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Sensitivity of convective structures to mean flow boundary conditions:
A correlation between symmetry and dynamics
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(Received 20 June 1994; revised manuscript received 15 July) 1996

Various simple structures have been proposed for modeling the transition to time dependence of convective
patterns in extended geometries. In order to further question their relevance to the dynamics of complex
structuredqtextures, we introduce a change of boundary conditions from both an experimental and a theoreti-
cal side. It consists in keeping the same roll structure but in separating the boundaries of the mean flows from
those of the roll flows. This induces negligible effects on symmetric structstegight rolls and fogi but
dramatic changes on asymmetric oiffleEus pairs and texturgsespecially regarding the onset of time depen-
dence. Both kinds of sensitivity to this change of boundary conditions are recovered from the Cross-Newell
equations. They reveal a correlation between symmetry and dynamics that prevents symmetric structures from
modeling asymmetric ones. On the opposite side, they point to focus pairs as a plausible prototype of the
mechanisms of time-dependence at work in textr8$063-651X96)03912-9

PACS numbegw): 47.27.Cn, 47.20.Lz, 47.20.Bp

I. INTRODUCTION the following reasons. First, in moderate aspect ratios, ex-
periments show that the symmetry breaking undergone by
Owing to nonlinear interactions between spatial modesfoci yields steady states whose routes to time dependence
extended out-of-equilibrium systems provide fascinating bugctually display features similar to those observed in focus
complex dynamics, still far from being understood. This hagPairs: wavelength gradients and small-scale instabilitids-
motivated a great deal of effort to model the interplay be-19]. Second, both foci and focus pairs exhibit at any Prandtl
tween their spatial and dynamical featufd@d The present numb_er_almost the same onsets for time dependence, at val-
work aims at improving the selection of such models in au€s similar to those displayed by textuf@8—24. From the
well-controlled dissipative system: the RayleighrRed experimental side, both the qualitative and quantitative fea-

thermoconvection in moderate aspect ratio containers aniyres of these T“Ode' structures are thus actually so close that
small Prandtl number fluids it is not possible to decide which of them captures the

. . mechanisms responsible for texture behavior.
In extended containers and close to the convective thresh- P

old, the convective structures generated without specific in; In order to improve the study of model structures and
” : > gene P " 'their comparison with textures, we propose to modify the
duction usually involve spatially disordered rolls showing

d defect&l]. H b def boundary conditions applied to convective structures. The
curvature and defectpl]. However, in between defects, change consists in separating the boundaries relevant to the

these so-called textures display much more ordered substrugmary roll flows from those relevant to the secondary mean
tures. Their geometry, much simpler than those of texturesyoys by translating the latter into the conductive domain.
are close to those displayed by the following model struc-rhjs applied to focus pairs, has already revealed a large
tures: straight rolls, axisymmetrical rollsereafter called fo-  jnhibition of time dependence through an increase of their
cus, two patches of curved rolls facing each otkieereafter  onset by a factor of tefi25]. The purpose of the present
called focus pai; and, in large aspect ratio containers, spiralstudy consists in generalizing this change of configuration to
rolls. all model structures and to textures.

In moderately large containers, the behavior of model Two different classes of behaviors are found depending
structures has been satisfactorily understood with a reasown the structure: one involving a negligible change of the
able agreement between theories and experimién{3]. Ac-  onset of time dependence and the other a spectacularly large
cording to theories, important qualitative differences be-one. The first class includes straight rolls and foci; the latter
tween model structures are in order however: infinite straightontains focus pairs and textures. These quite different sen-
rolls provide large scale instabilitiels4] and no intrinsic — sitivities to a change of boundary conditions show that foci
wavelength selectior{5,6]: axisymmetrical rolls provide and focus pairs are not physically equivalent. Furthermore,
both an intrinsic selection mechani§i8] and a large-scale for the present moderate aspect ratio container and small
instability breaking their rotational symmet{®,10]; focus  Prandtl number, texture behaviors appear compatible with a
pairs provide wavelength gradients and small-scale instabilimodelization by focus pairs but incompatible with a model-
ties yielding the nucleation of propagating defeldt$—13. ization by foci.

Owing to these qualitative distinctions, one might expect The respective origins of the two different classes are
that the identification of the structure suitably modeling tex-identified by analytically studying model structures. They re-
tures should be an easy task. This is not the case however faeal an essential role of asymmetric spatial distortions, what-
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ever their magnitude, in this convective system. Conduction Convection
The paper is organized as follows. Section Il introduces Q,=0 Q2,20

the so-called “open containers” in which the boundary con-

ditions are implemented. The experimental results and the

theoretical analysis are presented in Secs. Il and IV, respec-

tively. Their consequences are drawn in Sec. V and the con-

clusion of the study is reported in Sec. VI.

II. OPEN CONTAINERS

The principle of open containers is based on the second-
ary mean flows generated by convection in extended geom-
etries. We recall their relevance to pattern dynamics in Sec.
Il A before addressing the definition and the main features of Cell wall Interface
open containers. (@

Conduction
A. Mean flows ‘ e

Apart from other nonvariational effects, an important phe- N 7 S
\ b N

nomenon breaking variationality has been pointed out by N
Siggia and Zippelius on the Boussinesq equatif26. It T Convelmion T
consists of mean flows spontaneously produced, at finite Annular Sheet Cell Wall
Prandtl number, by unbalanced Reynolds stresses, the roll
flows playing the role of anisotropic fluctuations. ()

Usually, these flows result from roll distortion and have a Conduction
scale large compared to the roll width. They have been evi- ‘ .
denced by tracer advection on asymmetric fidb]. They / \
interact with rolls by an advection forcing that may end in @_i_ A ) §
new pattern instabilitie$29,9—13, wave-number gradients |
[28,12, and time dependen¢@-13. They also induce non- Convection T
locality, first because, as any incompressible flow, they are Annular Sheet Cell Wall
nonlocally related to their sources and, second, because their ©

advection forcing generates nonlocal interactions between
rolls. All the theories proposed for model structures actually FIG. 1. Sketch of open container&) The boundaries of roll

rely on them[9-13,27. flow and mean flow differ; three different domains may be defined
according to the vanishing of convection, mean flow vorti€ityor
B. Definition of open containers none,(b) [(c)] The conductive domain is forced by inserting a thin

. . . heet that reduces the cell depth with minor consequences for the
Since both convective flows and mean flows are involvedy aan flow. When the sheet is in close contact withsome dis-

in convective structures, it makes sense dealing with theifance from the bottom plate, rolls tangentigiorma) to boundaries
respective boundaries. We denote by “closed” containersye stapilized.

the usual containers where the boundaries for mean flows

and for convective flows are located at the same place. The

are simply achieved by enclosing the convective domain by . ) . .
rigid wall. nolds stresses, and thus vanishes in the conductive domain.

In contrast, we define as “open” containers the contain-Mean flows are therefore rotational in the inner zone and

ers in which these boundaries are distant from each othePOtential in the outer zori&Fig. 1(a)]. Their nature within the

Since convection is a source of mean flow at finite Prandt|"terface is addressed in Sec. IV A 2.

number, the only achievable configuration in practice corre-

sponds to a mean flow boundary located outside the convec- C. Realization

tive domain. This gives rise to three different regions: an

inner convective zone, an outer conductive zone, and an in- Realizing open containers requires annihilating the roll

terface in-betweefFig. 1(a)]. flow in an outer zone while preserving the mean flow. Tak-
The main difference between these domains traces back tog advantage of the sensitivity of the Rayleigh number Ra

the potential or rotational nature of mean flows. Since thdo the cell depthd, Raxd®, and of our proximity to the con-

self-advection of mean flows is negligibleee Appendix A  vective threshold, this selective action is obtained by slightly

the mean vertical vorticity only results from a balance be-reducingd in a definite part of the cell. The small channel

tween diffusion and forcing by mean Reynolds stressesieduction then produces subcritical conditions suppressing

However, in both the convective and the conductive do-convection but yields minor modifications on mean flows

mains, the horizontal scale of variations of the relevant field¢see Appendix D In this configuration, the cell domain thus

is so large compared to the cell depth that the vertical diffu-splits into a convective domain of unreduced degitand a

sion dominates the horizontal diffusion. Mean vertical vor-conductive domain of reduced depti. The roll flow

city is then directly linked, at each location, to mean Rey-
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boundary corresponds to the limit of the convective domairigibly perturbed: convective zone radilg=12.5d, cell ra-

and the mean flow boundary is located, as usual, at the laterdlus R’=1.1R, conductive zone extensidR’' —R=1.25d.

