
HAL Id: cea-01376554
https://cea.hal.science/cea-01376554

Submitted on 5 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRC 2 : Dynamically Reconfigurable Computing Circuit
based on Memory Architecture

Kaya Can Akyel, Henri-Pierre Charles, Julien Mottin, Bastien Giraud, Suraci
Grégory, Sebastien Thuries, Jean-Philippe Noel

To cite this version:
Kaya Can Akyel, Henri-Pierre Charles, Julien Mottin, Bastien Giraud, Suraci Grégory, et al.. DRC 2 :
Dynamically Reconfigurable Computing Circuit based on Memory Architecture. IEEE International
Conference on Rebooting Computing, Oct 2016, San Diego, France. �cea-01376554�

https://cea.hal.science/cea-01376554
https://hal.archives-ouvertes.fr

DRC2: Dynamically Reconfigurable Computing Circuit based
on Memory Architecture

Kaya Can Akyel, Henri-Pierre Charles, Julien Mottin, Bastien Giraud, Grégory Suraci, Sébastien Thuries and Jean-Philippe Noel
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France,

Univ. Grenoble Alpes, F-38000 Grenoble, France
kayacan.akyel@cea.fr

Abstract—This paper presents a novel energy-efficient and

Dynamically Reconfigurable Computing Circuit (DRC²) concept
based on memory architecture for data-intensive (imaging, …)
and secure (cryptography, …) applications. The proposed
computing circuit is based on a 10-Transistor (10T) 3-Port SRAM
bitcell array driven by a peripheral circuitry enab ling all basic
operations that can be traditionally performed by an ALU. As a
result, logic and arithmetic operations can be entirely executed
within the memory unit leading to a significant reduction in power
consumption related to the data transfer between memories and
computing units. Moreover, the proposed computing circuit can
perform extremely-parallel operations enabling the processing of
large volume of data. A test case based on image processing
application and using the saturating increment function is
analytically modeled to compare conventional and DRC²-based
approaches. It is demonstrated that DRC²-based approach
provides a reduction of clock cycle number of up to 2x. Finally,
potential applications and must-be-considered changes at
different design levels are discussed.

Keywords—in-memory computing, computing architecture,
programmable logic

I. INTRODUCTION

The growing speed gap between memories and computing units
in Von Neumann architecture, also known as the “memory
wall”, has led to many research on associative memory circuits
and alternative computing architectures [1][2]. Register-heavy
solutions were one of the approaches developed in order to
overcome this bottleneck without any fundamental changes in
processor architecture. The well-known Graphical Processing
Units (GPU) are a good example of computing circuits using a
register-heavy memory hierarchy (few Mb of register files
compared to few Kb in a mainstream CPU) including a very
large number of registers files (RF), which allow highly-parallel
computing. Moreover, the architecture of SRAM-based RFs
itself is also optimized and multi-port bitcells are introduced
offering simultaneous read (RD) and write (WR) operations
[3][4] to further increase the computing speed. However,
parallelization of many computing units and the resulting high
throughput of the data leads to a high power consumption [5].
Indeed, with the increase of wire parasitic elements at each new
technology node (due to the shrink of the metal routing pitch),
the power dissipated by the large amount of data moving
between memories and computing units across these highly-
parasited wires becomes more and more critical. This resulting
high power consumption is seen as one of the principal
constraint in contemporary embedded circuit design. As an
example, fetching operands in a 28nm nVidia GPUs costs more
than computing the operation itself. Thus, this ratio can rise up

to 1000x depending on the location of the data to be fetched in
the on-chip memory hierarchy [6][7]. As a result, decreasing
data-transfer related power has become a hot research topic.
Shortening the physical distance between memories and
processing elements thus appears as a relevant solution to reduce
the total wire length and thus the overall power consumption.

Processing-in-Memory (PIM) concept [8] has been introduced
for this purpose to bring the processing elements into the same
die as DRAM, thus addressing primarily to off-chip memories.
PIM concept, which limits both the latency between memory

Figure 1 a) Conventional computing architecture vs. b) in-memory computing
architecture. Moving into In-memory computing should allow speed increase,
total area saving and less power consumption since physical distance between
memory and computing unit is drastically reduced.

RAM/Reg. Files

OUTPUT DFF/LATCH

INPUT DFF/LATCH

ALU

sequencer

MUX

IN/OUT DFF/LATCH

SRAM

bitcell array

MUX (optional)

m
u

lt
i-

ro
w

se
le

ct
o

r
(2

 o
r

>
)

CTRL
ALU-like

sequencer

IN

OUT

CONTROL

IN

OUT

DRC²
OUTPUT DFF/LATCH

INPUT DFF/LATCH

CONTROL

a)

b)

and processing unit and the resulting dissipated power, has been
reborn recently thanks to the 3D stacking [9]. Some works, as in
[10], investigated similar approach for on-chip SRAM circuits,
which are used as processor caches due to their significantly
higher speed (compared to DRAM). With the rise of emerging
NVM technologies, memristor-based material implication
(IMPLY) function is proposed to perform Computing-in-
Memory (CiM) [11][12], enabling same physical location for
both storage and computing. However, memristor-based
IMPLY results in destructive operations meaning that the
initially stored data is lost after computing.

