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ABSTRACT 

The influence of hydroxybenzoic acids (HAHn), namely p-hydroxybenzoic acid 

(4-hydroxybenzoic acid, HPhbH) and protocatechuic acid (3,4-dihydroxybenzoic acid, 

HProtoH2), on the adsorption of europium(III) onto α,γ-Al2O3 particles is studied as a function 

of acid concentration. After measuring the adsorption edge of the Eu(III)/α,γ-Al2O3 binary 

system, and using the previously studied binary component system Eu(III)/HAHn—Moreau et 

al. (2015) Inorg. Chim. Acta 432, 81—, and HAHn/α,γ-Al2O3—Moreau et al. (2013) Colloids 

Surf. A 435, 97—, it is evidenced that HPhbH does not enhance Eu(III) adsorption onto 

α,γ-Al2O3 in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system. Conversely, HProtoH2 enhances 

Eu(III) adsorption onto α,γ-Al2O3 in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system. 

Adsorption of the acids are also found higher in the Eu(III)/acid/α,γ-Al2O3 ternary systems as 

compared with the corresponding binary systems assessing synergetic effects. For high 

HPhbH concentrations, a ternary surface species involving AlOH surface sites, Eu(III), and 

PhbH
–
 is evidenced by time-resolved luminescence spectroscopy (TRLS). However, in the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system, chemical environment of Eu(III) is found to be 

very close to that in the Eu(III)/HProtoH2 binary system. Ternary surface species could not be 

evidenced in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system with TRLS because of the very 

short decay time of Eu(III) in the presence of protocatechuic acid. 

1. INTRODUCTION 

The fate of radionuclides (RNs) in the environment, and among them americium(III) and 

curium(III) that are both showing high chemical and radiological toxicities, is governed by 

their interactions with mineral surfaces and natural organic molecules. Both of these soil 

components may modify speciation, bioavailability and mobility of RNs. Indeed, organic 

acids present in soils are involved in several geochemical processes, such as complexation 
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with metal-ions (Aoyagi et al., 2004; Aydin and Özer, 2004; Hasegawa et al., 1989; Jejurkar 

et al., 1972; Kuke et al., 2010; Marmodée et al., 2009; Moreau et al., 2015; Primus and 

Kumke, 2012; Wang et al., 1999) oxide dissolution (Furrer and Stumm, 1986; Johnson et al., 

2005; Molis et al., 2000; Stumm, 1997; Stumm and Morgan, 1996) and pH buffering. They 

may also have an influence on the adsorption of RNs onto mineral surface. 

Depending on experimental conditions—i.e., pH, acid nature, and concentration—organic 

acids can form stable complexes in solution resulting in a decrease in the amount of adsorbed 

cation (Alliot et al., 2005b) or, on the contrary, can lead to synergistic effects resulting in 

increasing cation adsorption via mixed complex formation (Alliot et al., 2006; Alliot et al., 

2005a; Alliot et al., 2005b; Bourg and Schindler, 1978; Janot et al., 2011; Lenhart et al., 2001; 

Schindler, 1991) or have quite no effect on adsorption of RNs (Rabung et al., 1998a). 

Hydroxybenzoic acids are antioxidant and antifungi naturally present in soils, degradation 

products of lignin, and paraben precursors. They can be considered as the first step to describe 

natural organic matter (NOM) as these molecules have chemical functional groups that are 

found in NOM, namely carboxylic and phenolic groups. Among these molecules are 

p-hydroxybenzoic acid (4-hydroxybenzoic acid, HPhbH) and protocatechuic acid 

(3,4-dihydroxybenzoic acid, HProtoH2), which interactions with Eu(III) (Moreau et al., 2015) 

and with α,γ-Al2O3 particles (Moreau et al., 2013) have already been reported. They differ 

from each other by adding an OH-group to the benzoic ring in the meta position with respect 

to the carboxylate group (Fig. 1). 
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Fig. 1. Structures of p-hydroxybenzoic acid (HPhbH, left), and protocatechuic acid 

(HProtoH2, right). 

Europium is a lanthanide that is part from the rare-earth elements family, whose use in 

modern industry (Binnemans et al., 2013) and presence in the environment (Censi et al., 2013; 

Moermond et al., 2001) are increasing. 
152

Eu isotope is a fission product produced in nuclear 

reactors. In addition to its particular interest, it has been widely used in speciation studies as a 

chemical analogue of Am(III) and Cm(III), particularly for O-containing ligands (Pearson, 

1963). Europium(III) also possesses luminescent properties that permit analyzing its chemical 

environment in solution in a non-invasive way using time-resolved luminescence 

spectroscopy (TRLS) (Claret et al., 2008; Janot et al., 2011; Marang et al., 2009; Marques 

Fernandes et al., 2010; Moreau et al., 2015; Rabung et al., 2000; Reiller et al., 2011; 

Takahashi et al., 2000; Vercouter et al., 2005). 

Pure Al2O3 does not often occur in nature but its surface sites are showing properties similar 

to those of aluminol sites in non-stratified clays (Marques Fernandes et al., 2010). Its 

adsorption properties are compared to that of hematite and goethite (Rabung et al., 1998b). It 

also permits to work with TRLS avoiding luminescence quenching from the oxide, as is the 

case with iron oxides (Claret et al., 2005). 

The aim of this study is to determine the influence of hydroxybenzoic acids on the adsorption 

of Eu(III) onto the surface of α,γ-Al2O3 in mildly acidic conditions at a relatively low ionic 
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strength, which corresponds to a forest soil. At the macroscopic scale we are quantifying 

Eu(III) and hydroxybenzoic acids adsorption onto the mineral surface, and at the microscopic 

scale we are studying the chemical environment of Eu(III) using TRLS. In this study a binary 

component system is composed of two entities among Eu(III), HAHn—as for a preceding 

work (Moreau et al., 2015), HAHn symbolism is chosen to distinguish the carboxylic proton, 

on the left hand side, from the phenolic ones, on the right hand side—, and α,γ-Al2O3; a 

ternary system is containing the three entities altogether, i.e., Eu(III)/HAHn/α,γ-Al2O3.  

2. EXPERIMENTAL SECTION 

2.1. Samples preparation. 

All solutions were prepared using freshly purified water delivered by a Thermo EASYPURE 

II (Saint-Herblain, France). HPhbH, HProtoH2, and NaCl were purchased from Sigma-

Aldrich (Saint-Quentin-Fallavier, France). HPhbH and HProtoH2 are carrying carboxylic and 

phenolic functionalities. HProtoH2 is known to be photooxidized in the presence of dioxygen 

at mildly alkaline pH (Hatzipanayioti et al., 2006). The log10K° values of the acid base 

reactions (Smith et al., 1998) and complex formation (Hummel et al., 2002; Moreau et al., 

2015) are recalled in Table 1. The corresponding speciation diagrams at the ionic strength of 

the study (vide infra) are given in Fig. S1 of the Supplementary Information (SI).   

