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This poster presentation discusses the recently proposed coupling between electromagnetic field angular 
momentum density and magnetic moments [1], with an overview of the different physical phenomena readily 
explained by this coupling [1-4] and emphasis on various galvanomagnetic effects [2] – anisotropic 
magnetoresistance and the planar Hall effect. 
 
It is known that reversing the vector resulting from the cross product of electric and magnetic fields reverses the 
sense of rotation of magnetic vortices, through the coupling of the magnetic toroidal moment with this cross 
product [5-4]. By appropriately transforming this coupling energy, Ref. [1] demonstrated that the 
electromagnetic field angular momentum density can directly couple with magnetic moments to produce a 
physical energy. In that setting, this coupling reproduced the spin-current model in multiferroics and 
characterized a novel antiferroelectricity-driven magnetic anisotropy [1]. In conducting ferromagnets, it can 
explain the intrinsic anomalous Hall effect (AHE) and predict a novel Hall effect [3] as well as explain the 
anisotropic magnetoresistance (AMR) and the planar Hall effect (PHE) [2]. This energy also led to the 
prediction of novel spintronic effects [4] that bear resemblance to the so-called inverse Rashba-Edelstein effect. 
It may also be applicable to additional magneto-optical and spintronic phenomena. 
 
Except for the phenomena discussed in Refs. [1] and [4], the proposed coupling has derived these effects 
according to a simple common method. The relevant electric and magnetic fields are first identified: for 
galvanomagnetic effects [2], an applied homogeneous electric field is used for the electric field and the Weiss 
field (proportional to magnetization) is used for the (homogeneous) magnetic field [9]. The coupling energy of a 
single conduction electron is taken as proportional to minus the scalar product of the field angular momentum 
and the magnetic moment of the electron, with some material dependent coupling constant as the proportionality 
coefficient. In this treatment of AMR and PHE, we are seeking anisotropy in longitudinal and transverse 
resistivity, so the electric field may adopt general Cartesian components along the longitudinal and transverse 
directions. Derivation of the appropriate expressions for AHE, AMR, and PHE then follows the standard 
derivation of the Hall effect in a Drude model. The equation of motion including the Lorentz force and the 
coupling force is considered component-wise in steady state; multiplying by the appropriate factor and summing 
over all electrons allows the component-wise equations to be expressed in terms of magnetization and current 
density. In steady state and with appropriate boundary conditions, the transverse applied electric field 
components cancel out the transverse current density, leaving only the longitudinal component of current 
density. Solving one of these resulting equations yields an expression for AHE. Solving for the longitudinal and 
transverse resistivities, the known expressions for AMR and PHE are recovered readily.  
 
This derivation of galvanomagnetic effects has several advantages. One, as far as the authors are aware, it 
provides the first unified explanation for AHE together with AMR and PHE. Moreover, provided the material 
dependent coupling constant and the proportionality coefficient between the Weiss field and magnetization are 
each linear in spin-orbit interaction, our model reproduces the respective first- and second-order dependencies of 
AHE and AMR on spin-orbit interaction. Second, since in our model the difference between the resistivities for 
magnetization parallel and perpendicular to the current is proportional to the material dependent coupling 
constant; if this constant is negative in some materials, the phenomenon of so-called negative AMR naturally 



results. Third, the derivation for AHE worked as well in semiclassical electron dynamics and this allowed the 
coupling constant there to be expressed in terms of Berry-phase curvature [3]; if this can be shown to work for 
AMR, then a novel Berry-phase curvature theory of AMR may be possible. Fourth, if materials can be 
engineered to achieve a particular coupling constant, this could lead to design of novel electronic devices.  
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