Another way to drastically increase the computing speed, while
not increasing overall power (and area), is to use alternative non-
Von Neumann architectures [13]. A suitable architecture for an
energy-efficient computing also requires re-configurability
since rising chip development costs make workload specific
chips very expensive products [14]. At this end, Intel announced
that the latest version of their Xeon server chip will have an
integrated FPGA to boost performance under workloads
requiring optimized processing. An important point in the
literature is that SRAM circuits are discarded for long time and
spared from any modification, while solutions are sought in
high-level design. This is probably because SRAM bitcell arrays
are designed with the most aggressive design rules in a given
technology and suffer from stability issues due to the process
variability. Thus, any change in the array can lead to a highly
complex manufacturability issues. However, the need for more
optimizations to significantly increase the computing speed at
the same time with re-configurability encouraged redesign of
SRAM macros with novel features such as in-memory logic
function operations [15].

In this work, the CIM concept is pushed one step further and a
novel computing circuit is proposed enabling in-memory logic
and arithmetic operations exploiting the architecture of SRAM
macro, thus lowering data transfer between memory and
computing unit (i.e. ALU), as shown in Figure 1. The proposed
Dynamically Reconfigurable Computing Circuit (DRC2) can
perform the same logic and arithmetic operations as a basic ALU

and, therefore enables non-destructive computing and storage in
the same unit. Owing to this approach, we expect significant
gains in power consumption and thus pave the way for new
opportunities in computing, in particular by using the dynamic
reconfigurability since operations are computed in-situ, without
using “frozen” dedicated computing circuits based on logic
gates.

The paper is structured as follows: The section II introduces the
concept of proposed DRC². The section III presents the 3-port
10T bitcell used in the SRAM array and how different logic and
arithmetic operations can be performed. Then a representative
test case based on DRC² for imaging processing is discussed in
section IV. Perspectives for the proposed concept are briefly
discussed in section V. Finally, section VI concludes the paper.

II. DYNAMICALLY RECONFIGURABLE COMPUTING CIRCUIT

(DRC²) CONCEPT

Figure 3 presents the DRC² concept. It is based on a SRAM
bitcell array in which multiple rows can be selected in the same
time during the same clock cycle for performing in-situ
operations between selected rows [15]. The operation type is
chosen and controlled slice-wise (using a dedicated controller,
as shown in Figure 3), thus different operations can be
performed on different slices of the same array offering highly-
parallel operations. For the rest of the paper, the term “memory
slice” is used to describe a memory column with some selected
bitcells and the associated column peripheral circuitry. The
results coming from a given memory slice can be read as in any
conventional memory circuit, or can be written-back (WB) into
the memory in the same or next clock cycle.

Table 1 presents the list of 19 basic operations that can be
performed by the proposed DRC². It enables to perform these
operations inside the memory, thus limiting intensive data
transfert. Operations like RD, RD_NOT, RD_0 and RD_1 are
natively present in a conventional memory circuit (or can be
added without any complexity), unlike to the others. As shown
in Figure 3, the SRAM bitcell array is accessed through multiple
rows in the same time in the same clock cycle, which is indeed
prohibited in a conventional memory circuit to ensure a proper
read. The multiple row access being the key for computing
inside the memory circuit, it is worth to say that the intelligence

Figure 2 10-Transistors (10T) SRAM bitcell including one Write-Port
(WP) and two Read-Port (RP), False (F) and True (T). Each RP is formed
by its pass-gate (PG) and its pull-down (PD) transistors.

R
B

LF

R
B

LT

BLFIBLTI

W
B

LT

W
B

LF

WWL
RWLT
RWLF

RPF
RPTWP

(6T SRAM)

PGT PGF

RPF_PD

RPF_PG RPT_PG

RPT_PD

Figure 3 Proposed Dynamically Reconfigurable Computing Circuit (DRC²)
based on 3-Port SRAM bitcell. Instead of delivering the stored content, the
output bus delivers computed metadata.

X
O

R

N
A

N
D

O
R

A
N

D

Selected

operations <N-1:0>

Selected

rows <M-1:0>

output

bus <N-1:0>

MxN SRAM Bitcell Array

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

R1<N-1:0>

R4<N-1:0>

RM-2<N-1:0>
RM-3<N-1:0>

0

1

1

1

1

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

1

0

0

1

1

0

0

0

1

0

N
O

P

N
O

P

N
O

P

A
N

D

N
A

N
D

N
O

P

N
O

P

N
O

P

N
O

P

X
O

R

A
N

D

N
O

R

A
N

D

N
A

N
D

N
O

P

N
O

P

N
O

P

N
X

O
R

X
O

R

Cycle1Cycle2Cycle3

Cycle1

Cycle2

Cycle3

controller

N
O

P

comes from both the bitcell array access and the associated
peripheral circuitry.