Stock solutions of the hydroxybenzoic acids (10 mM for HPhbH, and 20 mM for HProtoH2) 

were obtained from their dissolution in 10 mM NaCl. Europium stock solution (1 mM) was 

obtained from the dissolution of 99.99 % Eu2O3 (Johnson Matthey, Roissy, France) in 3.5 

mM HCl. Dry α,γ-Al2O3 particles (predominantly γ phase, with 5-20% α phase, pure 99.98% 

metal basis, mean particle size 0.26 µm, BET specific surface area 110 m²/g) were purchased 

from Alfa Aesar (Schiltigheim, France). Colloid stock suspensions were prepared in a 

glovebox by introducing the α,γ-Al2O3 powder in 30 mL of 10 mM NaCl, acidified with HCl 
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to pH 4.0. Then the suspensions were sonicated at amplitude 6 for 10 min with a Misonix 

sonicator 4000 (Misonix Sonicators, Newton, USA) equipped with a cup horn thermostated at 

8°C. The suspensions were stirred for at least 7 days before use to allow equilibration of the 

surface (Lefèvre et al., 2002). Sonication was repeated just before preparation of binary 

systems. The alumina surface properties have been reported by Moreau et al. (2013). 

Table 1. Values of log10K° for the different reactions considered. All these constants were 

corrected from non-ideality using Kielland (1937). 

Reaction log10K°  

Eu(III) inorganic species 

Eu
3+

 + Cl
–
 ⇄ EuCl

2+ 1.1 Hummel et al. (2002) 

Eu
3+

 + H2O ⇄ EuOH
2+

 + H
+ -7.64 Hummel et al. (2002) 

EuOH
2+

 + H2O ⇄ Eu(OH)2
+
 + H

+ -7.46 Hummel et al. (2002) 

HPhbH 

HPhbH ⇄ PhbH
–
 + H

+ -4.58 Smith et al. (1998) 

PhbH
–
 ⇄ Phb

2-
 + H

+ -9.46 Smith et al. (1998) 

Eu
3+

 + PhbH
–
 ⇄ EuPhbH

2+ 2.18 Moreau et al. (2015) 

HProtoH2 

HProtoH2 ⇄ ProtoH2
–
 + H

+ -4.49 Smith et al. (1998) 

ProtoH2
–
 ⇄ ProtoH

2–
 + H

+ -8.75 Smith et al. (1998) 

ProtoH
2–

 ⇄ Proto
2–

 + H
+ -13 Smith et al. (1998) 

Eu
3+

 + ProtoH2
–
 ⇄ EuProtoH2

2+ 2.72 Moreau et al. (2015) 

   

The pH values of all the solutions and the suspensions were adjusted to 5—in order to avoid 

the photooxidation of HProtoH2 in the presence of dioxygen (Hatzipanayioti et al., 2006)—by 

adding drops of freshly prepared 1 M NaOH or HCl. The pH value was measured using a 

combined glass electrode (Mettler-Toledo, Viroflay, France) connected to a Seven Easy S20 

Mettler-Toledo pH-meter. The electrode was calibrated externally using three commercial 

buffer solutions (pH 4.01, 7.01, 10.00) from Mettler-Toledo. Uncertainties of the calibrations 

were in the span 0.05-0.08. Binary and ternary systems were equilibrated under stirring for 3 

days before direct analysis of the suspension with TRLS or electrophoretic mobility, and 
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finally centrifuged at 10 000 rpm for 90 min for determination of Eu(III) and acid 

concentration. 

2.2. Preparation of Eu(III)/α,γ-Al2O3 binary systems. 

Stock solution of Eu(III) and stock suspension of α,γ-Al2O3 were used. All the samples were 

prepared in polypropylene vessels. Adsorption isotherm of Eu(III) onto α,γ-Al2O3 was 

determined at pH 6.0, C(α,γ-Al2O3) of 0.25 g L
-1

, and [Eu(III)] was varied from 0 to 3 mM at 

an ionic strength (I) fixed at 20 mM NaCl. This low ionic strength was chosen in order to 

provide an ionic medium that is suitable for α,γ-Al2O3 colloidal suspension stability. 

Adsorption as a function of pH is studied from pH 4 to 8, at C(α,γ-Al2O3) = 0.5 g L
-1

, [Eu(III)] 

= 10 µM, and I = 20 mM NaCl. The changes in the luminescence of Eu(III) vs. pH (4.70, 5.25, 

6.15, 6.65 and 7.05) were recorded at C(α,γ-Al2O3) = 0.5 g L
-1

, [Eu(III)] = 10 µM, and I = 10 

mM NaCl.  

2.3. Preparation of Eu(III)/HAHn/α,γ-Al2O3 ternary systems. 

Stocks solutions were used to prepare samples with I = 10 mM NaCl, C(α,γ-Al2O3) = 0.5 

g L
-1

, [Eu(III)] = 10 µM and increasing amount of HPhbH and HProtoH2, from 0.05 mM to 

4.5 mM. 

2.4. Determination of the aqueous hydroxybenzoic acid concentration. 

Absorbance spectra were recorded in a 1 cm quartz cuvette using a UV2550PC-CE 

Spectrophotometer (Shimadzu, Marne-la-Vallée, France). UV/Vis spectra were recorded at 

20 °C between 200 nm and 600 nm and pH of all studied samples was set ca. 5 by adding 

drops of 1 mol L
-1 

HCl or NaOH. Concentrations of HPhbH and HProtoH2 were determined in 

the supernatants at 247 nm and 253 nm, respectively, using 7-point calibration curves in the 

range 8 µM to 200 µM. Some samples were diluted before analysis to meet the concentration 

range of the calibration curve. 



- 8 - 

2.5. Determination of total Eu and Al concentration. 

The concentrations of total Eu and Al in supernatants were measured by inductively coupled 

plasma optic emission spectroscopy (ICP-OES) with an Optima 2000 DV Spectrometer 

(Perking Elmer). Eu concentrations were determined at wavelengths 412.970 nm and 381.967 

nm using 5- or 6-point calibration curves (0 to 10 000 ppm). Concentrations of Al were 

determined at wavelengths 396.153 nm and 308.215 nm using a 5-point calibration curve (0 

to 10 000 ppm). All uncertainties were better than 5%. Some samples were diluted before 

analysis to meet the concentration range of the calibration curve. 

2.6. Time-Resolved Luminescence Spectroscopy (TRLS). 

The excitation laser beam was generated by a 355 nm tripled output of a continuum Nd:YAG 

laser (Continuum, Excel Technology, Villebon-sur-Yvette, France) coupled to an optical 

parametric oscillator system (Panther, Continuum, Santa Clara, CA). The TRLS signal was 

collected at 90° and focused onto a 1 mm slit Acton spectrometer equipped with a 600 

lines/mm grating (Princeton, Evry, France). The CCD chip of the camera was cooled down at 

-15°C. For the time-resolved spectra acquisition, the luminescence signal was collected 

during a time gate width (W) of 300 µs, at an initial delay time (D) of 10 µs after the 

excitation laser flash. The emission spectra were recorded at 22°C. For the decay time 

determination, the number times steps varied from one sample to another depending on the 

remaining luminescence after each delay. The acquisitions were stopped when the 

luminescence became inferior to the background noise. To increase the signal-to-noise ratio, 

300 to 1000 accumulations were performed for each spectrum. All measurements were carried 

out at room temperature (20° C). The excitation wavelength was set at exc ≈ 394 nm, i.e. in 

the 
5
L6←

7
F0 transition of Eu

3+
 (Carnall et al., 1968). For each obtained spectrum a 

background correction was performed, consisting in substracting background noise from each 

spectrum. Then, the luminescence was divided by the incident laser energy during the 
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acquisition and by the number of acquisitions. In that manner, all the spectra are directly 

comparable. 

