) and
ϑ(x, z).

As shown in Ramanathan et al. [32], Equation 8 with a 2D pro-
jection for the noise term yields logarithmically smooth fracture
surfaces. Hence, zooming out on the fracture surfaces makes
them appear flatter and flatter. When the zooming out is suf-
ficient, fluctuations in h become negligible when compared to
in-plane length scales. The two noise terms reduce to γ (x, y =
h(x, z), z) ≈ γ (x, y = 0, z) and ϑ(x, y = h(x, z), z) ≈ ϑ(x, y =
0, z). This validates Hyp. 8.

At this point, the selection of the fracture behavior brings into
play 8 parameters: μ, �, Ġ, G′, γ̃ , θ̃ , 	 and W . The introduction
of dimensionless time t → t/	/(μ�) and length {x, y, z, f , h} →
{x/	, y/	, z/	, f /	, h/	}) reduces this number. Equations 4 and 8
become:

∂f

∂t
(z, t) = ct − kf (t) + 1

π
×
∫

front

f (ζ, t) − f (z, t)

(ζ − z)2
dζ

+ ηγ (x = f (z, t), z), (9a)

2
∂2h

∂x2
(x, z) = −∂h

∂x
(x, z) + A

π

∫
front

h(x, ζ ) − h(x, z)

(ζ − z)2
dζ

+ ϑ(x, z). (9b)

where the dimensionless noise term η is characterized by a stan-
dard deviation η̃ = γ̃ /� and a spatial correlation length equal to
unity.

The final two decoupled dimensionless equations require only
6 parameters:

• The dimensionless driving rate c = Ġ	/μ�
2
,

• the dimensionless unloading factor k = G′	/�,
• the Poisson-ratio dependent parameter A = (2 − 3ν)/(2 − ν),
• the parameters η̃ and θ̃ characterizing the disorder strength,
• the continuum-level vs. microstructure scale ratio N = W/	.

The following sections subsequently address the continuum-level
scale statistics of crack dynamics v(t) and the morphology of
the post-mortem fracture surfaces h(x, z). They also reveal their
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dependencies on the external parameters {c, k, A, η̃, θ̃ , N}. The
numerical scheme is the following. For each set of parameters, we
built two uncorrelated random N × pN maps η(x, z) and ϑ(x, z)
with Gaussian distribution of variance η̃ and θ̃ , respectively. At
time t = 0, the crack front is a straight line at x = 0: f (z, t = 0) =
0 and h(x = 0, z) = 0 ∀z ∈ [0, N − 1]. Solving Equation 9a gives
the space-time evolution of f (z, t). Solving Equation 9b provides
h(x, z). Both cases invoke a fourth order Runge-Kutta scheme and
periodic boundary conditions along z: f (z = 0, t) = f (z = N, t)
and h(x, z = 0) = h(x, z = N) for all t and x. This speeds up the
computation time as the two integral terms in the equations can
be solved in the Fourier domain.

3. RESULTS
3.1. CRACKLING DYNAMICS AND AVALANCHE STATISTICS
We first look at the crack dynamics. Equation 9a describes the
motion of a long-range elastic chain driven in a frozen ran-
dom pinning potential with a driving force F = ct − kf (t) self-
adjusting around the depinning value [37]. For {c, k} → 0, the
chain propagates while remaining at the critical depinning point
and the crack moves through irregular jumps, or avalanches. The
size S and duration D of the avalanche1 follow a universal power-
law distribution [37, 49]: P(S) ∝ S−τ and P(D) ∝ D−α where the
exponents τ and α can be estimated using renormalization [49–
51] or numerical [52, 53] methods. The most precise estimations
yields τ = 1.280 ± 0.01 and α = 1.500 ± 0.010 [2]. These scale
free statistics extend to upper cutoffs S0 and D0 set by the system

1In problems of depinning of interfaces, the definition of the avalanche size
differ depending on the publication. Sometimes, the size is defined as the area
A swept by the front between two successive depinning configurations. Here,
the size S is defined as the integral of the continuum-level scale velocity v(t)
between the two successive depinning configurations. The two definitions are
related by S = A/N when N is the system size.

size N: S0 ∝ Nζ and D0 ∝ Nκ where ζ and κ are the roughness
exponent and dynamic exponent, respectively. The most precise
estimations of their value yield [52, 53]: ζ = 0.385 ± 005 and
κ = 0.770 ± 0.005.