III. DESCRIPTION OF OPERATIONS ENABLED BY DRC²

Figure 2 presents the 10-Transistors (10T) SRAM bitcell used
in the array. It is composed of one 6T write-port (WP) and two
2T read-port (RP). Internal nodes BLTI (stores data) and BLFI
(stores complemented data) of WP are connected to RP False
(RPF) and RP True (RPT), respectively, allowing isolation of
read and write operations. Both RPs are connected to their
proper read bit-lines (RBLF and RBLT, respectively), through

pass-gate (PG) transistors RPF_PG and RPT_PG. RPF and RPT
are connected through pull-down (PD) transistor RPF_PD and
RPT_PD to ground line GND.

This 10T SRAM bitcell is accessed through three Word-Line
(WL) signals, as shown in Figure 2: Write WL (WWL), Read
WL True (RWLT and Read WL False (RWLF). WWL allows
accessing internal nodes of 6T WP, thus used for write operation
(WR). WR is performed as in any conventional SRAM by
activating corresponding WWL and driving WBLs at the values
to be written in the bitcell. RWLT allows selecting RPT, thus
reading the stored data through BLFI without a risk of an

Figure 4 a) Dual access to memory slice (through RPF and RPT) allowing to perform RD(NOT(A)) and RD(B) on RBLF and RBLT, respectively. b) Multiple
access through RPF and RPT allowing to perform NOR (A,B) operation on RBLF and AND(A,B) operation on RBLT. For the sake of simplicity, only NOR
and AND operations with two operands are shown. Both operations can be performed with up to M operands where M is the column length.

6T SRAM
/A=0A=1

WWL_A=0
RWLT_A =0

RWLF_A=1

6T SRAM

R
B

LF

R
B

LT

/B=1B=0

WWL_B=0
RWLT_B=1

RWLF_B=0

a) RD(INV(A)) and RD(B) in the same cycle

conventional 2R mode

6T SRAM/A=0A=1

WWL_A=0
RWLT_A =1
RWLF_A=1

6T SRAM

R
B

LF

R
B

LT

/B=1B=0

WWL_B=0
RWLT_B=1
RWLF_B=1

b) NOR(A,B) and AND(A,B) in the same cycle

Multiple-row access

A B

0 0 1 0

0 1 0 0

1 0 0 0

1 1 0 1VDD -> 0 VDD -> 0 VDD -> 0VDD -> 0

example

TABLE I
Operation Description # of operands # of cycle Operation Type
RD/BUFF Read the content of selected bitcell 1 1 Memory
RD_NOT/IN
V

RD the complementary content of selected bitcell 1 1 Memory

RD_0 Read as “0” the selected bitcell 1 1 Memory
RD_1 Read as “1” the selected bitcell 1 1 Memory
XOR/
COMP

Exclusive OR if #of operands =2
Comparison if # of operands >2

N 1 Logic

NXOR NOT Exclusive OR N 1 Logic
NOR NOT-OR N 1 Logic
NAND NOT-AND N 1 Logic
OR OR N 1 Logic
AND AND N 1 Logic
IMP Materiel Implication N 1 Logic
SHIFT Shift the bitcell content to left or right 1 2 Logic/Arithmetic
ADD Addition 2 3 Arithmetic
SUB Subtraction 2 4 Arithmetic
INC Increment by 1 1 3 Arithmetic
DEC Decrement by 1 1 3 Arithmetic
GT Greater than 2 2 Arithmetic
LT Less than 2 2 Arithmetic

Table 1 List of operations, their description, number of maximum operands, number of minimum cycles that is needed to perform these operations and
operation family that they are belonging.

unwanted data flip inside the WP (read disturb phenomena [17]),
while RWLF allows reading the complemented data through
BLTI and RPF. The used nomenclature for RPT and RPF comes
from following: BLTI stores the true data and BLFI stores the
complemented data, i.e. false data. The value read through RPF
is data stored in BLFI, while the data read through RPT is data
stored in BLTI.

In this work, the 10T SRAM bitcell is chosen since we consider
that it is the most efficient bitcell for the proposed computing
circuit. However, any other bitcell allowing differential read
(single-port 6T, dual-port 8T, etc.) can be used for the same
purpose at the expense of not being able to perform write and
read in the same clock cycle, which impacts the overall number
of cycles depending on the desired operations.