After inner conversion from the 
5
L6 excited state, the transitions from the 

5
D0 excited state to 

the ground 
7
Fj manifold are responsible for the recorded luminescence (Bünzli, 1989). In the 

acquisition window, these transitions are the 
5
D0→

7
F0 transition (max ≈ 580 nm), which is a 

dipolar magnetic and electric transition, that is theoretically forbidden, the 
5
D0→

7
F1 transition 

(max ≈ 592 nm), which is a dipolar magnetic transition, and the 
5
D0→

7
F2

 
transition (max ≈ 

618 nm), which is described as a hypersensitive transition (Jørgensen and Judd, 1964) as it is 

highly correlated to the chemical environment of Eu(III).  

The luminescence decay is described by a first order kinetics, and for a purely integrative 

system like a CCD camera the luminescence signal is given by equation (1): 

Fi = 




D

D+W
 F

o

i  exp






– 

t

τi

 dt = F
o

i  τi exp






– 

D

τi

 






1 – exp







– 

W

τi

 (1) 

where F
o

i
 and τi are the initial luminescence intensity and decay time of the i

th
 species, 

respectively. 

The luminescence decays were fitted with to a non-linear procedure, and the standard 

deviations were evaluated using the Microsoft Excel Macro SolverAid (de Levie, 2005). The 

main drawback of this method is the difficulty to discriminate excited species that are 

showing very close τi values. Only both the determination of τi and the analysis of the spectra 

for various delay times would permit to evidence multi-exponential decay (Saito et al., 2010). 

The peak area ratio between the 
5
D0→

7
F2 and the 

5
D0→

7
F1 transitions, referred as the 

asymmetry ratio 
7
F2/

7
F1, were used to characterize chemical environment of Eu(III). For the 

sake of comparison, the intensities of the spectra presented in this work are normalized in 
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different ways: to the 
5
D0→

7
F1 transition maximum (592 nm, the average value of five points 

around the maximum is taken); to the 
5
D0→

7
F1 area; and to the total area of the spectrum 

between 570 nm and 640 nm. 

3. RESULTS 

In the following, for both binary and ternary systems, the time-resolved luminescence data 

will first be presented and discussed. The adsorption results will be presented afterwards. The 

link between spectroscopic (microscopic) data and adsorption (macroscopic) results will be 

made, whenever possible, and their relevance discussed. 

3.1. Binary Eu(III)/α,γ-Al2O3 system  

3.1.1. Luminescence of Eu(III) in binary Eu(III)/α,γ-Al2O3 for pH 4.7 to 7.05. 

Luminescence spectra in Eu(III)/α,γ-Al2O3 binary system at pH values between 4.7 and 7.05 

are shown in Fig. S2a of the SI together with a spectrum of Eu(III) at pH 4 and I = 10 mM 

NaCl. The spectra are normalized to their total area in the wavelength span 570-640 nm. The 

5
D0→

7
F0 transition relative intensity increases with pH. The peak corresponding to the electric 

dipole 
5
D0→

7
F1 transition is also broadened as pH increases indicating a strong change in the 

symmetry around Eu(III). Finally, the relative intensity of the magnetic dipole 
5
D0→

7
F2 

hypersensitive transition increases sharply, further evidencing that the chemical environment 

of Eu(III) is modified. For pH 6.65 and 7.05, the spectra obtained for D = 10 µs are mostly 

identical, which is an indication of the same speciation. The asymmetry ratio 
7
F2/

7
F1, which 

permits to characterize Eu(III) speciation (Dobbs et al., 1989; Moreau et al., 2015; Rabung et 

al., 2000) are presented together in Fig. 2a with comparable results (Janot et al., 2011, 2013; 

Rabung et al., 2000). A value of 
7
F2/

7
F1 = 0.5 is obtained for pH < 5, and increases at higher 

pH values. 
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Fig. 2. Asymmetry ratio (
7
F2/

7
F1) (a) and decay time (b) as a function of pH for 

Eu(III)/α,γ-Al2O3 binary systems: circles, C(α,γ-Al2O3) = 0.5 g L
-1

, [Eu(III)] = 10
 
µM, I = 

10 mM NaCl, filled circles, mono-exponential (or 1 value), open circles 2 value from 

this work when bi-exponential decay is evidenced; diamonds, Rabung et al. (2000) 

C(α,γ-Al2O3) = 0.57 g L
-1

, [Eu(III)] = 3.2 µM, I = 100 mM NaClO4. Triangles and 

squares, Janot et al. (2011) C(α-Al2O3) = 1 g L
-1

, [Eu(III)] = 1 µM, I = 100 mM and 10 

mM NaClO4, respectively. 

The luminescence decay in the different Eu(III)/α,γ-Al2O3 binary systems are presented in Fig. 

S3a to Fig. S7a of the SI, and analysed using mono-exponential and/or bi-exponential fitting. 

Fig. S3b to Fig. S7b of the SI are showing the residuals of these fittings; The insets to Fig. 

S3a to Fig. S7a of the SI are showing the spectra normalized to the 570-640 nm wavelength 

span, which can help evidencing differences between the spectra at different delay (D) values. 
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Table S1 to Table S5 of the SI are showing the correlation matrices. The obtained decay times 

are presented in Table S7 of the SI. Relationships between the radiative constant (k = τ
-1

) and 

the number of water molecules in the first hydration sphere of Eu(III) (Horrocks and Sudnick, 

1979; Kimura and Choppin, 1994) allows estimating the hydration of the adsorbed species. 

Application of the operational relationship proposed by Kimura and Choppin (1994) to the 

obtained decay times are also presented in Table S7 of the SI. The decrease of the remaining 

number of water molecules in the first hydration sphere is also a strong indication of 

modification of the chemical environment of adsorbed Eu(III). 

3.1.2. Adsorption of Eu(III), and influence on α,γ-Al2O3 dissolution 

The adsorption isotherm of Eu(III) onto α,γ-Al2O3 at pH 6.15 is shown in Fig. S8 of the SI. 

The amount of adsorbed Eu(III) onto α,γ-Al2O3 particles increases upon increasing [Eu(III)]total 

without reaching a plateau. It means that the adsorption of Eu(III) onto α,γ-Al2O3 is very high. 

Working with [Eu(III)] > 0.2 mM is not possible because of the possible precipitation of 

EuOHCO3(s) (Hummel et al., 2002). As a comparison, the amount of occupied surface sites 

of α,γ-Al2O3 ranges from 0 to 3.5%. 

The influence of HPhbH and HProtoH2 on the dissolution of our α,γ-Al2O3 particles was 

already shown by Moreau et al. (2013). The effect of Eu(III) is also checked in Fig. S9 of the 

SI, where the concentration of dissolved Al vs. [Eu(III)]total is given, together with the 

theoretical solubility of Al phases bayerite (AlOOH), α- and γ-alumina (α- and γ-Al2O3, 

respectively) at pH 5 and I = 10 mM NaCl—for thermodynamic data on Al, see Table 1 in 

Moreau et al. (2013). No particular influence of [Eu(III)]total is seen up to 50 µM, which is 

higher than the maximum [Eu(III)] that will be used in the following. 
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3.1.3. Influence of the pH value on the adsorption of Eu(III) onto α,γ-Al2O3. 