Here, both c and k are finite. The effects of a finite unloading
factor k keeping c → 0 is now fairly well documented [2, 54]: It
modifies the upper cutoffs S0 and D0 to the preceding scale-free
distributions:

P(S|N, k, c → 0) = S−τ f (S/S0) with S0 ∝ N1/σ−1/k1/σ

(10a)

P(D|N, k, c → 0) = D−αg(D/D0) with D0 ∝ (N/k)1/�

(10b)

Here, the form of the functions f (u) and g(u) is expected to be
universal. The exponents 1/σ and 1/� are also predicted to be
universal: 1/σ = 0.69 ± 0.010 and 1/� = 0.385 ± 0.010 [2, 54].
Conversely, the effect of a finite c is not uncovered yet. By yield-
ing some overlap between the avalanches [55], it can significantly
alter the dynamics. In particular, a recent work [40] has evidenced
a transition line between a crackling-like dynamics made of irreg-
ular power-law distributed jumps and a continuum-like dynamics
ruled by the conventional LEFM theory.

Figure 2 presents typical times profiles of the continuum-level
scale velocity v(t) for different values of c and k in the crackling
regime. Here and thereafter, the system size N and the disorder
strength η̃ are set constant, N = 1024 and η̃ = 1, returning at
the end of this section to a brief discussion on their effect. Note
the irregular jumps characteristics of the underlying avalanch-
ing dynamics. Note also the qualitative changes in the signal
appearance as k and c are modulated: Pulses become shorter as
k increases, and the pulse density increases as c increases. Note
finally that, due to the finite value of c, v(t) does not vanish

FIGURE 2 | (A) Evolutions of the continuum-level scale velocity v (t) for three
typical parameter sets within the crackling phase: {c = 10−5, k = 10−3,
η̃ = 1, N = 1024} (top), {c = 10−5, k = 10−2, η̃ = 1, N = 1024} (middle),
{c = 10−4, k = 10−2, η̃ = 1, N = 1024} (bottom). (B) Zoom in on an

avalanche, identified as a pulse where v (t) is above a prescribed value
vc = 10−3 (horizontal red dash line). The avalanche duration D is the interval
between the two successive intersections of v (t) with vc . The avalanche size
S is the integral of v (t) − vc between the same points.
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between the pulse, but becomes equal to a small value propor-
tional to c (prefactor dependent of the Runge Kunta scheme).
The avalanches are then identified with the bursts where v(t) is
above a prescribed reference level vc = 10−3. Their duration D is
defined as the interval between the two successive intersections of
v(t) with vc, and their size S is defined as the integral of v(t) − vc

between the same points.
Figure 3 reports the probability density function of avalanche

size P(S|c, k) and duration P(D|c, k) for different values of c and k.
Power-laws are observed. The exponents τ and α associated with
the power-law decrease are independent of c and k. Moreover,
they compare well with the values τ = 1.280 ± 0.01 and α =
1.500 ± 0.010 expected for {c, k} → 0. On the other hand, the
valid region of the power-law is observed depends on c and k.
Both the lower cutoffs Smin and Dmin are roughly independent of
c and k. However, the precise values Smin and Dmin were observed

to depend on the reference level vc and, thus, are to be associated
with the procedure to extract the avalanches. We will consider in
the following only the part of the distributions above these lower
cutoffs.