 RD, NOR/OR and AND/NAND operations

Figure 4.a illustrates a conventional dual RD operation in 10T
SRAM memory slice through both RPs: RBLF and RBLF are
pre-charged to VDD prior to the operation. The bitcell A is
selected by activating (from 0 to 1) RWLF_A and the bitcell B
is selected by activating RWLT_B, while other RWLs are kept
low. Which means that all pass-gate transistors are OFF in the
relevant memory column except RPF_PG of bitcell A and
RPT_PG of bitcell B. In this example, bitcell A stores a ‘1’

(BLTI=VDD, BLFI=GND), and bitcell B stores a ‘0’
(BLTI=GND, BLFI=VDD). As a result, RPF_PD of bitcell A
and RPT_PD of bitcell B are both ON and lead to the discharge
of RBLF and RBLT, respectively through RPs. In other words,
the final voltage level of RBLF is equal to�̅, while the final
voltage level of RBLT is equal to B.

Figure 4.b illustrates the same memory slice bit with multiple
row access in which only two bitcells, A and B, are shown. Like
a conventional read operation, RBLF and RBLT are pre-charged
to VDD. Then, bitcells A and B are accessed through their
respective RPF and RPT (RWLF_A = RWLF_B = RWLT_A=
RWLT_B=1), while RWLs of other bitcells RPs (not shown in
Figure 4) are kept low. The final voltage level on RBLF depends
on stored data in bitcell A and in bitcell B (voltage level of
BLTI_A and BLTI_B); if at least one of two bitcells stores ‘1’,
RBLF will be discharged to ‘0’, if both stores a ‘0’ (BLTI=GND,
BLFI=VDD), only RBLF will be kept at VDD. This operation
reproduces the truth table of a N-input NOR logic gate. The final
voltage level of RBLT is dependent on the complement of the
stored data in A and B (voltage level of BLFI). If one of two
bitcells stores a ‘0’ (BLTI=GND, BLFI=VDD), RBLT is
discharged, which reproduces the truth table of a N-input AND
logic gate. Therefore, OR and NAND truth tables can be also
reproduced by inverting RBLF and RBLT signals.

It is worth to say that while this example shows two selected
bitcells, up to M cells (M is the column length which is equal to
the number of rows in the memory array) can be selected in the
same column to perform operations with M operands, since the
Boolean algebra is associative.

Figure 5 presents the proposed periphery circuitry of memory
slice. A cascaded NAND gates architecture together with the
MUX control signal ADDEN allow us enabling different logic
and arithmetic operations. In detail, ADDEN is set to ‘1’, only
when an addition operation (ADD) has to be performed. The

details of arithmetic operations, ADD and subtraction (SUB),
are presented later in this section.

 XOR/NXOR, COMP, Material Implication
(IMP), Less than (LT) and Greater Than (GT)

Bitcells in of a given memory slice can be accessed in 3 different
ways depending on which operation(s) is (are) targeted.
Multiple row selection with dual access to each bitcell allows
reading all selected bitcells on both RPs as already depicted in
Figure 4.b. In this access mode, if signal ADDEN=0, periphery
outputs O1, O2, O3 are equal to always ‘1’, NXOR and XOR,
respectively. If more than two bitcells in the same slice are
selected, XOR output yields to a comparison operation
(COMP) ; O3 is ‘1’ if at least one among all selected bitcells
stores a different data, and NXOR output O2 leads to the
opposite test giving ‘1’ if all selected bitcells store same data.

The second access mode is as follows: Multiple bitcells in a
given memory slice are selected but each one is accessed
through only one RP. Supposing that bitcells selected on RPF
are F0, F1...Fi and bitcells selected through RPT are T0,T1.…Tk,
a NOR is performed between F0,F1...Fi , an AND is performed
between T0,T1.…Tk. The output O1 is in this case equal to:

�� � ��…� ��
																			. ��. ��…�
																																	 � �� � ���. . � � �� . �� …�

													

� �� � ��…� �	�
	
� �	�

	
� �⋯�	 	

This operation is named as “mixed operation” (denoted as
mixOP in Figure 5). Moreover, if one bitcell is selected on each
RP, for example F0 and T1, output O1 gives �	� �	�� , which is
equal to material implication (IMP) denoted as T1 → F0.

Furthermore, a Boolean expression �̅ � � is the equivalent of
Less Than (LT) operator (A < B). Therefore, LT and Greater
Then (GT) operations can be also performed word-wise in the
proposed memory circuit with some additional gates in the array
periphery; they are not detailed in this paper due to the space
limitation.

Figure 5 Periphery control and resulting outputs under different access
modes.

RBLF

RBLF RBLT

RBLT

ADDEN

1

0

Matrix

column

Periphery

O1

O3

O2

Access Mode ADDEN O1 O2 O3 Comment

Multi-row dual port:
Both RPs of N selected bitcells are
ON

0 Always ‘1’ NXOR XOR

1 Don’t Care

Multi-Row single-RP:
Only one RP is ON for each of the
N selected bitcells.

0 mixOP Don’t care

1 Don’t Care

Two-Row one Read-Port:
Only one bitcell on each RBL is
selected.