The pH-edge for Eu(III) adsorption onto α,γ-Al2O3 in Fig. 3 shows a typical evolution of the 

adsorption of a lanthanide or rare earth onto an Al2O3 surface at this metal to surface site ratio 

(Janot et al., 2011; Kumar et al., 2012; Marmier and Fromage, 1999; Morel et al., 2012; 

Rabung et al., 2000; Shiao et al., 1981). Adsorption increases steadily with increasing pH with 

a pH-edge between pH 5 and pH 7. This behaviour is correlated to the first hydrolysis 

constant of Eu(III) (log10*β°1 = -7.64) (Hummel et al., 2002) as observed elsewhere (Bradbury 

and Baeyens, 2005, 2009a, b; Guo et al., 2005; Reiller et al., 2002; Tan et al., 2007) even if 

there can be a dependence on total metal concentration (Huittinen et al., 2009; Schindler and 

Stumm, 1987). Indeed, Kumar et al. (2012) showed that adsorption of Eu(III) onto silica and 

γ-Al2O3 as a function of pH are very similar, whereas these phases are showing very different 

points of zero charge—pzc ≈ 2 and 9 for silica and γ-Al2O3, respectively (Kosmulski, 2009). 
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Fig. 3: The pH-isotherm for Eu(III) onto α,γ-Al2O3. Experimental conditions: 

C(α,γ-Al2O3) = 0.5 g L
-1

, I = 20 mM NaCl, total initial [Eu(III)] = 10 µM. The error bars 

are included into the dot thickness. Fitted curve obtained with FITEQL software 

(Herbelin and Westall, 1994): CCM model using 1 adsorption site, dashed line; CCM 

model using 2 adsorption sites, plain line; DLM model using 1 adsorption site, dash-

dotted line; DLM model using 2 adsorption sites, dotted line.  
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Table 2: Oxide parameters by Moreau et al. (2013) and adsorption constants of Eu(III) 

onto α,γ-Al2O3 using CCM and DLM model and considering one or two adsorption sites. 

 CCM
* 

DLM 

Oxide parameters (Moreau et al., 2013) 

≡MOH2
+
 ⇄ ≡MOH + H

+
 log10K1 -7.5 -8.9 

≡MOH ⇄ ≡MO
-
 + H

+
 log10K2 -9.6 -10.1 

One adsorption site 

≡MOH + Eu
3+

 ⇄ ≡MOEu
2+

 + H
+
 log10Ksorb,Eu3+ 2.3 ± 0.2 3.4 ± 0.3 

Two adsorption sites 

≡XOH + Eu
3+

 ⇄ ≡XOEu
2+

 + H
+
 log10KX,Eu3+ 6.0 ± 0.9 8.4 ± 0.9 

≡YOH + Eu
3+

 ⇄ ≡YOEu
2+

 + H
+
 log10KY,Eu3+ 1.2 ± 0.2 3.2 ± 0.4 

*
 C = 1.55 F m

-2
, Ns = 1.24 sites nm

-2
 (Moreau et al., 2013) 

3.2. Ternary Eu(III)/HPhbH/α,γ-Al2O3 system 

3.2.1. Spectroscopic results for Eu(III) 

Fig. 4 presents luminescence spectra for Eu
3+

 and for the Eu(III)/HPhbH/α,γ-Al2O3 ternary 

system—pH = 5, [HPhbH]total = 0.6 mM, I = 10 mM NaCl—normalized to the 
5
D0→

7
F1 

transition. The 
5
D0→

7
F0

 
transition is visible in the ternary system, the 

5
D0→

7
F1 transition does 

not seem to undertake modifications, and the intensity of the 
5
D0→

7
F2 hypersensitive 

transition is almost three times higher in the ternary system as compared to free Eu
3+

. 
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Fig. 4. Normalized TRLS spectra to the 
5
D0→

7
F1 transition of free Eu(III) (plain blue 

line), Eu(III)/Phb binary system (dotted green line from Moreau et al., 2015), and 

Eu(III)/Phb/α,γ-Al2O3 ternary system (dashed red line). C(α,γ-Al2O3) 
= 0.5 g L

-1
, [Eu(III)] 

= 10 µM, [HPhbH]total = 0.6 mM, pH 5, I = 10 mM
 
NaCl. 

The Eu(III)/HPhbH/α,γ-Al2O3 ternary system is studied vs. [HPhbH]total. The evolution of the 

asymmetry ratio and of decay times of Eu(III) luminescence are shown in Fig. 5 vs. [PhbH
–

]total, together with data from corresponding binary systems—Eu(III)/HPhbH from Moreau et 

al. (2015) and Eu(III)/α,γ-Al2O3—, and free Eu
3+

. 

It is worthwhile noting that in this ternary system decay times are mono-exponential. For 

[HPhbH]total below 0.5 mM, no difference between the binary systems and the ternary system 

can be evidenced. Indeed, the asymmetry ratio 
7
F2/

7
F1 is 0.5 for all samples studied, and the 

decay time is approximately 110 µs. In this concentration range, adsorption of Eu(III) and 

HPhbH is very similar to what is obtained in binary systems. It means that the 

Eu(III)/HPhbH/α,γ-Al2O3 ternary system can be described as the sum of binary systems when 

[HPhbH]total < 0.5 mM. The EuPhbH
2+

 complex is formed in solution and HPhbH and Eu(III) 
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are adsorbed onto α,γ-Al2O3, as is the case in the binary systems HPhbH/α,γ-Al2O3 and 

Eu(III)/α,γ-Al2O3, respectively. However, differences are observed for [HPhbH]total > 0.5 mM 

in Fig. 5a, as the asymmetry ratio in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system increases 

sharply compared to the Eu(III)/HPhbH binary system. 

Similarly, decay times in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system are higher than in the 

binary systems as it reaches approx. 130 µs (Fig. 5b). These spectroscopic differences 

between binary and ternary systems for [HPhbH]total > 0.5 mM indicate the presence of a new 

species in the ternary system, involving the three partners: Eu(III), HPhbH—probably under 

the form of PhbH
–
—, and α,γ-Al2O3 surface sites. 

In order to study this new species in more detail, the luminescence is recorded at a delay time 

D = 470 µs, where the luminescence due to free Eu
3+

—τ = 110 µs ± 5 µs (Horrocks and 

Sudnick, 1979; Moreau et al., 2015)—, binary Eu(III)/α,γ-Al2O3—τ ≈ 110 µs ± 5 µs—, and 

binary Eu(III)/HPhbH—τ ≈ 107 µs ± 5 µs (Moreau et al., 2015)—are negligible. As presented 

in Fig. S10 of the SI, for free Eu(III) and in all binary systems—even for Eu(III)/HPhbH 

system with high [HPhbH]total —, luminescence of the 
5
D0→

7
F2 transition is very weak and 

the signal is hardly over the background. 
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Fig. 5. Asymmetry ratio (
7
F2/

7
F1) (a) and mono-exponential decay times (b) of Eu(III) 

(dashed line: data for Eu(III)/α,γ-Al2O3), Eu(III)/HPhbH (circles) from Moreau et al. 