The power-law distributions observed in Figure 3 also exhibit
upper cutoffs S0 and D0. These cutoffs decrease with k in all cases.
The effects of c is of two types:

• For large k/small c the cutoff does not depend on c (only on k).
• At small k/large c, the cutoff increases with c and the

distribution also displays a bump at large sizes and durations.

Direct computation of the cutoff is quite imprecise. Hence, the
selection of the typical length and time scales is studied via
variations of the mean values 〈S〉(c, k) = ∫∞

Smin
S × P(S|c, k)dS

FIGURE 3 | Top: Distribution of the avalanche size measured (A) for

various values of k at constant c = 10−4 and (B) for various

values of c at constant k = 10−2. In both cases, N = 1024 and
η̃ = 1 and the axes are logarithmic. The power-law exponent τ is
found to be independent of the parameters and compatible to the
universal value τ = 1.28 (black dashed line) predicted for c → 0 and
k → 0. The lower cutoff is found to be independent of the
parameters: Smin ≈ 10−3 (vertical dash line). The upper-cutoff is found
to decrease with k and to increase with c (resp. to be independent
of c) when c is large enough (resp. when c is small enough).

Bottom: Distribution of the avalanche duration measured (A′) for
various values of k at constant c = 10−4 and (B′) for various values
of c at constant k = 10−2. In both cases, N = 1024 and η̃ = 1 and
the axes are logarithmic. The power-law exponent α is found to be
independent of the parameters and compatible to the universal value
α = 1.50 (black dashed line) predicted for c → 0 and k → 0. The lower
cutoff is found to be independent of the parameters: Dmin ≈ 3
(vertical dash line). The upper-cutoff is found to decrease with k and
to increase with c (resp. to be independent of c) when c is large
enough (resp. when c is small enough).
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(Figure 4A) and 〈D〉 = ∫∞
Dmin

D × P(D|c, k)dD (Figure 4B). At
large enough k, both 〈S〉 and 〈D〉 are independent of c. This
large k regime is attributed to a regime of pseudo-isolated
(pi) avalanches. The distributions are then expected to take
forms similar to that of Equation 10. As a result, 〈S〉pi is
expected [56] to take the form 〈S〉pi ≈ Sτ−1

min S2 − τ
0 ∝ k−(2 − τ )/σ ,

〈D〉pi ≈ Dα−1
min D2 − α

0 ∝ k−(2 − α)/�. These two scaling are compat-
ible with the observations at large k (dash line in Figures 4A,B).
As a synthesis, the mean avalanche size and duration are found to
take the following form at large k:

〈S〉(c, k  c) = 〈S〉pi(k) ≈ 10−2k−(2 − τ )/σ (11a)

〈D〉(c, k  c) = 〈D〉pi(k) ≈ 11k−(2 − α)/� (11b)

Let us try now to characterize the effects of the avalanche overlap
when k becomes small or c becomes large. Previous work [40] evi-
denced a transition between the crackling dynamics studied here
and a continuum-like dynamics when c becomes large enough
or k small enough. This transition is believed [40] to coincide
with the point where the avalanche overlap percolates through-
out the entire system. At constant η̃ and N, this transition was
shown [40] to be fully driven by the ratio c/k. We hence plotted,
in Figure 5, 〈S〉/〈S〉pi and 〈D〉/〈D〉pi (first order estimation of the
number of individual avalanches having merged together to form
the bursts detected from the signal v(t)), as a function of the con-
trol parameter c/k. A coarse collapse is observed. As expected, the
master curves diverge at the transition value between crackling
and continuum-like dynamics (materialized by the vertical dash
lines in the main panels of Figures 5A,B).

Note that significant deviations to the collapse are observed.
They are believed to stem from a qualitative change in the distri-
bution shape as k decreases/c increases and the avalanche overlap
increases. Actually, for small k/large c a bump develops at large
scales, for both the distribution in size and in duration. Due
to this change in shape, several length-scales (resp. time-scales)

intervenes in the distributions of S (resp. D). Thus, the recording
of the mean values alone is not sufficient to capture their evo-
lutions with c and k. Ongoing work aims at characterizing these
effects more accurately.