walls of the cell[Fig. 1(a)]. The only remaining influence could therefore only arise from
In practice, the reduction of the cell depth has beerthermics. However, as expected, no modification, either

achieved by inserting a thin sheet of cardboard at some deffiualitative or quantitative, has been noticed with respect to a

nite places of a normal cdlFigs. b) and Xc)]. Its position ~ closed circular container of same aspect rétio

with respect to the bottom plate determines the roll boundary

condition: in the case of a close contdétig. 1(b)], rolls E. Roll boundary condition

tangential to the sheet boundary are expected; on the oppo- Although the sheet has a passive role with respect to pat-
site caséFig. 1(c)], the usual situation corresponding to rolls tern behavior, it actually provides a new roll boundary con-
perpendicular to the boundary is recovered. dition that we clarify in the following. When the sheet, what-
When contact between sheet and plate is avoided, thever its size, is placed in close contact with the bottom plate,
sheet is placed at a distande of the bottom plate. Neglect- it enhances the inhomogeneity of thermal conductivity and
ing its thickness with respect to the cell demthwe note thus induces horizontal thermal gradients. Rolls are then ex-
d,=d—d; its distance to the top plate. We chodg=d/4  pected to end tangentially to the boundaries, as confirmed by
andd,=3d/4 in order to provide a large depth available to experiment in Sec. Ill C.
mean flows. Since the vertical temperature gradient is uni- When the sheet is placed in between the fluid layer, it
form, the threshold of convection is increased by a factoimposes an additional rigid boundary condition at a quarter
(d/d,)*=(4/3* in the conductive domain compared to its _of the cell depth. Since the fundamental mode of convection
value in the convective one. Moreover, denoting by Ra thdnvolves nodes at the upper and lower plates only, it cannot
Rayleigh number and Rats value at onset of convection, satisfy this cpndltlon ar_1d_ therefore vanishes a_lt the_ sheet
the reduced Rayleigh numbers in the convective domaifoundary, as if it was a rigid wall. The same configuration as
e=(Ra-Ra)/Ra, and in the conductive one that ob;ervgd in closed contamer;s, i.e., rolls nc_)rmal to
¢'=(Ra —Ra.)/Ra,, are related by’ +1=(d,/d)* (e+1). No b_oundanes is t_hen expected. This is actually confirmed by
rolls can thus appear in the conductive domain untiR.16.  direct observations, as shown below.
In addition, for higher values of, the roll amplitudeA’ in
the conductive domain is weakened compared to its value . EXPERIMENT
in the convective domain in a ratid' /A= (&'/¢)2, smaller

than 0.3 untile=3. The purpose of the following series of experiments con-

sists in comparing, at low Prandtl number and for moderate
aspect ratios, the behavior of convective structures in closed
and open containers. Each of the following structures,

Since our study aims at clarifying intrinsic mechanisms ofstraight rolls, foci, focus pairs, and textures, have thus been
pattern dynamics, one must first ensure that the trick used tgtudied in both kinds of containers. For the sake of a mean-
realize open containers does not modify pattern behaviors fdngful comparison, closed and open containers have been
a different cause than a change of mean flow boundary cormade within the same experimental setup and, for each struc-
ditions. ture, with the same convective domain geometry.

Apart from the expected hydrodynamical influence, the
sheet could modify convection by a thermal mean. Espe-
cially, owing to the large thermal conductivity of cardboard
compared to the convective fluid, here a gas, the heat current The setup has already been described in detail elsewhere
flowing within the plexiglass sidewall could be derived [21,17. It is designed so as to achieve and observe convec-
through the sheet well inside the cell and then modify tem+ion in argon gas at room temperature and at a Prandtl num-
perature fields even at the border of the convective domairber of 0.71.

To prevent this effect, the cardboard sheet has not been at- The top and bottom horizontal plates are made of sapphire
tached to the sidewalls so as to cut the heat flow comingnd copper, respectively. The top plate is thermally regulated
from it. In addition, its thicknes®$ was reduced to a small by water circulation and the bottom plate by an electrical
fraction of the cell deptlid=d/8) so as to minimize horizon- heater. The cell is made of Plexiglass and the sheet is made
tal heat transport. Its length was then sufficiently large of cardboard. Compared to argon gds=1.87x10*
compared to its thicknesd/8~100) for ensuring a good W cm 1K™ !at 30 bars and 300 Kthe thermal conductivity
thermalization with the gas and thus a large reduction of thef materials are respectivelyx2L0* (coppel, 2x10° (sap-
thermal perturbation brought about by the sidewalls. Alto-phire), and 10(Plexiglass and cardboartimes larger.

gether, these conditions have likely produced less thermal Pattern visualization is achieved by the shadowgraph
perturbations than in the weakly forcing configuration stud-method. Owing to the low density of argon gas at room
ied by Ahlers and co-workers in which a thickgi=d/3) and  temperature, increasing the temperature gradients and the op-
narrower (I/6~10) spacer tab attached to the sidewall wastical properties of the medium are necessary for enhancing
used[19]. the contrast of the images. This is obtained by raising the

In order to experimentally control the influence of thermal pressure to 30 bars, following a previously described method
perturbations on dynamics, we have studied the route to timg21,17).
dependence in a circular open container displaying a conduc- The cell depth is 1.6 mm and the critical temperature
tive zone so narrow that hydrodynamics could only be negdifference is 3.5 °C. Its uniformity is ensured by three cali-

D. Validation

A. Experimental setup
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brated spacers within an accuracy of 0nm. Measure- rectangle, two thin cardboard strips in close contact with the
ments of pressure reveal its stability at better than 1%. Théottom plate. Then straight rolls parallel to the smallest sides
temperature difference between the top and bottom plates ©f the container are actually induced close to the convective
measured by a series of thermocouples. It is electronicallthreshold.
regulated to within 107 °C. In both open and closed containers, straight rolls show the

Images of the convective layer are made on a chargedsameroute to time dependence. It is displayed in Fig. 2 in
coupled device camera by an afocal doublet of telescopehe case of open containers. The wave number is selected
quality lens. The contrast of the images is adjusted by varyfFigs. 2a) and Zc)] but, as observed in a number of closed
ing the camera position and has been enhanced by imag®ntainerd24,17,29, its value changes by defect nucleation
processing. each time the skewed-varicose instability is encountered

Except in the study of straight roliSec. Il B), the ge- [Figs. 2b) and Zd)]; asymptotic states are then stationary
ometries of both the mean flow boundaries and the roll flomuntil an oscillatory motion of rolls induced by the oscillatory
boundaries have been taken to be circular. The former, whichmstability [4] occurs at high values af The only noticeable
corresponds to the cell boundary, displays an aspectRatio difference regarding the kind of container is thus at most
(the ratio of its radius to the cell depth) of R"=25. The roll  quantitative, but, as shown in Fig(e?, small enough to con-
flow boundary is determined by the sheet boundary. Exceptlude: the route to time dependence of straight rolls is inde-
in a validation experimentSec. Il D), its aspect ratid®R has  pendent of the mean flow boundary condition.
been fixed toR=R’'/2=12.5.

According to the thermal diffusivity of argon(x=0.69 C. Foci
cn?s ! at 30 bars and 300 XK the vertical and horizontal
thermal diffusion times in the convective domains ate
=d%/k=3.7 s andr,=R2d?/k~10 min. Since the present
experiments aim at studying intrinsic mechanisms of patter
dynamics, only asymptotic states observed beyond transie
decays have been considered. Following theoretical analysi:\g,
[8] and observationgl3], this has required waiting times of
at leastR?7,~25 h, unless limit cycles or stationary states
were reached. No hysteresis has been noticed on any of t
structures studied.

The open container is made with a cardboard sheet in-
volving a circular hole so as to fit the geometry of foci. In
ﬁ)rder to generate a roll tangent to the bounddig. 1(b)],

Eﬁne sheet is placed in close contact with the bottom plate.

e aspect ratios afe=12.5 for the convective domain and
= 2R for the conductive one.

The closed container is achieved by taking a circular
exiglass cell filling the entire conductive domain
<r<R'. Then a thin cardboard strip is placed all along its

inner boundary in close contact with the bottom plate so as to

_ induce a circular roll there.

