https://cea.hal.science/cea-01376423Requist, R.R.RequistSISSA / ISAS - Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced StudiesModesti, S.S.ModestiUniversità degli studi di Trieste = University of TriesteBaruselli, P. P.P. P.BaruselliCNR-IOM DEMOCRITOS - CNR-IOM DEMOCRITOS,SISSA / ISAS - Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced StudiesTU Dresden - Technische Universität Dresden = Dresden University of TechnologySmogunov, A.A.SmogunovGMT - Groupe Modélisation et Théorie - SPEC - UMR3680 - Service de physique de l'état condensé - CEA - Commissariat à l'énergie atomique et aux énergies alternatives - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - IRAMIS - Institut Rayonnement Matière de Saclay - CEA - Commissariat à l'énergie atomique et aux énergies alternatives - Université Paris-SaclayFabrizio, M.M.FabrizioSISSA / ISAS - Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced StudiesCNR-IOM DEMOCRITOS - CNR-IOM DEMOCRITOS,Tosatti, E.E.TosattiICTP - Abdus Salam International Centre for Theoretical Physics [Trieste]SISSA / ISAS - Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced StudiesCNR-IOM DEMOCRITOS - CNR-IOM DEMOCRITOS,Kondo conductance across the smallest spin 1/2 radical moleculeHAL CCSD2014nanocontactsAnderson impurity modelballistic conductancephase shift[PHYS] Physics [physics]GIRARD, DominiqueModeling the Physics of Nano-Friction - MODPHYSFRICT - - EC:FP7:ERC2013-05-01 - 2018-04-30 - 320796 - VALID - 2016-10-04 17:25:202023-03-24 14:53:022016-10-05 14:24:10enJournal articleshttps://cea.hal.science/cea-01376423/document10.1073/pnas.1322239111application/pdf1Molecular contacts are generally poorly conducting because their energy levels tend to lie far from the Fermi energy of the metal contact, necessitating undesirably large gate and bias voltages in molecular electronics applications. Molecular radicals are an exception because their partly filled orbitals undergo Kondo screening, opening the way to electron passage even at zero bias. Whereas that phenomenon has been experimentally demonstrated for several complex organic radicals, quantitative theoretical predictions have not been attempted so far. It is therefore an open question whether and to what extent an ab initio-based theory is able to make accurate predictions for Kondo temperatures and conductance lineshapes. Choosing nitric oxide (NO) as a simple and exemplary spin 1/2 molecular radical, we present calculations based on a combination of density functional theory and numerical renormalization group (DFT+NRG), predicting a zero bias spectral anomaly with a Kondo temperature of 15 K for NO/ Au(111). A scanning tunneling spectroscopy study is subsequently carried out to verify the prediction, and a striking zero bias Kondo anomaly is confirmed, still quite visible at liquid nitrogen temperatures. Comparison shows that the experimental Kondo temperature of about 43 K is larger than the theoretical one, whereas the inverted Fano lineshape implies a strong source of interference not included in the model. These discrepancies are not a surprise, providing in fact an instructive measure of the approximations used in the modeling, which supports and qualifies the viability of the density functional theory and numerical renormalization group approach to the prediction of conductance anomalies in larger molecular radicals