To make the analysis complete, we looked at the effects of the
system size N and disorder strength η̃. Figure 6 plots the proba-
bility density function of avalanche size P(S|N, η̃) and avalanche
duration P(D|N, η̃) as measured for different values of N and η̃

at fixed values of c and k. For both size and duration, the decrease
of N yields an increase of the lower-cutoffs Smin and Dmin (main
panel of Figures 6A,A′). The two dependencies are well fitted by
power-laws: Smin ∝ N−aSN and Dmin ∝ N−aDN with aSN ≈ 1.7
and aDN ≈ 0.6 (inset of Figures 6A,A′). η̃ does not seems to
affect Smin. Conversely, Dmin decreases with η̃ as Dmin ∝ η̃−aDη̃

with aDη̃ ≈ 1.2 (inset of Figure 6B′). The effects of N and η̃

of 〈S〉 and 〈D〉 are analyzed in Figure 7, by plotting the curves
〈S〉 vs c and 〈D〉 vs c for different N at constant k and η̃ (insets in
Figures 7A,A′), and for different η̃ at constant k and N (insets in
Figures 7B,B′). Increasing N yields a decrease of the low-c plateau
and a leftward shift of the divergence location for both 〈S〉 and
〈D〉. Increasing η̃ yields an increase of the low-c plateau for 〈S〉,
a decrease of the low-c plateau for 〈D〉, and a rightward shift of
the divergence location for both 〈S〉 and 〈D〉. All curves can then
be superimposed by making {〈S〉 → 〈S〉/N−bSN , c → c/N−cN } in
the main panel of Figure 7A, {〈S〉 → 〈S〉/η̃bSη̃ , c → c/η̃cη̃ } in the
main panel of Figure 7B, {〈D〉 → 〈D〉/N−bDN , c → c/N−cN } in
the main panel of Figure 7A′, {〈D〉 → 〈D〉/η̃−bDη̃ , c → c/η̃cη̃ } in
the main panel of Figure 7B′. By combining this with Equation 11
and the collapse obtained in Figure 5, we anticipate the following
form for mean size and duration:

〈S〉 ≈ η̃bSη̃

NbSN k(2 − τ )/σ
F
(

cNcN

kη̃cη̃

)
,

〈D〉 ≈ 1

η̃bDη̃ NbDN k(2 − α)/�
G
(

cNcN

kη̃cη̃

)
, (12)

FIGURE 4 | (A) Evolution of the mean avalanche size 〈S〉 as a function of
the unloading factor k for different loading rates c. The curves collapse
for large k onto a c-independent power-law curve. Black thick dash line
depicts a fit over the collapsed region using Equation 11a:
〈S〉pi ≈ 10−2k−(2 − τ )/σ with τ = 1.28 and 1/σ = 0.69. (B) Evolution of the
mean avalanche duration 〈D〉 as a function of the unloading factor k for

different value of the loading rate c. At large k, the curves collapse onto
a c-independent power-law curve. Black thick dash line is a fit over the
collapsed region using Equation 11b : 〈D〉pi ≈ 11k−(2 −α)/� with α = 1.50
and 1/� = 0.385. In both (A,B) N = 1024 and η̃ = 1 and the axes are
logarithmic. The different symbols correspond to different values of c,
given in the legends.
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FIGURE 5 | (A)Mainpanel:Variationof 〈S〉/〈S〉pi asa functionofc/k fordifferent
k. (A) Inset: 〈S〉 as a function of c for different k. (B) Main panel: Variation of
〈D〉/〈D〉pi as a function of c/k for different k. (B) Inset: 〈D〉 as a function of c for
different k. In both (A,B) N = 1024 and η̃ = 1 and the axes are logarithmic. The

different symbols correspond to different values of k, given in the legend
between graphs (A,B). In the main panels of both graphs, the vertical dash lines
indicates the transition value c/k between crackling and continuum-like
dynamics as determined in Nukala et al. [40] for N = 1024 and η̃ = 1.