(2015), and Eu(III)/HPhbH/α,γ-Al2O3 (diamonds): C(α,γ-Al2O3) 
= 0.5 g L

-1
, [Eu(III)] = 10 

µM, I = 10 mM NaCl: pH 5 for Eu(III),
 
Eu(III)/α,γ-Al2O3, and Eu(III)/HPhbH/α,γ-Al2O3, 

pH 5.5 for Eu(III)/HPhbH from Moreau et al. (2015). 

For ternary systems containing high total HPhbH concentration the intensity of the 
5
D0→

7
F2 

transition increases with [HPhbH]total (Fig. 6, and Fig. S10 of the SI). This evidences the 

presence of species other than Eu
3+

 that is (are) not present in the binary systems. The decay 

time of the(se) species is (are) higher than 110 µs because luminescence remains significant 

for a delay times of 470 µs. A more precise determination of decay time(s) and of the number 
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of species is not possible because the signal becomes too low after 500 µs. Eventually, these 

results assess the formation of a ternary surface complex involving Eu(III), HPhbH and the 

α,γ-Al2O3 surface sites with decay time close to, but slightly higher than, 110 µs. 

   

Fig. 6. TRL spectra normalized to the 
5
D0→

7
F1 transition in the 

Eu(III)/HPhbH/α,γ-Al2O3 ternary system with increasing [HPhbH]total. C(α,γ-Al2O3) 
= 0.5 

g L
-1

, [Eu(III)] = 10 µM, pH 5, I = 10 mM NaCl, D = 470 µs, W = 300 µs, λexc = 394 nm. 

3.2.2. Adsorption of HPhbH in the binary and ternary systems 

The adsorption isotherms of HPhbH onto α,γ-Al2O3 at pH 5 in the HPhbH/α,γ-Al2O3 binary 

system from Moreau et al. (2013) and Eu(III)/HPhbH/α,γ-Al2O3 ternary systems are shown in 

Fig. 7. HPhbH adsorption is higher in the ternary system compared to the HPhbH/α,γ-Al2O3 

binary system, especially for [HPhbH]eq > 1 mM. It means that the presence of Eu(III) favors 

HPhbH adsorption onto α,γ-Al2O3. Janot et al. (2011, 2013) showed that Eu(III) increased 

adsorption of Purified Aldrich Humic Acid (PAHA) onto α-Al2O3 for high PAHA 

concentration (> 20 mgPAHA.gAl2O3

-1
) before the Eu(III) pH-edge, but the adsorption of a humic 

acid and a simple organic acid are barely comparable (Reiller, 2012; Reiller and Buckau, 

2012). One can think about the adsorption of EuPhbH
2+

 via the formation of a metal bridge— 
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type A ternary surface complex (Schindler, 1991)—as evidenced for Pb(II)-malonic acid 

complex on hematite (Lenhart et al., 2001). The adsorption via a ligand bridged ternary 

surface complex— type B ternary surface complex (Schindler, 1991)—under these pH 

conditions would require the adsorption via the phenolic function, which is unlikeky (Evanko 

and Dzombak, 1998; Gu et al., 1995). 

The solubility trend in the ,-Al2O3 particles evidenced in Moreau et al. (2013) for the 

,-Al2O3 binary system is not modified in the Eu(III)/HPhbH/,-Al2O3 ternary system (Fig. 

S11 of the SI). 
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Fig. 7. Adsorption of HPhbH onto α,γ-Al2O3 in HPhbH/α,γ-Al2O3 binary system (green 

diamonds from Moreau et al., 2013) and Eu(III)/HPhbH/α,γ-Al2O3 ternary system (blue 

triangles, this study). Experimental conditions: C(α,γ-Al2O3) = 0.5 g L
-1

, pH 5, I = 10 

mM, in ternary system [Eu(III)] = 10 µM. Error bars represent experimental 

uncertainty. Simulation without ternary complexes (blue line) of the experimental points 

of the Eu(III)/HPhbH/α,γ-Al2O3 ternary system (triangles) using FITEQL 4.0 (plain 

line). 
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Conversely, as shown in Fig. 8, the amount of adsorbed Eu(III) in the ternary system is close 

to that adsorbed in the Eu(III)/α,γ-Al2O3 binary system. It means that the presence of HPhbH 

does not modify the amount of adsorbed Eu(III). However the uncertainty of experimental 

data in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system increases as the concentration of HPhbH 

increases (Fig. 8). At pH 5, adsorption of HPhbH onto α,γ-Al2O3 is achieved only through the 

carboxylate group, as already discussed by Moreau et al. (2013). Formation of EuPhbH
2+

 

complex is also achieved via the carboxylate group of HPhbH (PhbH
–
) (Moreau et al., 2015). 

Adsorbed PhbH
–
 would not likely further complex Eu(III). This could explain the constant 

amount of adsorbed Eu(III) whatever the total HPhbH concentration. For higher pH values the 

deprotonation of the phenolic oxygen—formation of Phb
2-

—could lead to an increase of the 

amount of adsorbed Eu(III). Alliot et al. (2006) showed that in the low acetate and carbonate 

concentration range, i.e., below 10 mM, the amount of adsorbed Eu(III) onto α,γ-Al2O3 is 

constant. 
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Fig. 8. Adsorption of Eu(III) onto α,γ-Al2O3 in Eu(III)/α,γ-Al2O3 binary system (red 

dotted lines, range determined with 4 independent experiments) and in 

Eu(III)/Phb/α,γ-Al2O3 ternary system (triangles). [Eu(III)] = 10 µM, C(α,γ-Al2O3) 
= 0.5 

g L
-1

, pH 5, I = 10 mM NaCl. Error bars represent experimental uncertainty. Fitted 

points using FITEQL 4.0 (plain line) 

3.2.3. Modelling of the Eu(III)/HPhbH/ α,γ-Al2O3 ternary system 

Fitting the data with FITEQL 4.0 software is attempted in order to describe the interactions, 

and possibly determine an adsorption constant for the ternary complex previously evidenced 

with TRLS. First, the data are fitted assuming that the ternary system can be described as a 

sum of the different binary systems. Moreover, the following assumptions are made: (i) Eu
3+

 

can adsorb onto ≡YOH and ≡XOH sites previoulsy described with adsorption constants from 

Table 2; (ii) HPhbH can adsorb onto ≡YOH and ≡XOH sites with the adsorption constant—

log10Ksorb,HPhbH = 3.4 within the constant capacitance model (Moreau et al., 2013); and (iii) 

formation of EuPhbH
2+

 in solution using the complexation constant determined in Moreau et 

al. (2015). One can remind that the PZSE obtained by titration for CCM, and IEP obtained by 
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ζ-potential for DLM, were not the same in Moreau et al. (2013) evidencing specific 

adsorption, which was not accounted for in our operational approach. 

The amount of adsorbed HPhbH is underestimated by simulations using these hypotheses 

(Fig. 7), while the amount of adsorbed Eu(III) is well fitted (Fig. 8); note that the calculation 

shows that the amount of adsorbed Eu(III) is expected to slightly decrease for the highest 

[HPhbH]total, which is not observed in our experiment either because of the high data 

uncertainty or because of the presence of a ternary complex, evidenced spectroscopically, and 

resulting in adsorption of EuPhbH
2+

 onto α,γ-Al2O3. However, determining an adsorption 

constant for this complex is not possible because the decrease is too small. To do so, one 

could imagine working with higher [HPhbH]total. 