B. Straight rolls Experimental observations show a similar route to time

Outside defect cores, straight rolls may be considered as@ependence in both closed and open contaif8k(Figs. 3
local approximation of textures as far as roll curvature isand 4: The focus singularity first shifts as increases, the
neglected. From this point of view, they stand as the mospattern being still stationarjfFigs. 3a) and 4a)]. The am-
natural candidate for modeling texturleld. However, at low  plitude of this off-centering is similar in both kinds of con-
Prandtl number, closed containers have revealed a large difainers, a bit larger in closed containers, howeifég. 5).
ference between the onset of time dependence of straight The first dynamical event appears &0.20 in both
rolls (e=~0.5) and that of texturese~0.1). This is sufficent closed and open containers and consists in defect nucleation
to conclude that straight rolls fail to capture the mechanismby roll pinching atr~3R/4 [Figs. 3c) and 4b)]. In both
of texture time dependen¢20,21,29,30 Although they are configurations, two dislocations are generated and climb on a
disqualified for modeling textures, their behavior in opencircular roll, one on the left of the off-centering direction, the
containers is nonetheless interesting in understanding thether on the right. They thus rotate in opposite directions but
sensitivity of patterns to mean flow boundary conditions. Weeventually glide to the focus where they disappear, as illus-
thus report it below. trated in Figs. &)—3(f) for the open container and Figs.

The open container is made with a cardboard sheet ind(b)—4(f) for the closed container. At this time, a roll pair
volving a rectangular hole so as to fit the geometry ofhas been lost. However, the focus singularity generates it
straight rolls. It delimits a convective domain of dimensionsback and allows the same scenario to resume. One thus ob-
25x19 in cell depth units. At the small sides of the rectangle tains a limit cycle, as already observed in containers with
the sheet is put in close contact with the bottom plate so as tsimilar aspect ratiof31,18,17. An important difference be-
stabilize tangential rolls. At the large sides of the rectanglefween containers is in order however: whereas foci show
the sheet is put at some height above the bottom plate so @ermanent oscillations in closed containers as soon as
to induce normal rolls. By this way, all the roll boundary £=0.20, they are able to restabilize in open containers in
conditions are compatible with straight rolls parallel to thebetween 0.2&¢<0.25[Fig. 3b)].
small side of the rectangle. As expected, they give rise to a This periodic dynamics contrasts with that reported in
straight roll structure close to the convective threshold. smaller[15] or larger aspect ratiogl9,32 where no limit

The closed container consists of a rectangular Plexiglassycles involving defect nucleation have been observed. In
cell filling the entire conductive domain and is in close con-particular, in the latter case, foci emit phase traveling waves
tact with the top and bottom plates. Rolls normal to allbut fail in reaching a stable state as soon as defects are nucle-
boundaries should then be induced. This tendency is howated: their center then moves towards the sidewalls where it
ever inhibited by placing, along the smallest sides of thedisappears, leaving a textured structure.
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Il

Straight Rolls

15 2 25 3 35 4 45
k

(e)

FIG. 2. Instability of straight rolls in an open containéI",= 25X 19. (a) Stationary statee<<1.01, (b) skewed-varicose instability:
£=1.01,(c) stationary state: 1.04<1.75,(d) skewed-varicose instability:=1.75, (e) stability diagrams in closed and open containers:
is the reduced Rayleigh number anthe wave number of straight rolls; the symbols M, E, SV, and OSC refer to the marginal, the Eckhaus,
the skewed-varicose, and the oscillatory stability curves.

A more accurate observation of the limit cycles revealsthe dynamics becomes more and more symmetric and the
that, in both containers, the motion of the two dislocations iperiod decreases to about 3 min, i.e., 6,3 at£=0.36.
not synchronous. Near the onset of the dynamics, the dislo- At this value ofe, the limit cycles show a period doubling
cation which climbs clockwise moves quicker than the otheiin both kinds of containers: dislocations are still not synchro-
[Figs. 3d) and 4d)], and, in closed containers, even disap-nous but the quickest dislocation changes at each cycle, one
pears sooner at the foc{iBig. 4(e)]: the period is then about time that climbing clockwise, the other time that climbing
20 min, i.e., 2r,. As ¢ increases, dislocations are nucleatedcounterclockwise. Labeling the clockwise directiont*
closer to the sidewall$r ~R) and are better synchronized: and the counterclockwise direction—*" the dynamics
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(b)

(d) (e) ®

FIG. 3. Instability of foci in an open containdR=12.5,R’ =25. (a) Stable focus<0.20. An off-centering of the focus singularity is
noticeable(b) Stationary state: 0.20:<0.25,(c)—(f) Time-dependent focus: 0.2%. Notice the small asymmetry of defect climbing(.

may then be symbolized by the series of directions displayed Regarding the transition to time dependence, the only dif-

by the quickest dislocatior(:+,—,+,—,...). ference with respect to the kind of container is thus a resta-
A period-four regime is then observed &t0.42. It is  bilization of foci in open containers unti=0.25. Since this

induced by the nucleation of another dislocation pair beforejelay is quite short, their route to time dependence may be

the previous pair has disappeared. Although both pairs ar€onsidered as nearly independent of the mean flow boundary

simultaneously present for a while, their dislocations nevegondition.

collide, the slowest dislocation of the oldest pair reaching the

focus center before the quickest dislocation of the youngest D. Focus pairs

one. Their coupling, however, modifies the dynamical se- )
quence, the quickest dislocation showing the same direction 1h€ open and closed containers are the same as those used

during two cycles before switching to the other direction.for_fOCi except that the sheet is placed at a quarter_of _the cell
This generates the following series of quickest dislocationsh€ight in order to allow rolls normal to boundarigSig.
(+,+,—,—,+,+,.... The states referring to the simultaneous 1(¢)]- The aspect ratio of the cell and of the convective do-
presence of consecutive pairs of dislocations may be identfn@in are stillR’=2R andR=12.5. The main geometry of
fied by quoting the couples of their quickest dis- focus pairs is shown in Fig.(6) in the case of open contain-

locations. They then correspond to the series®s: _ S
[(+,4),(+,=)(=.=),(=,+),(+,4),...], and thus to a period- E_xper_|ments reveal qualitative S|m|Iar|t|(_es but large quan-
four regime. titative dlfferences _between thg routes to t!me dependence of
We emphasize that the change from the period-two ref0CUS pairs according to the kind of container.
gime to the period-four regime does not correspond to a
modulation of the former regimé+,—,+,—,..) but to a
modification of its switching period from one dynamical The observed route to time-dependence is the same as that
state(+) to its symmetrio—): (+,+,—,—,+,+,..). This bi-  reported in the literaturd21,17,19. Focus pairs display
furcation should therefore not be confused with a usual pewave-number gradients and, especially, a roll compression
riod doubling. As for the similar bifurcations of focus pair on the line joining foci. The largest compression is reached
dynamics, its origin may trace back to symmetry breaking ofat the pattern center, on the central roll separating foci. Quite
the mean flow configuratiofiL3]. near the onset of convection, a=0.08, this roll becomes

1. Closed container
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(@)

FIG. 4. Instability of foci in a closed containegR=12.5,R’=R. (a) Stable focus<0.20. An off-centering of the focus singularity is
noticeable,(b) Defect nucleationie=0.20, (c)—(e) Defect evolution by climbing and glidingf) Elimination of defects at the focus
singularity. Notice the large asymmetry of defect climbingdin

unstable and shrinks, yielding the nucleation of a dislocation

D/R Foei pair. These defects climb and glide to the sidewalls where
0.15 T T they disappear, leading back to a defectless focus pair. As
Closed *_)I this structure involves less rolls than the original focus pair,
all of them are less compressed and actually stable. This does
0.10 - I E — not imply steadiness, however. Instead, this focus pair dis-
I plays a slow evolution at large scale increasing its compres-
sion until a new dislocation nucleation occurs. A new cycle
0.05 — % E<— Open | then repeats generating a spatiotemporal periodic dynamics.
I% Farther from onset, tillk=0.45, a detailed study of the
% dynamics[13], not undergone here, reveals bifurcations of
the limit cycle explained by successive symmetry breakings
0.00 ' ' : . ; : :
0.0 0.1 0.2 0.3 of the mean flow field. A stationary state is then displayed in

between 0.45¢<0.66 before an aperiodic persistent dy-
€ namics occurs for 0.68¢.

Quantitative evolutions of pattern distortion on the route
to time dependence are provided by local wave-number mea-
surements. Figure 7 displays those performed at the most and
of the pattern, and the reduced Rayleigh number. The evolution is least compressed points of steady focus pqlrs: the pattern
continuous from the onset of convection, in contradiction with theCenter and the end of the central roll, respectively. The wave

concept of spontaneous instability beyond some distance from th@umber at the pattern center grows until the vicinity of the

onset of convection. Black circles refer to closed containds ( stability boundary of infinite straight rolls is reached. Then a

=12.5) and open squares to open contain®&s {2.5,R’ = 2R). local instability is triggered there together with the bifurca-
tion to time dependence.