where the two functions F(u) and G(u) exhibit a plateau at
small u, and both diverge at the same value uc. The value of
the exponents τ , α, 1/σ and 1/� are well known [2]: They
can e.g., be related to the so-called roughness exponent ζ and
dynamic exponent κ classically defined in the realm of critical
depinning transition: τ = 2 − 1/(1 + ζ ), α = 1 + ζ/κ , 1/σ =
(1 + ζ )/2 and 1/� = κ/(1 + ζ ). Conversely, the precise origin of
the exponents bSN , bSη̃, bDN , bDη̃, cN , and cη̃ and their link with ζ

and κ remain to be uncovered.
Equation 12 quantitatively relate the material parameters

to quantities that are accessible in conventional experimental
mechanics, namely the mean size and duration of the avalanches.
In this context, it is of interest to rewrites the equation with the
original variables, before the non-dimensionalization procedure:

〈S〉 ≈ γ̃ bSη̃ × 	bSN−(2 − τ )/σ

G′(2 − τ )/σ × �
bSη̃−(2 − τ )/σ × WbSN

F
(

Ġ × �
cη̃−1 × WcN

μG′ × γ̃ cη̃ × 	cN

)
, (13a)

〈D〉 ≈ �
bSη̃+(2 − α)/� × 	bDN−(2 − α)/�

G′(2 − α)/� × WbDN

G
(

Ġ × �
cη̃−1 × WcN

μG′ × γ̃ cη̃ × 	cN

)
, (13b)

where the mean avalanche size 〈S〉 and duration 〈D〉 are expressed
with real length and time units, and Ġ, G′ , W , �, μ, 	 and γ̃ are
recalled to be the loading rate, the unloading factor, the speci-
men width, the fracture energy, the mobility, the microstructure
length-scale, and the contrast in local fracture energy. The value
of the exponents are recalled to be τ = 1.280 ± 0.01 (predicted),
α = 1.500 ± 0.01 (predicted), 1/σ = 0.69 ± 0.01 (predicted),
1/� = 0.385 ± 0.01 (predicted), bSN = 1.3 ± 0.1 (fitted), bSη̃ =

0.7 ± 0.1 (fitted), bDN = 0.45 ± 0.1 (fitted), bDη̃ = 0.65 (fitted),
cN = 0.65 ± 0.1 (fitted), and cη̃ = 1.05 ± 0.1 (fitted).

3.2. ROUGHNESS OF FRACTURE SURFACES
We turn now to the topography h(x, z) of the post-mortem frac-
ture surfaces as predicted by equation 9b. Figure 8 reports typical
topographies for different values of the two external parameters
A and θ̃ . When A is close to 1, the surface seems to be statisti-
cally isotropic while as A gets smaller, the surface appears more
elongated in the direction of z. Conversely, the parameter θ̃ only
affects the range swept by the roughness. Note that in almost all
elastic solids, Poisson ratio ν lies between 0 and 0.5, which impose
a finite interval for A = (2 − 3ν)/(2 − ν): 1/3 ≤ A ≤ 1. Herein,
only A within this interval are considered.

To characterize quantitatively the spatial distribution of frac-
ture roughness, we adopted the classical procedure [2] and
computed the structure function S(��r) = 〈(h(�r + ��r) − h(�r))2〉.
Here, the operator 〈〉 denotes averaging over all positions �r =
(x, z). First, we computed the structure function Sz(�z) along 1D
profiles taken parallel to z (mean direction of the crack front). The
procedure is the following: (i) an initially straight front was first
propagated over a distance equal to 10N to obtain a statistically
stationary regime; (ii) 10000 subsequent profiles h(xi, z) sepa-
rated by a distance xi+1 − xi = 1 were recorded; (iii) the structure
function Si

z(�z) was computed for each of these profiles; and (iv)
finally, these 10000 individual structure functions were averaged
to get Sz(�z).