3.3. Ternary Eu(III)/HProtoH2/α,γ-Al2O3 system 

3.3.1. Spectroscopic results for Eu(III) 

The asymmetry ratios and decay times in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system are 

compared to those of the binary systems and free Eu(III) in Fig. 9. For the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system, both asymmetry ratios and decay times are very 

close to those obtained for binary Eu(III)/HProtoH2 aqueous system. Only data uncertainty is 

slightly higher in Eu(III)/HProtoH2/α,γ-Al2O3 ternary system. This means that the chemical 

environment of Eu(III) in the ternary system is very similar to that in the Eu(III)/HProtoH2 

binary system. In particular, only mono-exponential decays are evidenced in the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system due to the very low uptake of Eu(III) directly onto 

α,γ-Al2O3, as is already the case in binary Eu(III)/α,γ-Al2O3 system—vide ante. However, 

because of the decrease in decay time as a function of [HProtoH2]total, it is not possible to 

more precisely characterize Eu(III) speciation—particularly the eventual formation of a 
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surface complex as for  Eu(III)/HPhbH/α,γ-Al2O3 ternary system —, the TRLS signal being 

too weak after a 100 µs delay. 

 

Fig. 9. Asymmetry ratios
 
(
7
F2/

7
F1) (a) and decay times (b) of free Eu(III) (dashed line, 

data for binary Eu(III)/α,γ-Al2O3), Eu(III)/HProtoH2 (circles) (Moreau et al., 2015) and 

ternary Eu(III)/HProtoH2/α,γ-Al2O3 (diamonds). I = 10 mM NaCl, free Eu(III), 

Eu(III)/α,γ-Al2O3, Eu(III)/HProtoH2/α,γ-Al2O3: C(α,γ-Al2O3) 
= 0.5 g L

-1
, [Eu(III)] = 

10 µM,
 
pH 5. Eu(III)/HProtoH2: [Eu(III)] = 1 µM, pH 5.5 (Moreau et al., 2015). 
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3.3.2. Adsorption of HProtoH2 and Eu(III) 

Adsorption isotherms at pH 5 of HProtoH2 onto α,γ-Al2O3 in the HProtoH2/α,γ-Al2O3 binary 

system obtained by Moreau et al. (2013) and Eu(III)/HProtoH2/α,γ-Al2O3 ternary systems are 

shown in Fig. 10. Adsorption of HProtoH2 is slightly higher in the ternary system than in the 

HProtoH2/α,γ-Al2O3 binary system. Again, this means that the presence of Eu(III) slightly 

favors HProtoH2 adsorption onto α,γ-Al2O3, however to a smaller extent compared to HPhbH. 

Concerning Eu(III) adsorption (Fig. 11), up to [HProtoH2]total = 0.4 mM the amount of 

adsorbed Eu(III) is of the same order of magnitude both in the Eu(III)/HProtoH2/α,γ-Al2O3 

ternary system and in the Eu(III)/α,γ-Al2O3 binary system. For [HProtoH2]total > 0.6 mM, the 

amount of adsorbed Eu(III) seems to slightly increase. This would indicate the formation of a 

ternary surface complex that could not be evidenced by TRLS. 

As for the Eu(III)/HPhbH/,-Al2O3 ternary systems, the solubility of  ,-Al2O3 particles in 

the Eu(III)/HProtoH2/,-Al2O3 ternary systems is not modified compared to 

HPhbH/,-Al2O3 binary systems studied by Moreau et al. (2013)—see Fig. S12 of the SI. 
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Fig. 10. Adsorption isotherms of HProtoH2 onto 0.5 g.L
-1

 α,γ-Al2O3 at pH 5 and I = 10 

mM NaCl, in HProtoH2/α,γ-Al2O3 binary system (Moreau et al., 2013) (diamonds),and 

in Eu(III)/HProtoH2/α,γ-Al2O3 ternary system, [Eu(III)] = 10 µM (triangles). Error bars 

represent experimental uncertainty; Simulation of the experimental point of the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system using FITEQL 4.0 (plain thick line). 

3.3.3. Modelling of the Eu(III)/HProtoH2/α,γ-Al2O3 system 

Fitting is performed using FITEQL 4.0 using the same hypotheses and using log10Ksorb,HProtoH2 

= 5.4 within CCM (Moreau et al., 2013). Considering the ternary system as the sum of the 

binary systems does not permit to describe the increase in Eu(III) adsorption for 

[HProtoH2]total > 0.6 mM and the amount of adsorbed HProtoH2 is slightly underestimated 

(Fig. 10). As a consequence, and even if the surface complex is not evidenced 

spectroscopically, EuProtoH2
2+

 is assumed to adsorb also on α,γ-Al2O3 surface sites 

following: 

≡XOH + Eu
3+

 + HProtoH2 ⇄ ≡XOEuProtoH
+

2 + 2H
+
 

Ksorb,EuProtoH2
2+ = exp







– 

 2F0

RT
 × 

[ ]≡XOEuProtoH2
+

 [ ]H
+

 
2

[ ]≡XOH
+

  [ ]Eu
3+

  [ ]HProtoH
 

2

 (2) 
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This surface species does not permit to describe the whole data set either. Indeed, as shown in 

Fig. 11, even for log10Ksorb,EuProtoH2
2+ = -0.2, adsorption of Eu(III) is overestimated at the lower 

HProtoH2 concentration. This evidences again a synergetic effect between Eu(III) and 

HProtoH2 for adsorption but further information about speciation is very difficult to obtain in 

this work. Further experiments are needed. 

 

Fig. 11. Adsorption of Eu(III) in Eu(III)/α,γ-Al2O3 binary system (dashed lines, the range 

representing the mean values of 4 independent experiments) and in 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system (triangles). C(α,γ-Al2O3) 
= 0.5 g L

-1
, [Eu(III)] 

= 10 µM, pH 5, I = 10 mM NaCl; fitting using FITEQL 4.0 (plain thick line). 

Finally, one could imagine that, as for the Eu(III)/HPhbH/α,γ-Al2O3 ternary system, both Eu
3+ 

and ProtoH2
–
 are adsorbed onto α,γ-Al2O3, and that adsorption of HProtoH2 mainly occurs via 

the carboxylate group, as in binary systems. This is consistent with the fact that, for low total 

HProtoH2 concentrations, adsorption of Eu(III) in the ternary system is close to that in the 

Eu(III)/α,γ-Al2O3 binary system but also that adsorption of HProtoH2 in the ternary system is 

close to that in HProtoH2/α,γ-Al2O3 binary system. Of course, EuProtoH2
2+

 is also formed in 

solution, involving the carboxylate group (Moreau et al., 2015). One can also imagine that for 
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the highest [HProtoH2]total, adsorption of EuProtoH2
2+ 

takes place involving the catechol 

group—type B ternary complex (Schindler, 1991)—explaining the increase of the amount of 

both Eu(III) and HProtoH2 onto α,γ-Al2O3. The small influence of HProtoH2 on Eu(III) 

adsorption on α,γ-Al2O3 is consistent with results obtained otherwise by Davis and Leckie 

(1978) on the Cu(II)/HProtoH2/ferrihydrite system. Although in our case, the spectroscopic 

results show that the presence of an organic ligand is important from the metal speciation 

point of view. 