FIG. 5. Measurement of the reduced off-centefdR of stable
foci before time dependencB. represents the distance between the
center of the smallest roll and the geometrical cerfRethe radius
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Cc

FIG. 6. Stationary patterns in open containers: focus paifg)ir(c) and texture ind). R=12.5,R’=25. (a) £=0.03. A dislocation has
been nucleated by a localized Eckhaus instability near the boundary of the upper-right dibarter0.40. Focus pair: rolls are still
perpendicular to the boundarigs) 0.56<£<0.60. Focus pair: one roll pair has been lost by localized instability and defect elimin@ion.
0.74<e<1.2. Stationary texture.

2. Open container 6(c)] and is thus stationary. It contains one roll pair less than
We describe the route to time dependence in open corf® Previous focus pair, however. _
tainers for increasing: Close to onsetg<<0.1, the roll cur- This second focus pair remains stationary ust0.74. It

vature is too weak for providing rolls normal to boundaries.then undergoes defect nucleation and restabilizes in a sta-
At £~0.1, a dislocation spontaneously occurs by roll pinch-tionary pattern again. However, in contrast with the previous
ing at the boundary of the central r¢ffig. 6@)]. It remains ~ case, its geometry is more complex than a focus pair and
at this place until it reaches some slightly higher value: of displays, as shown in Fig.(@), several foci joined by grain
and then disappears by gliding to a focus. A steady focuboundaries. It remains stationary urdi-1.2.
pair is then displayed up to a surprisingly large valuesof Above €=1.2, no stationary states have been observed,
£=0.56[Fig. 6(b)]. despite very large waiting times of ordBfr, (Figs. 9 and

At £=0.56, it undergoes a defect nucleation at the patteri0). The corresponding time-dependent states will be de-
center in a way similar to that displayed in a closed containescribed in Sec. Il E.
(Fig. 8). Especially, after elimination of defects at focus cen- Local wave numbers of steady focus pairs have been mea-
ters, the new focus pair hereto involves stable rolls. Howsured at three locations: the pattern cemtgr, the focik,
ever, in contrast to the behavior observed in closed contairand the boundary of the central rdd},. The corresponding
ers, it displays no evolution at a large scale. It has thuwalues are displayed ti#=0.74 on Fig. 7.
reached a small-scale equilibriu@ny roll is stablg as well The wave numbek, is quite close to the Eckhaus insta-
as a large-scale equilibriufthe roll patches are steadyFig.  bility. This is consistent with the nucleation of a dislocation
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Open Container Closed Container observations, its local stability is then restored.
° g::::r - r;?l‘ée number 3. Comparison between closed and open containers
s Central roll In both kinds of containers, the route to time dependence
boundary of focus pairs shows similar qualitative features, especially
= k__:computation roll compression and roll pinching. This suggests that the
mechanism for time dependence is presumably the same in
£ both cases. However, quantitative comparison of wave num-

bers points out that, although the wave-number band quickly
explodes in closed containers, it remains nearly constant in
open onegFig. 7). The main destabilizing factor of focus
pairs, roll compression, has thus been largely weakened by
opening the container. This results in a large delay of the
onset of persistent time dependenges big as an order of
magnitude:g,=0.74 in open containers instead of 0.08 in
closed containers.

0.8

0.6

0.4

0.2

E. Textures

The closed and open containers are designed so as to al-
1 2 3 4 5 low rolls normal to boundaries. They are thus the same as
Kk those used for focus pairs. In either closed or open contain-

ers, texturegFigs. Gd), 9, and 10 show the following im-

FIG. 7. Stability diagram of infinite straight rolls at 0.7,  portant properties: except for a few marginal cesks, the
displaying the marginalM), the Eckhaus(E), and the skewed- dynamics beyond transient decay is independent of the kind
varicose(SV) stability curves.e and k denote reduced Rayleigh of texture chosen as initial condition, of the way the onset of
numbers and wave numbers. We have plotted the local wave nungonvection is crosse@lowly or suddenly, and more gener-
bers measured on focus pairs in closed and open containers. Blaglly, on the history. This legitimizes the concept of a com-
squares correspond to the band of wave numbers in a closed comon route to time dependence for textures. Moreover, in
tainer. Open squares, crosses, and triangles correspond to the waygch kind of container, textures and focus pairs show the
numbers in an open container, at the pattern cekerthe focus  same route to time dependence: the same asymptotic states,
ki, and the boundary of the central rédl, respectively. The bold  the same onsets of time dependence, and the same events
line shows the maximal wave numbe, displayed by the solution  triggering dynamics by local instabilities and defect nucle-
e e et e e sno o o, Espacil. e smphasize thl s<ures show e ame

. i " pectacular inhibition of time dependence in open containers
;h:e grefriog57(20):2'“igzdlg;inﬁgi);égj)do; :Fep;cnhd;é ztf%r::e(t)t’tem than focus pairs, whatever their initial condition.
Cen?ér it s.hc‘)SId C'OI’I’espO;‘ll.d o P _We now focus attention .to texture pehawors_ in open con-
' c tainers. As in closed contain€l$3], their relaxation time to
asymptotic states is quite long, usually of the order of several
R,, except at bifurcation points where it varies in a large
at the boundary of the central roll fer=0.1[Fig. 6@]. On  range: it is of the order of a few,, only at the transition
the other hand, the wave numbésg andk; show similar  between focus pair&=0.56 but lasts as long &R, at the
values. Since their difference results from the phase advedransition to complex stationary structurés=0.74). This
tion by the mean flow on the axis joining the pattern centersuggests that stationary attractors are weakly attracting in
to a focus, this indicates that mean flows display an ampliphase space and are few in number, so that a long wandering
tude weaker than in a closed container and/or that thejs necessary to reach them.
change direction on this axis. Above e=1.2, a persistent time dependence of textures is

At the transition between focus paifs=0.56), the wave displayed in open containe(Bigs. 9 and 10 Two different
number at the pattern center lies slightly inside the instabilitytypes of dynamics may be distinguished, depending on the
domain of infinite straight rolls with respect to the skewed-scale of the destabilized spatial modes. Frem1.2 to
varicose instabilityFig. 7). Any other local wave number is e=1.5, patterns are still in equilibrium at a large scale, but
stable however. This agrees with the observation of a singlaot at a small scale. They then show localized dynamical
local instability at the pattern center displaying a roll modu-events involving periodic cross-roll-like instabilities or
lation analogous to a skewed-varicose distortiftig. 8). grain-boundary motions, but no evolution of the large-scale
The slight difference between the marginal stabilities ofgeometry(Fig. 9). Above e=1.5, pattern equilibrium is de-
straight rolls and focus pairs is not surprising owing to thestroyed both at large and a small scale: large-scale erratic
finite size of the container and the spatial inhomogeneity ofvolutions occur, together with defect nucleations, small-
the structure. scale instabilities, and rotating spirals reminiscent of those

Finally, as may be noticed in Fig. 7, the new focus pairrecently observed in larger aspect ratjd8,34 (Fig. 10.
displays a reduced wave-number band that fits entirely into We finally notice that, in any dynamical regime, transient
the stable domain of straight rolls. In agreement with ouror turbulent, a phenomenon specific to open containers is
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() (e)

FIG. 8. Transition between stationary focus pairs in open containe®:56,R=12.5,R’ =25. (a) Localized skewed-varicose instability
at the pattern centetbh), (c) Defect nucleation(d)—(f) Defect elimination at the foci.

displayed: focus singularities not only generate new rolls astructures, the focus pairs, involve a discrete symmetry since

in closed containers, but also sometimes absorb rolls. all substructures delimited by the central roll and the line
joining foci are superposable. Focusing attention here on
F. Conclusion continuous symmetries only, we shall thus consider them as

Convective structures display two opposite sensitivities td?SYMmetric

a change of mean flow boundary condition($) quasi-
invariance of spatiotemporal features including the onset of IV. ANALYSIS
time-dependencelji) large modification of spatiotemporal

features including a weakening of roll compression and nodel structures, the origin of the two kinds of sensitivity to

spectacular delay of the onset of time-dependence. - X . .
These experimental evidences reveal two kinds of dynam:_)houndary cot_ndmon evtlj(_jencf[ed eh>§p§ r;hmentally.. Itis tbellS;Sf on
ics corresponding to two classes of structures. € assumption according o which the experimental dirier-