Figure 9 depicts typical examples of Sz(�z) curves for differ-
ent values of N, θ and A. Sz goes as Sz = pz log (�z/λz) up to
an upper cutoff set by the system size N. This logarithmic scal-
ing is anticipated to extend over the whole range of length-scales
as N → ∞. Note that logarithmically rough crack surfaces were
also predicted in earlier theoretical works [31, 32] analyzing crack
propagation through a three-dimensional heterogeneous solid. As
a plus, the present model allows relating the prefactor pz and char-
acteristic length-scale λz with the fracture parameters: pz is found
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FIGURE 6 | Effect of the system size N and disorder strength η̃ on the

avalanche statistics. Main panel, top: Distribution of the avalanche size
measured (A) for different N at constant c = 2 × 10−5, k = 10−2 and η̃ = 1, and
(B) for different η̃ at constant c = 2 × 10−5, k = 10−2 and N = 1024. The axes
are logarithmic. Main panel, bottom: Distribution of the avalanche duration
measured (A′) for different N at constant c = 2 × 10−5, k = 10−2 and η̃ = 1,
and (B′) for different η̃ at constant c = 2 × 10−5, k = 10−2 and N = 1024. All
axes are logarithmic. In all panels, the power-law exponents τ and α are
compatible with the universal values τ = 1.28 and α = 1.50 (inclined dashed
line) predicted for c → 0 and k → 0. Regarding the size, the lower cutoff Smin is

observed to be independent of η̃ and to decrease with N. Regarding the
duration, the lower cutoff Dmin decreases with both N and η̃. Smin (resp. Dmin) is
quantitatively defined as the intersection of the power-law regime with
exponent τ (resp. α) and the saturation value for P observed at small S (resp.
small D). The red and blue dash lines in (A,A′,B′) present illustrations for
N = 128 and N = 1024, respectively. The variation of Smin with N is shown in
the inset of a. The variations of Dmin with N and η̃ are shown in the insets of
(A′,B′). The different symbols correspond to different values for c (from
2 × 10−6 to 10−4). The red line are fits: Smin ∝ N−aSN with aSN = 1.7 ± 0.1,
Dmin ∝ N−aDN with aDN = 0.6 ± 0.1, and Dmin ∝ η̃−aDη̃ with aDη̃ = 1.2 ± 0.1.

to scale as θ̃2/A (Figure 10A), while λz is independent of both A
and θ̃ (Figure 10B). Finally, the structure function along z is:

Sz(�z) = C
θ̃2

A
log (�z/λz), with C = 0.32 ± 0.01 and

λz = 0.24 ± 0.03 (14)

We now look at the structure function Sx(�x) along x. A direct
computation of Sx following the standard procedure proposed
for Sz was found to give a large scattering even for a constant
set of parameters {N, A, θ̃}. Hence, the computation procedure
was modified as follows: (i) an initially straight front was first
propagated over a distance equal to 10N to obtain a statisti-
cally stationary regime; (ii) the x evolution of h̃(x, zi) = h(x, zi) −
h(x) was subsequently recorded at 100 locations zi uniformly

distributed along the specimen width N (h(x) denotes averag-
ing over the specimen width N); (iii) the structure function
Si

z(�x) = 〈(h̃(x + �x, zi) − h̃(x, zi))2〉 was computed for each of
these profiles; (iv) these 100 individual structure functions were
averaged to get the Sx(�x) for a single specimen; and (v) the
so-obtained structure functions were further averaged over 100
specimens. This procedure produces accurate and reproducible
curves Sx vs. x.