4. DISCUSSIONS 

4.1. Binary Eu(III)/α,γ-Al2O3 system 

In the binary Eu(III)/α,γ-Al2O3 system, the spectral modifications (D = 10 µs) appears at pH 

values above 6.15 (Fig. S2a of the SI), i.e. when the adsorption of Eu(III) strongly increases 

(Fig. 3). The increase of the non-degenerated 
5
D0→

7
F0 transition evidencing the loss of 

centro-symmetry around Eu(III) (Bünzli, 1989) as adsorption occurs.  The broadening of the 

electric dipole 
5
D0→

7
F1 transition was also observed by Janot et al. (2011, 2013) for the 

Eu(III)/α-Al2O3 binary system and seems then to be a characteristic of the Eu(III) adsorbed 

species on alumina surfaces. This modification also points to a modification of the symmetry 

around Eu(III) as adsorption occurs. It seems that at the best three components can be 

distinguished at pH 6.65 and 7.05 in Fig. S2a of the SI, which points to a low symmetry point 

group (Görller-Walrand and Binnemans, 1996) with centre of inversion, i.e. C2v or lower. 

Hence, the decomposition of the 
5
D0→

7
F0, 

5
D0→

7
F1 and 

5
D0→

7
F2 transitions from the 

spectrum obtained at pH 7.05 with respectively one, three, and four Lorentzian-Gaussian 

peaks (McNemar and Horrocks, 1989; Reiller et al., 2011) 
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between 570 nm and 630 nm is presented in Fig. S2b of the SI—see fitting parameters and 

correlation matrices in Table S6 of the SI. The highest uncertainties in the fitting parameters 

are on the maximum intensity of the third and fourth components of the 
5
D0→

7
F2 transition, 

which are also showing the highest correlation. The maximum of the 
5
D0→

7
F0, 

5
D0→

7
F1 and 

5
D0→

7
F2 transitions are 578.7, 591.5, and 615.9 nm, respectively. The assignment to Stark 

levels would require low temperature experiments. 

The obtained values for the asymmetry ratio in this study (Fig. 2a) are consistent with the data 

from Rabung et al. (2000) and Janot et al. (2011). The influence of ionic strength, in the range 

10–100 mM is very limited, which was already observed by Janot et al. (2011, 2013). 

However, Rabung et al. (2000) found that 
7
F2/

7
F1 kept increasing even for pH values above 7. 

Note that in this work, as well as in Janot et al. (2011, 2013), 
7
F2/

7
F1 values are determined 

using peak areas whereas Rabung et al. (2000) used the intensity at two maxima wavelengths 

(594 and 619 nm). It is also worthwhile noting that our experimental set up is the same as the 

one in Janot et al. (2011, 2013), i.e., a spectrometer equipped with a 600 lines/mm grating, 

whereas Rabung et al. (2000) used a 300 lines/nm grating. In the latter case, the convolution 

with the spectrometer is more important, leading to broader peaks with a slightly lower 

intensity (Brevet et al., 2009; de Levie, 2005). This is particularly important in the case of 

high pH data in Rabung et al. (2000) 

For Eu(III)/α,γ-Al2O3 binary system at pH 4.7 (Fig. S3 of the SI) a mono-exponential decay is 

obtained (Table S7 of the SI). This value is not different from that of free Eu
3+

 obtained by 

Moreau et al. (2015). Concurrently, the spectrum recorded for D = 10 µs and pH 4.7 is not 

modified compared to free Eu
3+

, which is a consequence of the small amount of adsorbed 
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Eu(III) (see Fig. 3) that cannot be evidenced by TRLS. The inset to Fig. S3 of the SI is also 

showing that the spectrum is not modified at higher delay. The main contribution to the TRLS 

signal, in the Eu(III)/α,γ-Al2O3 binary system at pH 4.7 is due to free Eu
3+

. 

Fig. S4 of the SI is showing that decay at pH 5.25 is not perfectly mono-exponential—τ = 121 

± 1 µs—, but the fitting procedure does not permit to obtain satisfactory bi-exponential 

decay—τ1 = (117 ± 2) µs and τ2 = (605 ± 908) µs—because of a lack of signal at D > 550 µs, 

and due to the small amount of adsorbed Eu
3+

 (see Fig. 3). The reported value of decay time 

in Fig. 2b for pH 5.25 is the one determined in Fig. S4 of the SI with mono-exponential 

fitting—vide supra. It is slightly higher than for Eu
3+

, evidencing that the amount of adsorbed 

Eu(III) increases from pH 4.7 to pH 5.25, which is consistent with the increasing  amount of 

adsorbed Eu(III) with pH (Fig. 3). The application of the operational relationship proposed by 

Kimura and Choppin (1994), justified in Polly et al. (2013; 2010) yields to the loss of one 

water molecule in the first hydration sphere for τ and τ1, respectively (Table S7 of the SI). 

This may indicate the loss of one water molecule in the case of our α,γ-Al2O3 sample, but this 

value can be biased by the poor quality of the fit. Takahashi et al. (2000) proposed that the 

surface complex formed at pH 5 with montmorillonite is of an outer sphere type, meaning that 

adsorption occurs via the second hydration sphere of Eu(III), and that the decay time is not 

significantly different from that of free Eu
3+

; only spectra of Eu(III) adsorbed onto 

montmorillonite and of Eu(H2O)n
3+

 are slightly different. Here the Eu(III) spectrum is showing 

only minor differences, and decay time would point to a species that is adsorbed as a 

monodentate. The inset to Fig. S4 of the SI is showing the spectra normalized to the total 

wavelength span at D = 10 µs and at D = 650 µs. This indicates that a second species, with a 

longer decay time is occurring in the system, which decay time, and hydration, cannot be 

resolved. 
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At pH 6.15, a bi-exponential decay is clearly evidenced in Fig. S5 of the SI—repartition of the 

residuals and correlation matrices in Table S3 of the SI. This differs from Rabung et al. 

(2000) and Janot et al. (2011, 2013), who found mono-exponential decays at this pH value. 

The short decay time of the fast decaying component (Table S7 of the SI) obtained in this 

study is not significantly different from that of free Eu
3+

—typically 110 µs (Horrocks and 

Sudnick, 1979)—, which indicates an outer-sphere complex. The slow decay value is very 

close to that obtained by Janot et al. (2011, 2013) at this pH for I = 10 mM. The loss of five 

water molecules in the first hydration sphere for the slow decaying component is pointing to 

the formation of a multidentate species. The modification of the luminescence spectra with 

delay is evidenced in the inset to Fig. S5 of the SI at D = 790 µs. These results are consistent 

with the formation of an inner sphere multidentate complex between Eu(III) and α,γ-Al2O3 

surface sites, as pH increases because both spectrum and decay time are modified (Janot et al., 

2011, 2013; Rabung et al., 2000). The formation of an hydrolyzed multidentate surface 

complex, i.e. ≡AlOEu(OH)
+
, is also possible. 

For the similar spectra obtained at pH 6.65 (Fig. S6a of the SI) and 7.05 (Fig. S7b a of the SI), 

similar bi-exponential decays are observed (Table S7 of the SI). Neither Rabung et al. (2000) 

nor Janot et al. (2011, 2013) evidenced bi-exponential decay times for their Eu(III)/Al2O3 

binary system even above pH 7. However, the obtained values for the short-lived component 

are very close to that obtained by Janot et al. (2011) in this pH range with I = 10 mM NaCl. 