0 = B�A = A�B Subtraction

1 = A+B Addition

Proposed IO

circuitry

 Addition / Subtraction

The last access mode denoted as two-rows-single RP, is used for
arithmetic operations in the proposed circuitry. A Ripple-carry
adder/subtractor, which is based on a full-adder/subtractor is
implemented in the memory slice periphery allowing us to
perform addition and subtraction between two K-bits word that
is previously stored in the memory. A schematic of conventional
a full adder/subtractor is shown Figure 6.a, which is composed
of XOR, AND and OR logic gates.

Assuming bitcell A	 is selected through RPF thus final RBLF
value is equal to �̅, and bitcell B is selected through RPT thus
the final RBLT value is equal to B. If ADDEN equals to ‘1’, a
half-adder, which consists of an AND gate to compute carry (C)
and a XOR gate to compute summary (S) of the addition
between operands A and B, is realized in one clock cycle.
Setting ADDEN to ‘0’ allows reproducing a half-subtractor; this
time the carry output becomes the borrow output (B), which is
equal to	�̅. �. We modified the full-adder equation in order to
replace the series of AND and OR gates by two NAND gates, as
depicted in Figure 6.b in the circled area. This has the following
benefits: Overall number of transistor decreases minimizing
periphery area in the same time increasing speed, since number
of stages to cross are reduced from 4 to 2. Therefore, the carry
(borrow) of the current slice, C (B), has to be read as �̅ (�	 ,),
which corresponds to a NAND between operands (instead of the
AND as in a full adder). The following part describes
implementation of a full-adder; the same is valid for full-
subtractor by replacing C (carry) with B (borrow).

A full adder can be therefore reproduced by propagating carry
to columns storing LSBs of tow K-bit words. Figure 6.b
presents how a ripple-carry adder is reproduced in memory slice
allowing addition of two K-bit words. A single ADD can take 3
clock cycles for high-frequencies (>GHz). In the first cycle,
half-additions are executed; the output carry Cout_j and sum Sj of
memory slice j are latched. In the second cycle, Cout_j is
propagated to the next slice (from LSB to MSB) allowing
updating Cout_j+1, and the updated Cout_j+1 is latched. This carry
propagation is illustrated in Figure 6.b as the input carry Cin.
Figure 6.c presents how a ripple-carry subtractor is reproduced
in memory slice and borrows are propagated as the same way as
a ripple-carry adder but setting ADDEN to ‘0’.

Figure 6.d presents our pipelined ADD/SUB approach in which
successive ADD/SUB area added in pipeline depth. One new
operation can be added in the pipeline at every new clock cycle
without any latency thanks to the 2R1W 10T SRAM bitcell.

Finally, increment (INC) and decrement (DEC) operations can
also be performed, since they correspond to ADD 1 and SUB 1,
respectively.

 Shift Operation

Shift operation can be implemented in the proposed memory
circuit by adding latches in the array periphery in order to
implement a conventional CMOS shifter circuit. This part is not
detailed in this paper.

Figure 6 a) Conventional CMOS logic Full-adder/subtractor, full-adder/subtractor based on ripple-carry adder/subtractor architecture implemented in DRC²
slice periphery IO b) for addition and c) for subtraction. A single ADD/SUB of 2 words of K bits last for 3 clock cycles. When signal ADD=1, circuit performs
ADD operations, else it performs SUB operations. d) Pipelined operations in DRC², different cycles of multi-cycle ADD/SUB operations can be pipelined
together with single-cycle operations like OR, AND, XOR.

IV. RESULTS: IMAGE PROCESSING APPLICATION

In modern robotic applications, the environment is modeled
using occupancy grids [20]. Such grids encode occupation
information using signed binary words (e.g. 8-bit words) [21].
The occupation data is then manipulated by the application as a
simple mono-channel image buffer. To perform obstacle
detection and velocity estimation, Bayesian occupancy filters
are used. Such filters allow to estimate and predict occupancy
over time. To do so, prior state (image buffer at time t-1) is
mitigated then fused with current state (image buffer at time t).
The mitigation can typically be implemented by looking at the

sign of the data. If it is positive (bit 0) the data as to be
decremented (by 1 or another constant value). If it is negative
(bit 1), the data has to be incremented (by the same value).

Figure 7 presents on the top left a conventional system using a
processing unit and a dedicated SRAM array for pixel storage,
in which we can assume that the saturating increment is
performed as following: Pixel values which are previously
converted into signed 8-bits words are stored in a memory
array. The processing unit reads sequentially each pixel and
check the sign bit. Depending on the sign bit, pixel value is
incremented or decremented and the new value is written back
to the memory. In order to store the entire image, relatively
large SRAM arrays are required which results in latencies while
reading from and writing to the memory depending on the
addressed memory bank location. In this work, we assume 1
latency cycle for both read and write as an average latency
which may be seen as an optimistic approach. Assuming a 1RW
6T SRAM bitcell, as usually used in many microcontrollers, 1
clock cycle for read, 1 clock cycle for sign test, 1 clock cycle
for increment/decrement, 1clock cycle for write back and 2
clock cycles due to latencies are required, in total leading to an
overall of 6 clock cycles for one pixel. Figure 8.a presents
pipelined operation flow using 1RW 6T SRAM bitcell, in
which read and write operations cannot be performed in the
same clock cycle. 6 clock cycles are needed to process one
pixel, and each new pixel would add 3 more cycles at the end
of the pipeline depth. The overall number of cycles depends on
the number of pixels in the picture, Np, and is equal to 3*Np+3.