Figure 11 depicts typical examples of Sx(�x) curves for differ-
ent values of N, θ and A. The behavior resembles that observed
for Sz, with a logarithmic scaling Sx = px log (�x/λx) up to
an upper cutoff set by the system size N. Note that Sx sat-
urates above the cutoff, and does not decrease down to zero
as was observed for Sz due to periodic boundary conditions.
As for Sz, the prefactor (now referred to as px) goes as θ̃2/A
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FIGURE 7 | Effect of the system size N and disorder strength η̃ on

the mean size and duration of avalanches. Top, inset: Mean avalanche
size 〈S〉 as a function of c for constant k = 10−2 and (A) different N at
constant η̃ = 1 and (B) different η̃ at constant N = 1024. Bottom, inset:
Mean avalanche duration 〈D〉 as a function of c and constant k = 10−2

and (A′) different N and constant η̃ = 1 and (B′) different η̃ and constant

N = 1024. In all cases, the axes are logarithmic. Main panels: Curve
collapse obtained by plotting 〈S〉/N−bSN vs c/N−cN (A),
〈S〉/η̃−bSη̃ vs c/N−cη̃ (B), 〈D〉/N−bDN vs c/N−cN (A′), and
〈D〉/η̃−bDη̃ vs c/N−cη̃ . The fitted exponents are found to be
bSN = 1.3 ± 0.1, bSη̃ = 0.7 ± 0.1, bDN = 0.45 ± 0.1, bDη̃ = 0.65 ± 0.1,
cN = 0.65 ± 0.1, cη̃ = 1.05 ± 0.1

FIGURE 8 | Typical topographies h(x, z) obtained by solving Equation

9b for different values of A and ϑ . For each case, the image size is
1024 × 1024 and the height ranges over the colorbar indicated on the right.
Here, the x and z axes coincide with the vertical and the horizontal,
respectively.

(Figure 12A). The characteristic length-scale (λx) is independent
of θ̃ (Figure 12B:inset). But contrary to what is observed for Sz,
this characteristic length λx depends on A: λx ∝ 1/A. This depen-
dency is responsible for the apparent stretching along s of the
images in Figure 10 observed as A decreases. Finally, the structure
function along x is:

Sx(�x) = C
θ̃2

A
log (A�z/D), with C = 0.32 ± 0.01 and

D = 0.21 ± 0.02 (15)

Equations 14 and 15 quantitatively relate the material
parameters (microstructure and Poisson ratio) to quan-
tities accessible in conventional fractography analysis.
In this context, it is of interest to rewrites them with
the original variables, before the non-dimensionalization
procedure:

Frontiers in Physics | Interdisciplinary Physics November 2014 | Volume 2 | Article 70 | 10

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Barés et al. Nominally brittle cracks in inhomogeneous solids

FIGURE 9 | Structure function Sz (�z) measured along z: (A) for various system sizes N at A = 1 and θ̃ = 1, (B) for various θ̃ at A = 1 and N = 1024,

and (C) for various A at θ̃ = 1 and N = 1024. The ordinate axis is logarithmic. For all figures, the straight lines correspond to the solutions of Equation 14.

FIGURE 10 | (A) Slope pz associated with the curve Sz vs. �z as a function of
A at θ̃ = 1 (main), and as a function of θ̃ at A = 1 (inset). In the inset, the axes
are logarithmic. In both graphs, the red lines correspond to fits pz = C/A
(main) and pz = Cθ̃2 where C = 0.32 ± 0.02. (B) Characteristic length-scale

λz associated with the curve Sz vs. �z as a function of A at constant θ̃ = 1
(main) and as a function of θ̃ at constant A = 1 (inset). In both graphs, the red
lines correspond to fits λz = 0.24 ± 0.03. Here, ± indicates a 95% confident
interval.

Sz ≈ 0.32
2 − ν

2 − 3ν
θ̃2	2 log (4.2

�z

	
),

Sx ≈ 0.32
2 − ν

2 − 3ν
θ̃2	2 log (4.8

2 − 3ν

2 − ν

�x

	
), (16)

where Sx, Sz, �x and �z are expressed with real length units, and
ν, 	 and θ̃ are recalled to be the Poisson ratio, the microstructure
scale, and disorder contrast.