The loss of approx. 3 and 6 water molecules in the first hydration sphere also points to the 

formation of multidentate surface species (Polly et al., 2013; Polly et al., 2010). 

In our case, the observed bi-exponential decays could evidence the two different types of sites 

previously proposed here and by others for different oxides (Bargar et al., 1997; Rabung et al., 

2000). The comprehensive description of spectra and determination of all adsorbed or 

dissolved Eu(III) species is not possible because of the complexity of Eu(III) speciation for pH 
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values above 6 as Eu(III) carbonate and hydroxide complexes are present. To further elucidate 

Eu(III) speciation in such a case, it would be necessary to perform experiments under a 

carbonate-free atmosphere. 

In a first attempt, the modelling of the pH-isotherm is performed using the constant 

capacitance model (CCM) and double layer model (DLM) with FITEQL 4.0 software 

(Herbelin and Westall, 1994), using oxide characteristics determined in Moreau et al. (2013) 

and recalled in Table 2. First, only one adsorption equilibrium is considered: 

≡MOH + Eu
3+

 ⇄ ≡MOEu
2+

 + H
+
 

K sorb,Eu3+ = exp






– 

ΔzFψ0

RT
 
[ ]≡MOEu

2+
 [ ]H

+

[ ]≡MOH  [ ]Eu
3+  = exp







– 

2Fψ0

RT
 
[ ]≡MOEu

2+
 [ ]H

+

[ ]≡MOH  [ ]Eu
3+  (4) 

The parameters obtained using CCM and DLM are presented in Table 2 and lead to very 

similar fitting quality as shown in Fig. 3. Adsorption constants obtained with CCM and DLM 

are showing different values (log10Ksorb,Eu3+ = 2.3 ± 0.1 for CCM and log10K sorb,Eu3+ = 4.9 ± 0.2 

for DLM) because of the difference in the oxide characteristics for both models—see Moreau 

et al. (2013) for details. The fitting curves, shown in Fig. 3 (dashed lines), are in very good 

agreement for pH > 6, but for lower pH values the fitting underestimates the adsorption of 

Eu(III).  

Hence, data are fitted using CCM and DLM models with two adsorption sites of different 

energies: ≡XOH and ≡YOH. This could be due to the presence of two crystalline phases (or 

faces) of the oxide: α-Al2O3 and γ-Al2O3, in the amount 15% and 85% respectively. The 

acidities of both sites are considered to have the same protolytic properties because only one 

amphoteric site is evidenced by potentiometric titration by Moreau et al. (2013). 

≡XOH + Eu
3+

 ⇄ ≡XOEu
2+

 + H
+
 KX,Eu3+ = exp







– 

2Fψ0

RT
 
[ ]≡XOEu

2+
 [ ]H

+

[ ]≡XOH  [ ]Eu
3+  (5) 
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≡YOH + Eu
3+

 ⇄ ≡YOEu
2+

 + H
+
 KY,Eu3+ = exp







– 

2Fψ0

RT
 
[ ]≡YOEu

2+
 [ ]H

+

[ ]≡YOH  [ ]Eu
3+  (6) 

In order to determine the adsorption constants for both adsorption sites ≡XOH and ≡YOH, 

data corresponding to pH > 6 are first fitted to determine log10KX,Eu3+ and [≡XOH] then a 

second fitting procedure is done on all data to determine log10KY,Eu3+ and [≡YOH]. The results 

obtained using CCM and DLM are presented in Table 2 and lead to very similar fit quality 

(Fig. 3). The fitting curves are in very good agreement for the whole pH range and one can 

conclude that adsorption of Eu(III) onto the studied α,γ-Al2O3 involves two adsorption sites. 

The adsorption constants determined in this work are higher than those determined otherwise 

for adsorption onto hematite of Eu(III) (Rabung et al., 1998b), and La(III) (Marmier and 

Fromage, 1999). However, the value determined in this work corresponding to adsorption of 

Eu(III) onto the lowest affinity site for Eu(III) (≡YOH) is in the same order of magnitude as 

the one of the adsorption site determined by Rabung et al. (1998b). 

It seems then that both spectroscopic and macroscopic data are pointing to (at the least) two 

adsorption sites on our α,γ-Al2O3 sample. Nevertheless, the denticity of the sites, suggested by 

the decay times analyses, are not represented in the modelling. One would have to account for 

the nature of surface sites (Hiemstra et al., 1989), which is not possible with our modelling 

strategy. 

4.2. Ternary Eu(III)/HPhbH/α,γ-Al2O3 system 

In the ternary Eu(III)/HPhbH/α,γ-Al2O3 system both the increase in the 
5
D0→

7
F0 and the 

5
D0→

7
F2 transitions are evidencing the change in symmetry upon adsorption (Fig. 4). The loss 

of centro-symmetry around Eu(III) is clearly shown by the 
5
D0→

7
F0  (Bünzli, 1989), but 

contrary to the binary Eu(III)/α,γ-Al2O3 system at higher pH, no substructure can be evidenced 
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in the 
5
D0→

7
F1 transition. The chemical environment of Eu(III) has changed upon 

complexation by PhbH
–
 and/or adsorption onto α,γ-Al2O3, in the ternary system. 

5. CONCLUSION 

Our aim is to study the interactions occurring in a system containing three entities, i.e. Eu(III), 

a hydrobenzoic acid and α,γ-Al2O3 particles, in order to determine whether the acids modify 

adsorption and speciation of Eu(III). We have evidenced synergetic processes for adsorption 

of Eu(III) and hydrobenzoic acids onto α,γ-Al2O3. For the two ternary systems studied, 

adsorption of the acids is higher than for the corresponding acid/α,γ-Al2O3 binary systems. 

Dissolution of α,γ-Al2O3 is not enhanced in the ternary systems as compared to acid/α,γ-Al2O3 

binary systems previously studied by Moreau et al. (2013). Eu(III) adsorption is not increased 

in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system as compared to the Eu(III)/α,γ-Al2O3 binary 

system. Ternary surface species involving alumina surface site, Eu(III), and HPhbH is 

characterized at the highest HPhbH total concentrations. A spectroscopic fingerprint of this 

species can be recorded because the decay time of Eu(III) in this species is higher than 110 µs. 

Adsorption of Eu(III) is increased in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system as 

compared to Eu(III)/α,γ-Al2O3 binary system. However, a comprehensive description of the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system by TRLS is not possible because of the weak 

luminescence signal as decay time of Eu(III) in binary or ternary species decreases with 

increasing HProtoH2 total concentration. 

The simulation of the data shows that adsorption of EuProtoH2
2+

 has to be taken into account 

to describe the increased adsorption of Eu(III) for high HProtoH2 concentrations. To further 

elucidate the surface complexes that are formed in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary 

system, it could be interesting to study the ternary system involving catechol as it would 

permit to discriminate between two factors: (i) between the role of carboxylate and catechuic 
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groups; and (ii) to elucidate if complexation between Eu(III) and HProtoH2 in the 

Eu(III)/HProtoH2/α,γ-Al2O3 ternary system could be achieved via the catechuic group. 
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