Figure 7 also presents the proposed system based on DRC2
architecture coupled with a Binary Content Addressable
Memory (BCAM) [15]. BCAM circuits are hardware-based
search engines allowing to perform search of the memory

Figure 8 Pipeline stages for performing saturating increment in a pixel array using different mentioned systems. a) Conventional system using 1RW 6T SRAM,
b) DRC2-based system using 1RW 6T SRAM bitcell, c) DRC2-based system using 2R1W 10T SRAM bitcell.

pipeline depth

operation flow

RD TEST INC/DECINC no:1

INC no:2

INC no:3

INC no:4

INC no:5

a) 6T Bitcell (1RW)

based conventional

Total number of cycles for N pixels= 3*N+3

WR

RD TEST INC/DEC WR

RD TEST

1st cycle

INC/DEC
2nd cycle

INC/DEC

3rd cycle

INC

pipeline depth

operation flow

1st cycle

INC/DEC

2nd cycle

INC/DEC

3rd cycle

INC/DECINC no:1

INC no:2
1st cycle

INC/DEC

NOP

NOP

NOPINC no:3

INC no:4

INC no:5

1st cycle

INC

2nd cycle

INC

pipeline depth

operation flow

1st cycle

INC

2nd cycle

INC

3rd cycle

INC

1st cycle

INC

INC no:1

INC no:2

INC no:3

INC no:4

INC no:5

c) 10T Bitcell (2R1W)

based DRC2

b) 6T Bitcell (1RW)

based DRC2

Same pipeline repeated starting with SR ‘0’.
Total number of cycle for N pixels = N+8

Same pipeline repeated starting with SR ‘0’
Total number of cycle for N pixels = 2*N+6

SR ‘1’ encode

encode

encode

SR ‘1’ encode

encode

encode

encode

LATENCY LATENCY

LATENCY

Figure 7 Conventional system based on a processing unit and SRAMs
on the top left, and the proposed computing system circuit using DRC2
architecture coupled with a BCAM.

IOmem ctrl

SRAM array

(pixel bits bMSB-1..b0)

Row

Dec

BCAM

(MSB

of each

pixel)

HIT

detect

Priority

encoder

DRC2

Data/ctrl

bus

High

throughput

High power

Mx7 bits (for 8-bits pixel)M bits

IO

BANK

BANK

BANK

BANK

BANK BANK BANK

BANK BANK BANK

BANK BANK BANK

BANK BANK BANK

SRAM ARRAY (~MBs)

High latency

Processing
Unit

C
om

pu
tin

g
U

ni
t

BANK

BANK

BANK

BANK

BANK BANK BANK

BANK BANK BANK

BANK BANK BANK

BANK BANK BANK

DRC2-based ARRAY (~MBs)

DRC2-based

Conventional computing system Proposed DRC² -based system

content, and to match specific data in a single clock cycle. In
the proposed system, MSB of each pixel is stored in the BCAM
array and the rest of bits of each pixel is stored in the SRAM
array. Positive signed pixels are detected by searching ‘1’ in
BCAM, while negative signed bits are detected by searching
‘0’. The hit detection bloc outputs lines of BCAM array storing
the searched sign bit, i.e. having a search hit. A priority encoder
together with the memory controller would allow to
sequentially read hits and increment/decrement these lines
using the DRC2 increment/decrement function. In other words,
given signed pixels are identified in one cycle whatever the
image resolution. Priority encoder encodes one hit address and
transfers the encoded address to memory controller in one
cycle. The encoded hit line is discharged to ‘0’. Memory
controller sends address of the pixel that has to be
incremented/decremented by 1 to the SRAM array. The same is
repeated for the opposite signed bits.

As mentioned before, the SRAM array in DRC2 can be
designed with any SRAM bitcell that offers differential read at
the expense of overall time depending on the desired operation.
Figure 8.b presents the pipeline stages for a DRC2-based system
using 1RW 6T SRAM bitcell, in which one search cycle (SR)
is performed at the beginning and match line encoding (encode)
is performed before each 4-cycles increment/decrement
operation. Since computing takes place in-memory, there is no
data transmission from the memory array to an external
computing unit removing all latency cycles. The DRC2-based
system using 6T SRAM bitcell does not allow performing
simultaneous WR and RD operations, and therefore a no-
operation (NOP) cycle has to be inserted between 1st and 2nd
cycles of an INC/DEC, which leads to an overall number of
2*Np+3 cycles..