(i) Boundary independent dynamichis class includes ence between closed and open containers i; purely hydrody-
straight rolls and foci. It is not related to the degree of sta"@mical and only traces back to a separation of the mean

bility of structures since straight rolls involve the most stableflow boundary from the roll flow boundary. This is actually
structures whereas foci show time dependence much clos€kPpPorted by the experimental evidence of unchanged behav-
to onset of convection at low Prandtl number. However, Wéor when these boundaries are distinct, but close to one an-
notice that each of these model structures disptaytinuous ~ Other(see Sec. Il
symmetriesf the wave-vector field: translational symmetry A suitable framework for studying the consequences of a
for straight rolls and rotational symmetry for foci. change of mean flow boundary conditions is the Cross-
(i) Boundary sensitive dynamic$his class includes fo- Newell equations. It will be applied for the two types of
cus pairs and textures. We notice that all of them display thetructures relevant to each kind of sensitivity: those involv-
same degree of stability: low or high in closed or open conding continuous symmetry of the wave-vector fi€¢hereafter
tainers, respectively, and at low Prandtl number. We als@alled symmetric structurgand those involving nonéhere-
emphasize that none of these structures displays continuoaster called asymmetric structupe3he sensitivity of each of
symmetries of the wave-vector field. Only the most regulathem will be derived. This will yield the link between geom-

This section aims at clarifying, by analytical study of
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(b)

FIG. 9. Patterns showing local dynamitsnly a part of the
pattern is unsteadyand large-scale equilibriuigpattern geometry is
steady at large-scglén an open container: 12:<1.5, R=12.5,
R'=25. (a) Localized cross-roll instability at the bottom left of the
picture, (b) Grain-boundary motion.

etry and dynamics in this extended convective system.

In the following, the indexes, o, andl will refer to the
inner convective zone, the outer conductive zone, and th
interface in-betweefFig. 1(a)].

A. The model

1. The Cross-Newell equations

FIG. 10. Phase turbulence in an open container:<t,5
R=12.5, andR’ =25. Notice the rotating spiral reminiscent of those
observed in spiral defect chaf33,34.

Herek= V¢ is the phase gradien the roll amplitude]l a
pressure field, anB(k,Ra,Py, 7(k,Ra,Pj, andy(Pr) suitable
scalar functionsy being nearly proportional to Pt.

The physics of these equations is recalled in Appendix A.
Their validity is restricted to first order in the inverse aspect
ratio 1RR. Moreover, the mean flow equatid®) neglects the
mean flow dynamics and is only valid close to the convective
threshold(e<1).

2. Hydrodynamic interface

At a large scale, the interface between the inner and outer
zones appears as a discontinuity of the large-scale vorticity
[Fig. 1(a)]. Of course, this is not realistic since vorticity is a
divergence-free field that cannot vanish abruptly. In fact,
some vorticity sources are also generated there, either by
mean Reynolds stresses or by mean flow shear.

The small extension of this interface does not allow us to
neglect its vorticity contribution, since the short-scale varia-
tions induced in it may yield a large vorticity magnitude.
gspecially, it is shown in Appendix C that it actually domi-
nates the net mean vorticity generated in the convective do-
main.

The different kinds of vorticity sources might be difficult
to compute separately. Fortunately, their net contribution
will be determined directly by using the continuity of the

The exact form of the large-scale equations of convectiof? ©>>Ur€ field across the interfagee Appendix B

governing the coupled dynamics of the phase fielahd the

mean flow fieldF has been obtained by Newell, Passot, and

Souli from the Boussinesq equatiofi$0]. It closely re-
sembles the Cross-New#g(CN) equationg 8] previously de-
rived from approximate models of convection, with negli-
gible corrections close to onset of convectierE0.5). Since
the exact equations are more complex to use than the C
equations but validate their main features, we prefer to wor
with the latter in the following:

do 1
TE.H(.F +V-(kB)=0+o0 ﬁ)' (1)
1
F=—ykV-(kA%)+ V(II)+0 ﬁ)' 2

3. Boundary conditions

We denote by the boundary normals. Foci involve a roll
tangential to boundary:

kxXn=0 atr=R.
N

lf:ocus pairs involve rolls normal to boundary:

k-n=0 atr=R.
Mean flows vanish at the impermeable boundary:

F-n=0 atr=R’.
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B. Symmetric structures 3. Basic state of instability

1. Definition and approach Since, whatever the kind of container, symmetric struc-

W I tric struct the struct ; hich th tures involve no mean flow, their phase field is the same in
€ call Symmetric structures, the Structures 1or which th€yjwer case. The difference between their stability analysis
wave-vector field satisfies aontinuoussymmetry, either

. . . i therefore traces back to a change not of the basic state of
translational or rotational. This selects parallel or radial WaV&nstability but of the mean flows. We shall denafg, this

vectors and thus straight rol[§ig. 2@)] or foci [Figs. 38)  mean flow variation induced by the sole change of mean

and 48)]. . flow boundary conditions. We address its main features be-
The stability analysis of these structures turns out to solvegy.

the linearized CN equations, together with their boundary

conditions, for normal modes of perturbations. Linear stabil- 4. Mean flow perturbation
ity is then deduced from the resulting dispersion relation. For N .
straight rolls, this procedure is readily achieved with Fourier As mean flows vanish in symmetric structures, whatever

modes since the partial differential equations are homoget-he kind of container, the mean flow modificatioh brought

neous[27.8). It is however much more complex to imple- about by the change of boundary conditions only results
o T . pie: MP'€ tom that induced on mean flow perturbations. It is thus at
ment in foci since the corresponding equations involv

€ . :
) ; o least of the same order as the phase perturbatiand dis-
space-dependent terms. Evidence of instability is then Ohf)lays at first order inj, the samg grow?h rateaay&és

tained from integral considerations and numerical calcula- On, the other hand ,according t8), the mean flow vor-

tions[9,10. o . . ticity generated in the convective domain only follows from
In the following, our goal consists in comparing the linear ;o) modulation, independently of the kind of container. This
stability analysis of symmetric structures in closed and opemneans that the change of mean flow boundary condition
containers without deriving explicitly either of them. We prings no additional vorticity in the inner zone by itself and
shall first notice that their basic state of instability does nothus that the corresponding mean flow modificatih can
depend on the kind of container. This will lead us to focusonly be a potential flow satisfying mass conservation. Both
attention to the modification brought about on mean flows byits potential and its stream function therefore satisfy a laplace
the sole change of boundary conditions. Analyzing its conequation:sF;=V(8p)=V X (ée,) with A(dp)=A(&)=0.
sequence on the instability spectra will show the indepen-
dence of the onsets of instability with respect to mean flow 5. Dispersion relation

boundary conditions. At first order in phase perturbation, the only difference

brought about by the change of containers comes from the
2. Mean flow sources mean flow variation §F; through the advection term
- 6F;, k, denoting the wave vector of the unperturbed
Structure. We determine below its consequence on the insta-
ility spectrum.

Since mean flow sources correspond to mean Reynol
stresses, they derive from roll modulation and thus satis
the same symmetries as the roll structure. Within the convec- As the additional mean flowF; and the phase perturba-

tive domain, they then generate, according to &) mean o, have the same growth rate, eliminating one of them

flows norma_l to rqll axis in a straight roll s_tructure an_d_ radial from the linear stability analysis does not modify the insta-

mean flows in foci, up to a pressure gradient. In addition, the,jjity spectrum but provides the opportunity of focusing the

former flows are invariant by trans_lat|on along the roll axis analysis on essential modes. Elimination & may be

and the latter are invariant by rotation around the focus Cenachieved as fo”ows: Tak|ng the Cur' to the mean ﬂOW equa_

ter. Owing to these symmetries, no mean flow vorticity cantion (2) yields an equation linking the mean flow vorticify

be generated in both cases in the convective domain. to the phase perturbatiop. It is decoupled fromsF; since
Within the interface, the roll direction is either normal or §F; drives no vorticity.

parallel to the roll boundary, in either straight rolls and foci  On the other hand, applying a suitable differential opera-

and in either kinds of containec§&igs. 2—4. The roll struc- tor P(-) to the phase equatiofl) yields a dynamical equa-

ture therefore satisfies a translational symmetry along th&on for the phase perturbatiaomthat only involves the mean

interface and a reflection symmetry with respect to the interflow differencedF; via P(k,- 8F;). When the basic structure

face normal. Since its mean Reynolds stresses must satispnsists of straight rollg, is a constant vectde.e, . Taking

the same symmetries, they can only be a vector field paralld?(-)=A(-) then yieldsP (k- 6F;)=kdA(Sp)/dx=0. On the

to the boundary normal and independent of the orthogonadther hand, when the basic structure is a focksg, is

direction. No field of this kind can generate vertical vorticity. a radial vector kie,. Taking P(-)=A(rk;!-) yields