4. CONCLUDING DISCUSSION
Stress enhancement at crack tips makes the macroscale failure
behavior observed extremely sensitive to the presence of disor-
der at the microstructure scale. This translates into crackling
dynamics and rough fracture surfaces, which, by essence, cannot
be addressed within the conventional LEFM framework. In this
paper, we have used the RT-CM approach to obtain quantitative
relations between some statistical observables characteristic of
these two aspects and the fracture parameters: Loading rate (time
derivative of the energy release rate), specimen geometry (spec-
imen thickness and unloading factor), conventional mechanical
constants (fracture energy, Poisson ratio), and microstructural
disorder (microstructure scale and disorder strength).

Over a certain range of the fracture parameters, this RT-
CM approach predicts crackling dynamics [40]: The crack
growth splits up into discrete jumps, which are power-law
distributed in size and duration. The characteristic exponents
associated to these power-laws are universal. Conversely, the
scales covered by these scale-free features are non-universal
and, in particular, the mean size and duration of the crack
jumps are found to depend on the fracture parameters accord-
ing to scaling laws that are uncovered. These scaling laws can
be understood over a certain range of the fracture parame-
ters, in the regime of pseudo-isolated avalanches addressable
via standard functional renormalization theory [49, 51–53].
Conversely, the effect of the avalanche overlapping is not under-
stood. On-going work aims at analyzing the distribution of
the local avalanches as detected in the space-time diagrams
of the front dynamics, in order to understand the coalescence
process.

Also, this RT-CM approach predicts rough fracture surfaces.
The fracture roughness can be characterized by comput-
ing the structure function, which exhibits logarithmic scal-
ing. The associated prefactor and characteristic length-scale
are found to depend on the Poisson ratio, microstructure
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FIGURE 11 | Structure function Sx (�x) measured along x (A) for various system sizes N at A = 1 and θ̃ = 1, (B) for various θ̃ at A = 1 and N = 1024, and

(C) for various A at constant θ̃ = 1 and N = 1024. The ordinate axis is logarithmic. For all figures, the straight lines correspond to the solutions of Equation 15.

FIGURE 12 | (A) Slope px associated with the curve Sx vs. �x as a function
of A at constant θ̃ = 1 (main) and θ̃ at constant A = 1 (inset). In the inset, the
axes are logarithmic. In both graphs, the red lines are fits p1 = Cx/A (main)
and p1 = Cθ̃2where the fitted parameter is found to be C = 0.31 ± 0.02 (95%

confident interval). (B) Characteristic length-scale λx associated with the
curve Sx vs. �x as a function of A at constant θ̃ = 1 (main) and θ̃ at constant
A = 1 (inset). In both graphs, the red lines are fits λx = 0.21 ± 0.02/A (main)
and λx = 0.21 ± 0.02 (inset). Here, ± indicates a 95% confident interval.

length-scale, and disorder strength according to laws that were
uncovered. This may have interesting applications: It allows
one to infer the microstructure parameters (the access of
which could be made difficult otherwise, due to the small-
ness of the length-scales involved) from the analysis of post-
mortem fracture surfaces at larger scale. Work in progress
aims at testing the scaling predicted here for the structure
functions against fractography experiments achieved in oxide
glasses.

Note finally that the RT-CM model studied here call upon a
variety of assumptions (see Section 2). An interesting perspective
would be to measure to which extend these assumptions can be
released. Work in this direction is currently under progress. The
model is also limited to nominally brittle fracture, with a single
macroscopic crack propagating in an otherwise intact material.
Promising alternative approaches have emerged from statisti-
cal and non-linear physics [18, 57] and may permit to address
quasi-brittle fracture, with many microcracking events interact-
ing with each-others. A central challenge in the field would be to
bridge the gap between these approaches and engineering damage
mechanics.
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