As shown in section III.C, increment function takes 3 cycles
using 2R1W 10T SRAM bitcell and it can be pipelined, as
described in Figure 6.d. Figure 8.c presents pipeline stages of
saturating increment in the DRC2-based system using 2R1W
10T SRAM bitcell, in which one search cycle is performed at
the beginning and the match line encoding is performed before
each 3-cycles increment operation. The total number of clock
cycle is Np+8 (versus 2*Np+3).

Figure 9 presents the comparison in terms of speed between the
conventional system and the DRC2-based system for a given
picture resolution. In order to have a fair comparison, DRC2-
based system is considered with both bitcell-based memory
arrays. It is shown that, ≈x1.5 speed factor is reached with
DRC2-based system using slow-but-small 1RW 6T SRAM
bitcell. On the other hand, if 2R1W 10T SRAM bitcell is used
in DRC2-based system, ≈x2 speed factor is reached w.r.t the
conventional system (since 2R1W 10T SRAM bitcell allows
simultaneous WR and RD operations reducing overall number
of cycles in the pipeline depth).

In overall, DRC2-based systems help reducing total number of
clock cycles in saturating increment/decrement function since
latencies due to read from and write to memory banks are
canceled by moving computing inside the memory macro.
Moreover, although we are not able to quantify the gain at this
stage, the suppression of the intensive data transfer between
different memory banks and the computing unit, therefore
suppression of all flip-flops, buffers and wires, lead to a
significant power consumption reduction. In other words, the
in-memory computing architecture enabled by the DRC2-based
system can offer improvements in power consumption and
speed, while replacing the conventional computing architecture
by a configurable memory based computing circuit.

V. DISCUSSIONS AND PERSPECTIVES

The Von Neumann programming model, where data and
instruction memory accesses are interlaced, has been very
successful and a lot of technologies and tools for code
generation was build using this model. More specifically,
compiler are based on instruction scheduling, memory model
(variable in memory, in register, in cache, etc.), data layout, etc.
New parallel models such as pipelined instructions, instruction
level parallelism (ILP), data parallelism (SPMD) on GPU or
asynchronous multicore was already challenging as a
programmer point of view and has been a very active research
domain. But specific languages such as CUDA for GPU, tools
such as OpenMP or OpenACC or specific libraries have tried
to help programmers in this difficult task to extract different
parallelism level. As said in the introduction, DRC2 will change
dramatically the traffic between memory and processing core
and the programming model. To the best of our knowledge,
there is no specific tools or language able to generate a so high
level of parallelism. We can only try to imagine different tasks
on how to use this new computing in memory paradigm.

We could revisit the work already done on the bit parallel
machines from the 90. The Connection Machines [18] and the
MasPar was successful machines in term of parallelism usage.
It supported *LISP parallel language [19] and the CMFortran
which was specific languages. It was in the 90's and even if the
available parallelism was important, the programming model
was restrictive and difficult to exploit. Maybe work could be
done in this direction.

Figure 9 Clock cycle reduction factor between a conventional (using 6T
SRAM bitcell) and the proposed DRC2-based system (using 6T and 10T
SRAM bitcells).

0

0,5

1

1,5

2

2,5

3

3,5

sp
e

e
d

 f
a

ct
o

r

(x
 n

b
 o

f
cy

cl
e

s)

6T-based DRC² vs. 6T-based conventional

10T-based DRC² vs. 6T-based conventional

Another analogy come from the "SQL view" notion in
databases. The SQL view allow to "see and exploit" the
database through a view, which is a transformation from the
initial database without modifying the initial database. The
transformation can be table join or more complex
transformations. We could imagine to use DRC2 in a similar
way: the physical memory could be duplicated on a large
memory map; each duplication corresponding to a "view". A
simple computing core with a large memory system (such as
the 128 bits memory from the RISC-V http://riscv.org/) could
use a single view to differentiate the operations (XOR, NAND,
NOR, ADD). Thus, the program become a set of DMA accesses
leading to a complex treatment on big data sets.

We could imagine to add special instruction in a RISC V
processor to implement these "special DMA" instruction
working on large memory ranges. Of course this kind of
memory should not implement a full instruction set but the
compute core could also implement control operation as usual.
Many applications can benefit from such a memory engine.
Immediate idea are:
• Cryptography which are easily implemented as bit operations:

For example, systems that are memory intensive such as
“OneTimePad”, could be easily implemented with a XOR
between two memory locations. The DRC² could implement
those algorithms with a great energy efficiency.

• NOSQL Data bases which need a high level of parallelism:
These databases need to scan datasets and select matching
results. We could imagine a global selection mechanism using
binary masks applied on large memory page.

• Image filtering implemented at bit level: is also a good
candidate. Section IV shown an initial example of an
algorithm that take advantage of the DRC², we could imagine
that many pixel level transformation implemented in graphic
card (Shadows under windows, mouse cursor masking, etc)
could be easily implemented.

Work are under progress to give more realistic examples of
algorithms taking advantage of this DRC².