We emphasize that this statement is valid in stable or unP(k,- 8F;)=0JA(£)/96=0. In both casesdF; disappears from

stable regimes, since the boundary rolls stay the same anthe equation and, finally, from the stability analysis.

way. According to the above statements, the mean flow differ-
The mean flows generated by symmetric structures and bgnce 6F between containers cannot modify the dispersion

boundary rolls can thus only be potential, incompressiblerelation and thus the onset of linear instability; it only

and free of singularity. However, no flow of this kind can changes the shape of the unstable modes by driving an addi-

exist in a closed cell. Neither symmetric structures in stabldional phase distortioy displaying the same growth rate

states nor their interface in unstable states can therefore getiran the other dynamical modes and yielding no mean flow

erate mean flow, in any kind of container. vorticity. Symmetric structures therefore keep the same onset
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of instability in either closed or open containers. y

C. Asymmetric structures
1. Definition and approach

We call asymmetric structures the structures whose wave-
vector field satisfies no continuous symmetry, either transla-
tional or rotational[Figs. €d), 9, and 1Q. They thus corre-
spond to any structures different from straight rolls or foci
and therefore involve some distortion. X
Since asymmetric structures differ from straight rolls,
they display wave-vector rotations. However, we emphasize
that they also involve wave-number gradientdk-k)+0.
Otherwise, sincé is a gradient field(k-V)k=V(k-k)/2+k
XV Xk would vanish, except at the singular points whkre
is not defined. The field lines & would then be similar to
the stream lines of a steady flow with no total derivative and
would thus correspond to straight lines between singular ] ) _
points. Since an intersection of two field lineskofs a phase FIG. 11. Sketch of the _phase field and the coordinate frame in
singularity, the only possibilities for keeping their density POth closed or open containers.
finite would then be either no intersection or a single one in
the whole domain. The former case corresponds to a constaptate. However, owing to the wave-number gradients, the
wave-vector fieldk=kee,, and thus to straight rolls. The linearized equations would involve space-dependent coeffi-

latter case Corresponds to a radial wave-vector f|e:{:d§fer , cients that could ||ke|y result in a localization of the grOWth
and thus to foci. Both involve continuous symmetries, infate o of the perturbationsV(o)#0. Especially, in a WKB
contrast with asymmetric structures. approximation, a local crossing of the stability boundary of

OW|ng to these wave-vector gradientsy asymmetric Struc[O”S by extremal wave numbers would induce a local pOSi'
tures trigger some mean flow sources WhiCh, because of tHé/e grOWth rate and thus a localized |nStab|l|ty Motivated
absence of continuous symmetry, generate some mean floRy this statement and by experimental observations, we
vorticity. They thus cannot be compensated by a pressuréhose to perform the stability analysis in two steps: first,
gradient, so that the resulting mean flows are necessarily néetermination of the basic state of instability and second,
zero:F#0. This important feature contrasts with the vanish-investigation of its local stability.
ing of mean flow in symmetric structures and makes all the This procedure is implemented below on a model of
difference between the two kinds of patterns. Especially, th@symmetric structure: the focus pair. It is similar to that al-
change of container is now suitable for modifying the mearfeady used in closed contain¢dsl—13 but is supplemented
flows of asymmetric structures and consequently their phaséere by an analysis of the conductive zone, of the interface,
even in their stable regime. Not only the mean flow pertur-and of their effects on the convective zone. Owing to the
bations but also the basic state of instability may then nov@nalytical complexity of the CN equations as far as no con-
depend on the kind of container. Compared to Symmetriéinuous Symmetry is inVOIVed, the basic state of |nStab|l|ty is
structures, this provides an additional opportunity of beingsolved by a perturbative method. A relevant polynomial ex-
sensitive to a change of mean flow boundary conditions. Pansion of the phase field is introduced and the resulting

Another important difference brought about by asymme-mnean flows are determined at the same order of expansion.
try is the following. As a result of phase advectiBrk 0, Both fields are then substituted into the phase equation, from
mean flows, whatever their magnitude, stretch the roll waveWwhich an algebraic system governing the expansion coeffi-
|ength and thus induce a small but continuous Wave_numbé}ients is obtained. Its SOlUtion, Compatible with the bOUndary
drift along mean flow streamlind®8,17. Its consequences conditions, provides the identification of the basic state of
are enhanced in large aspect ratio cells since, being intdostability. Its stability at any location is finally investigated
grated over long distances, this drift may result in considerby comparison of its local wave numbers with the stability
able wave-number shifts. This important effect actually cor-domain of infinite straight rolls, hereafter called the Busse
responds to the accumulation of a nonlinear phase shift fror@alloon[4].
rolls to rolls and thus to a secular behavior in space, the
spatial cycles being provided by rolls and the secularity by 2. Phase field
the wave number increase. Following it, unstable wave num- ¢ cenral roll line and the line joining foci are denoted

bers may therefore be reachlegally so that local instabili- andy axis, respectivelyFig. 11). Following the symme-

ties may be triggered prior to any instability of large-scaleyjes of focus pairs with respect to them, the phase field is
fields. This, again, contrasts with symmetric structures Wher%xpanded as

an evolution of geometry could only be generated by large-
scale instabilities. 5 ) 4 -

A priori, the stability analysis of asymmetric patterns _ oox oy oy Xy
might proceed as in symmetric structures, by seeking the e(xy)=ko(1+4)y 1 aR2+bR2+CR4+d R* |’
dispersion relation of phase perturbations around some basic ©)
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where k,, the wave number selected by foci, satisfies
B(kg,&,Pr)=0 [8].

Here,a, b, ¢, d, and A are expansion parameters. The
parametera drives phase curvature and the remaining ones
b, ¢, d, andA, phase compression. In agreement with per-
turbative analysis, they are all considered much smaller than
unity. Moreover, following experimental observations show-
ing a weak compression compared to curvafliig. 6(b)],
we anticipate thab, c, d, andA are second order in, as
confirmed at the course of the derivation.

3. Mean flow field

(a) Mean flow vorticity Expansion of Eq(2) yields, ac-
cording to Eq.(3),
r2
Q,i= w@sir‘(zawo

a2
@) , (4)

where w=2vk,A%(k,)8, 6=a?(1—5p)—3d(1+p), and
p=2a In(A%/dInk(k,). By symmetry of the underlying pat-
tern, the polar harmonics of the mean vertical vorticity in the
interface(),, are even but only the quadrupolar mode is reso-
nant with the other modes of the problem. Disregarding the
other harmonics, we thus write

Q, =@w|sim20)+0(%§)),

= )

where §(R) is the delta function and wher@, will be de-
termined later. Finally, the mean vertical vorticiy,, van-
ishes in the outer zone:

0,,=0. (6)

(b) Stream functions; potential®wing to the symmetries
of the pattern, the stream functichof F is sought as a

second polar harmonicgr,0)=&(r)sin(26). It is obtained by (b)
integration of the Poisson equatidg=—(), where, accord- -
ing to Egs.(4)=(6), Q,=Q,(r)sin(26): FIG. 12. Closed containep=1, 8=—1. Sketch of(a) the mean

flow field on a square lattic&) mean flow stream lines fax=0,
—0.05,-0.1, —0.15, and—0.20. Notice the back flow joining foci

. ™ and pattern center. This focalization of the mean flow is responsible
for a dangerous roll compression at the pattern center.

rl (s o[ r? R?
__ 2| — | +3 _ | p— .

We note thaiB and v, to be determined later, drive a poten-
tial flow. Owing to (4)—(6), £ may be written in both the
inner and outer zones:

=FiptFi, Fo=FoptFor. We make the choice~,,=0
andF;, =V X (&;,2) whereg, is the value of¢ for g=y=0.
The corresponding potential parks, and F,, then drive
from the following pressure fields:

wlr? r2  R?
r<R: §i:—1—2 E-ﬁ-ﬁﬁ'i“yr—z sin(26), (8) ) 5
w R
5 2 ) r<R: Hi:_l_z ,3§2_7?2' cog26), (11
r>R: §o=—1—2[(ﬁ—ﬂ+ 1)z + (y+ )| sin(26) ) )
) r
9 r>R: Hoz—1—2[(,8—M+1)¥—(y+,u)r—2}cos(20)
with (12
_ 1 ) with Fip:VHi and Fop:VHO'
m== §+3E : (10 (c) Mean flow field Mean flows satisfy three boundary

conditions.
We shall find it convenient to split the corresponding mean (i) Impenetrability at the cell wallF-n=0 atr=R’. This
flow fields F;=Vx(£2z) andF,=V X (£,2) into a rotational implies £,(R’)=0 and thus B=—1+u(1—p~* where
and a potential part, indexed bryand p, respectively:F; p=R'IR.
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y _ ___ﬂi ) o[ €0g26)
r<R: F= 6 RS r(re+ BR?) sin(20)
0 a?
+r —S|n(20) +0 E , (14)
r4
® R 005(29)[ “R? a2
X r>R: F0=—1—2r—3 . r4 +0 R/
Slr'l(2¢9) 1+F
(15
NS4 3 S sl Its streamlines, parametrized hy satisfy
NHEHIHE R R
r<R: 22| gz~ oga 3/sIN20)=A, (16)
(@)
R2 R/4_r4
r>R: ?WSWKZQ)Z)\. (17)

(b)

FIG. 13. Open containep=2, B~— 3. Sketch of(a) the mean
flow field on a square lattich) mean flow stream lines=0.4, 0.3,
0.2, 0.1, 0,—0.02, —0.04, and—0.06 forr<R and A\=n/32 with
n=0, 0.5, 2, 4, 6, 8, 10, and 12 for>R. Notice the mean flow

The mean flow fields and the mean flow stream lines are
sketched in Fig. 12 for closed containéps=1, 8=—1) and

in Fig. 13 for open containefp=2, B~ — 3). A focalization

of mean flows on the line joining the foci is noticeable in
closed containers but is largely weakened in open ones. This
difference only traces back to the potential flow drivengy
We determine below its consequences on the phase field.

4. Basic state of instability

(a) The phase boundary condition#/ithin the expansion
(3), the conditiork-n=0 at the roll boundary can be written:
sin 9[1—3acos(6)]+0(a?)=0. It is always fulfilled at the
central roll (#=0), never at focus center&==*=/2) and
never simultaneously on the whole boundary. Additional
modes not taken into account in the present expansion of the
phase field would thus be required to achieve it exactly.
However, we emphasize that the status of this boundary con-
dition is more phenomenological than analytical and, in par-
ticular, has not been addressed for the large curvatures en-
countered near the focus centers. We thus use it as a useful

shear at the hydrodynamic interface and the low amplitude of thénean for estimating the curvature parametesy imposing
back flow on the line joining foci and pattern center, compared toalmost perpendicular rolls fof about#/4. We then obtain
that displayed in closed containers. Roll compression at the pattera= 5+ 0(a). A value of order unity ofa, although required
center is weaker and time dependence is inhibited inside the Bus¢e model satisfactorily the phase field, might appear incom-

balloon.

(i) No singularity at the pattern center. This givesO.

(iii) Continuity of the pressure fieldH; andIl, at the
interface, as derived in Appendix B. This yielgs=3 from
Egs.(11) and(12) and, from Eq(10), o, = — /3. Altogether,
these constraints yield

B=—(1+p %2, y=0, u=3. (13

We note that the value g8 changes from-1 to —3 from
closed(p=1) to largely opened containefp>1).

patible with a perturbative expansion. Our guess is that the
physical mechanism of pattern destabilization derived at
weak curvature is sufficiently generic to operate at large
ones. Then, applying our procedure o+ 2 should be con-
sidered as a quantitative extrapolation of a qualitatively cor-
rect mechanism. This will be supported by the agreement
between the corresponding solution and the experimental ob-
servations. Another phase boundary condition is in order at
the locations of largest curvatuge the focus centers. When
foci are in equilibrium, the phase advection by mean flow, of
order O(a?/R), balances the phase diffusion, of order
[k(0,=R)—k,]. Sincey is of O(1) near a focus center, this
gives k(0,*R)—k,=0(a’/R) where a=0(1) and R
=0(10) in extended cells. We then obtak{0,=R)—k,

One finally obtains the following expression for the mean=o0(a?) that expresses the wave-number selection by foci.

flow field F:

Within the expansior3), this yieldsA=—3b—5c.
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(b) The basic state of instabilityntroducing the mean

. : . Busse balloon Wave number
flow field F found in Egs.(14) and(15) into the phase equa- band
tion (1) yields £y

[ ad\y ad y3 2 - Local

it =ko,Dy 6b—2aA—ﬁ? @‘f’ 20c— 3R instability
) 1 4
2 yX
+(10a“+6d— a5)¥ (18
80'1)—_
with Conduction
_ykAszD_la(kB)kP 2' 3' Jk
aBigk | Ko &P Dy=—| 2 =5 = (ko,e,PD.
(19) (@)
As (dB/dk)(k,,&,Pr) is negative an®(k,,e,Pr)=0, both
variablesa andD are positive. W b
We notice that each mode of the phase equati®) is Busse balloon avﬁ;‘.l’&“ o
actually involved in the phase-field expansi). This en- e € Local
sures the closure of the expansion of the CN equations and B instability
enables us to rewrite them as an algebraic dynamical system, 2
by a mode to mode identification. Solving it in steady states
gives the following determination of the basic states of in- e
stability at second order ia: °
[b,c,d+3a%A,a8]=AJ358,£,2—(1+28),12], (20 0 —
Conduction
o
Ag=a2———. (21 I | |
¢ 2+a(1+p) 2 3 4 K
As assumed at the earliest stage, the compression param- (b)

etersh, ¢, d, andA are second order ia. On the other hand, _ B _

8 and thereforev appear to be always positive. The constant FIG. 14. Sketch of the dllagram of Stabl|lt¥ of straight rolls, the
sign of w implies, from Eq.(14), that the direction oF is Busse balloon, as a function of the Rayleigh number at a low
solely governed by3 in steady focus pairs. As expected, Prandtl number(Pr~1) (dashed domajn The wave number se-
relation (20) then shows that the basic state of instability of 'Sct€d by foCiKo(#), crosses the balloon at the “top,” at values of

focus pairs is parametrize@l We emphasize that this means ¢ of the same order of magnitude gs, thee limit of stable straight
that it actually depends on the kind of container rolls. The local wave numbers of focus pairs are computeg fod,

a= % and Pr=0.7. (a) Closed containers8=—1. Focus pairs dis-
play a wave-number band that crosses the Busse balloon at the
“side.” This induces a local instability at values ef &,, much

We consider the local wave numbers displayed by steadymaller thaneg: e,/eg=0(10"1). (b) Open containersp*>1,
focus pairs and investigate whether they belong to the Bussgé=—3. Crossing of the Busse balloon occurs near the “top,”
balloon. The minimal wave numbers of the phase fi@g values of &, ¢,, of the order of its highest allowable value
are reached at the boundaries of the central rotly)X egleg=0(1). Time dependence is thus inhibited inside the Busse
=(=R,0). They amount t&(=+R,0)=k,(1—a)+o(a?) and balloon.
may Yield roll nucleation by a localized Eckhaus instability,

5. Local stability analysis

actually observed experimentalli#ig. 6(a)]. The first case is not dangerous since, at least for0Ps,
The maximal wave numbd,, takes place on thg axis.  k, lies well inside the Busse balloon up to large valueg of
Here,k reduces to the following expression: [35]. On the opposite side, the second case may well yield a

local instability at the pattern center for sufficiently large

2 2

y values ofA. SinceA is proportional to(1+28), this means
k(0.y) =Ko/ 1+Ac ?JF'B —(B+1)? } (22 that the local stability of focus pairs depends on the kind of
container, as analyzed below.
According to it, both the location and the valuekqf depend In closed containers,p=1, B=-1, A=A., and
on B. kn=Ko(1+A;). At low Prandtl number Pel, Fig. 14a)

(i) For B=—13, k., is reached at both focus centessy)  shows that\, grows sufficiently fast witte to makek,, cross
=(0,0) and the pattern centex,{)=(0,0). ThenA=0 and the stability boundaries as soon &s0.1. Focus pairs are
K=K - then locally unstable well inside the Busse balloon.