Finally, demand for reconfigurable circuits is on rise, since
modern applications should be able to adapt to different
operating environments that may require loading new circuits
on board. DRC2 offer high flexibility for reconfigurable
computing, since logic and arithmetic operations are executed
where the data is stored but not using hard-coded gates. A
potential application can be in cellular networking, in which
circuits should adapt to different network standards such as 3G,
4G and 5G.

VI. CONCLUSION

In this paper, we have presented a novel concept of computing
circuit called DRC², exploiting the architecture of SRAM
macro. This circuit is able to perform logic and arithmetic
operations with very limited data transfer to other circuits
enabling a veritable in-memory computing. It should allow
overcoming the well-known memory wall bottleneck and
reducing data transfer-related excessive power consumption.

As a result, it is well-suited for data-intensive applications. An
imaging processing test case based on saturating increment
function is presented using both a conventional Von Neumann
computing architecture and a DRC2-based system. The results
show a significant speed gain (up to x2) by using the novel in-
memory computing architecture. Furthermore, we expect a
drastic power consumption reduction. DRC2 architecture paves
the way for novel computing algorithms that will benefit at
maximum from its features, not only for power consumption
but also for high reconfigurability and increased speed.

REFERENCES
[1] Wm. A. Wulf, S. A. McKee, “Hitting the memory wall: implications of

the obvious”, ACM SIGARCH Comp. Arch. News, Vol 23, (1), pp 20-
24, 1995.

[2] M.V. Wilkes, “The memory wall and the CMOS end-point”, ACM
SIGARCH Comp. Arch. News, Vol 23, (4), pp.4-6, 1995.

[3] S-F. Hsiao et al., “Design of Low-Leakage Multi-Port SRAM for Register
File in Graphics Processing Unit”, ISCAS, pp 2181-2184, 2014.

[4] G. Burda et al., “A 45nm CMOS 13-Port 64-Word 41b Fully Associative
Content-Addressable Register File , ISSCC, pp. 286-287, 2010.

[5] M. Horowitz, “Computing’s Energy Problem (and what we can do about
it)”, ISSCC, pp 10-14, 2014.

[6] W. Dally, “Power Programmability, and Granularity”, keynote
presentation in IPDPS, 2011.

[7] HiPEAC Vision 2015 – www.hipeac.net

[8] M. Gokhale et al., “Procesing in memory: the Terasys massively parallel
PIM array”, IEEE Computer, vol 28 (4), pp. 23-31, 1995.

[9] Zhu et al., “A 3D-Stacked Logic-in-Memory Accelerator for Application-
Specific Data Intensive Computing”, 3DIC, pp 1-7, 2013.

[10] P. Jain et al., “Intelligent SRAM (ISRAM) for Improved Embedded
System Performance”, in proceedings of DAC, 2003.

[11] S. Kvatinsky at al., “Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies “, TVLSI, vol 22 (10),
October, 2014.

[12] S. Hamdioui et al., “Memristor based computation-in-memory
architecture for data-intesive applications”, DATE, pp 1718-1725, 2015.

[13] P. Dlugosch et al., “An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing”, IEEE TPDS, Vol. 99,
pp. 3088- 3098, 2014.

[14] Mai et al., “Video-Active RAM: A Processor-in-Memory Architecture
for Video Coding Applications”, ISCA, pp. 161-171, 2010.

[15] Jeloka et al., “A 28 nm Configurable Memory (TCAM/BCAM/SRAM)
Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory”, JSSC,Vol 51
(99), pp 1009-121, 2016.

[16] Shibata et al., ,“A 0.5V 25MHz 1mW 256kb MTCMOS/SOI SRAM for
solar-power-operated portable personal digital equipment-sure write
operation by using step-down negatively overdriven bit-line scheme”,
JSSC, Vol. 41 no.3, pp.728-742, 2006.

[17] Mukhopadhyay et al., “Modeling of failure probability and statistical
design of SRAM array for yield enhancement in nanoscaled CMOS”,
IEEE TCAD, Vol. 24, no. 12, pp.1859-18880, 2005.

[18] W. D. Hillis, “The Connectino Machine”, published by MIT Press, 1989.

[19] Guy L. Steele. Jr. , al., “Connection Machine Lisp: Fine-grained Parallel
Symbolic Processing”, Proceedings of the 1986 ACM Conf. on LISP and
Functional Programming, pp 279-277.

[20] A. Elfes, “Occupancy grids: a stochastic representation for active robot
perception”, Sixth Conference on Uncertainity in AI, 1990.

[21] T. Rakotovao et al., “Multi-Sensor Fusion of Occupancy Grids based on
Integer Arithmetic”, IEEE ICRA, 2016.

[22] C. Coué, et al. “Bayesian Occupancy Filtering for Multitarget Tracking:
an automative application”, Intl. Journal of Robotics Research, SAGE
Publications, Vol 25 (1), pp. 19-30, 2006.