(i) For B<—13, k., is reached only at the pattern center ~As p grows fromp=1 (closed containejsto p= (open
(%,¥)=(0,0). ThenA>0 andk,,=k,(1+A). containery g increases from—1 to —3 and A decreases
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from A, to 0, whatever the Prandtl number. Meanwhile the Closed Open
maximal wave number is still reached at the pattern center e e
but the roll compression decreasds;,=k,(1+A). This A A
makes the threshold of local instability rise, as shown in Fig. 3.0 | 3.0
14(b). In particular, in the limit of widely opened containers,
p*>1, A vanishes so tha,,=k,, at any Prandtl number. No 25 4 - 25
pinching can then occur unti, crosses the Busse balloon. 20 20
At least for P.>0.5[35], this prevents time dependence up to 7 1T™SR SR = &
values ofe of the order of its highest allowable valus; 15 | | 15
[e,~1, eg~2.5 in Fig. 14b)]. Focus pairs are thus locally FP _ |
stable in the same range as the Busse balloon. Lo i X L 1.0
In open containers, time dependence of focus pairs is thus
inhibited inside the Busse balloon at least for any Prandtl 05 4 - 05
number larger than 0.5. This effect is hardly noticeable at 0.0 —» I F - 0.0
high Prandtl number since, owing to the vanishing of mean ’ + ’
flow sources, closed and open containers become physically
equivalent, in particular regarding focus pair stability: %’(

Pr—o, y—0, a—0, A—0, andk,,—k,, in either kind of
Contain(?rs. It is howe\_/er spectacular at low PrandtI. number, FIG. 15. Sketch of the threshold of time-dependence of various
Pr=1, since focus pairs are much more unstable in closedyctures in closed and open containers. Straight rolis, foci, and
containers than in open ones. In the latter, their time depenycys pairs are labeled SR, F, and FP, respectively. Notice the sen-
dence is then surprisingly suppressed within the Busse bakitivity (independengeof focus pairs and texturdstraight rolls and
loon, not by removing mean flows as in the large Prandtkoci) to the type of container. Notice also the similarity of the
number limit, but by weakening their focalization on the pat-threshold of time dependence of focus pairs and textures with that
tern center. of foci in closed containers and that of straight rolls in open ones.
Opening containers thus changes the status of asymmetric structures
from that of most unstable structures to that of nearly most stable
structures.
We confront the experimental observations to the results

of our analysis, following the above splitting between sym-  1he main findings of our analysis are a delay of the onset
metric and asymmetric structures. We then focus attention ogs time dependence and an equality of the wave numbers at
the role of geometry with respect to the mechanisms govermyg pattern center and at the fgBig. 14b)]. Both are nicely
Ing convective structures. corroborated by our experimefiig. 7). However, for the
sake of a better accuracy of this comparison, we take into
account in Appendix D the perturbations induced by the an-
nular sheet on the mean flow. It gives rise to an additional

ackflow on the line joining the focus to the pattern center.

he maximal wave number is then reached at the pattern
center only, so that local instability and defect nucleation
should occur there, in agreement with Fig. 8. On the other

V. DISCUSSION

A. Symmetric structures

The instability displayed by straight rolls agrees with the
skewed-varicose instability regarding both onset and for
(Fig. 2. On the other hand, foci display a steady off-
centering of focus singularities starting fras0 and grow-

ing with e [14-19 (Fig. 5. This does not fit with a large-

scale instability starting from a definite onset above th
convective threshold. However the amplification of the off-
centering indicates a loss of stiffness that recovers the mai
features brought about by the focus instabiliéy10].

Both these symmetric structures show, at most, very wea
changes of their spatiotemporal behaviors in open container
This agrees with the conclusions of our analysis of their sta
bility: symmetric structures ar@hearly insensitive to mean
flow boundary conditions.

B. Asymmetric structures

e

hand, its valuek,. should be slightly larger than that dis-
layed at the fock;, as confirmed by our datdig. 7).

n After the first defect nucleation has occurred, patterns do
not exhibit periodic dynamics as in closed containel3]

Eut restabilize in another focus pair involving one less roll
gair [Fig. 6(c)]. A similar behavior may be observed on
Straight rolls as they encounter the skewed-varicose instabil-
ity when increasing (cf. Sec. lll B and Refd.17] and[29]).

In the present case, restabilization may be understood by a
slight dependence of the parametergoverning the local
stability with respect to the mean wave numbeee Eg.
(19)]: removing one roll pair may then be sulfficient to reduce

p

In open containers, the analysis of focus pairs predicts a below the critical value at which defect nucleation is trig-
weakening of the main dangerous mode: a focalization of thgered[13]. In addition, sincea is proportional toe, the

mean flow on the axis joining foci to the pattern center.

highere is at the first defect nucleation, the larger the reduc-

Evidencing directly this effect is not an easy task, owing totion of « may be and the better are the chances of observing
the difficulties inherent to mean flow measurement or meamestabilization. In agreement with this statement, experi-
flow visualization[16], and we did not achieve it. Instead, ments reveal that defect nucleation occurs too low in closed
we have checked its consequences by comparing our obsearentainers for allowing restabilization and sufficiently high

vations with the predictions regarding both the onset of timén open containers for achieving it. The experimental fea-
dependence and the wave-number field. tures of focus pairs and especially their sensitivity to mean
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flow boundary conditions are thus well recovered from thefication of both the route to time dependerisgmmetry al-
CN equations. lows at most a slow evolution of wave number; asymmetry
enhances phase gradiensnd the bifurcation to instability

C. The role of symmetry (symmetry induces large-scale instability; asymmetry trig-
gers local instability.
e o As confirmed by the different sensitivities to mean flow
the sensitivity to mean flow bou_ndary C(_)ndltlons a_nd t.heboundary conditions, the above distinctions especially indi-
symmetry of the wave-vector field. This correlation is cate that symmetric and asymmetric structures are not physi-

sketched in Fig. 15 by drawing a comparison between th%ally equivalent(Fig. 15. Of course, this does not mean that

onstet. of tlmv?/ deggndengel of ;ttruct.ur.es md t_?e two kinds o he physical ingredients governing these structures are differ-
containers. We address below 1S orgin and Its consequenc t(e.g., primarily instability, mean Reynolds stresses, flow

by investigating_the essential role of symmetry with resloeqncompressibility, etg. but that the interplay between them
to the route to time dependence. generates different mechanisms and then different behaviors.
Accordingly, asymmetries or distortions, whatever their
magnitude, stand as essential modes of extended patterns.
Continuous symmetry of the phase field precludes the ex- A consequence of these statements is that, despite their
istence of mean flowg-=0) and thus denies to mean flow apparent similarity, foci and focus pairs refer to different
boundary conditions any influence on symmetric statesphysical mechanisms. In particular, focus pairs cannot be
These boundary conditions might however influence the/iewed as the mere juxtaposition of two foci nor can an
symmetry-breaking instabilities, either the local ones or theasymmetric or a distorted structure be analyzed in terms of
large-scale ones. symmetric structures. By contrast, the similarity between the
In straight rolls, local instabilities are rejected since thebehaviors of textures and focus pairs in both closed and open
wave number is selected: all rolls are unstable or none are. lgontainers validates the latter as a good candidate for mod-
foci, local unstable wave numbers might arise since waveeling textures. This suggests that, at least for moderate aspect

number selection is only reached at large distance from theatios, focus pair might actually capture the essential mecha-
focus center. However, they would then be encountered opisms governing textures dynamics.

all azimuths so that the growth of instability could be com-
patible with the preservation of rotational symmetry. We
note that such rotationally invariant dynamical states are ac- VI. CONCLUSION
tually observed as phase-traveling waves in simulatj@e

and experiment§19,32 in large aspect ratio containers.

However, since they do not modify pattern geometry the);1amical scales, the roll scale and the pattern scale. They thus
stand out'side the scope of the problem addressed he,re. provide a minimal model for studying scale interactions. We

Only large-scale instabilities can thus yield a time depen-have been studying it by focusing on model structures in-

dence of symmetric geometries. Although they involve meaﬁ’OIVIng simple geometries.

flows, our analysis has shown that their onsets are indepe[[l- Althdquglh dlfferﬁnt_or)l a fnuerer c_)f pomtsl, motd_el strut%- ¢
dent on mean flow boundary conditions. ures display such similar features in usual containers tha

one can hardly decide which of them accurately models tex-
tures. In order to improve their comparison, we have intro-
2. Asymmetry duced a change of boundary condition by separating the

In contrast with symmetric structures, asymmetric strucmean flow boundary from the roll flow boundary. This made
tures involve some mean flows, even in steady stdte. the boundary of the convective domain permeable to mean
As shown on the model of asymmetric pattern, the focudlows and therefore transformed the usual “closed” contain-
pair, these flows raise phase gradients not only through thef'S into “open” ones regarding these flows. _ _
rotational part but also through their potential part. This re- The change of container has been applied while keeping
sults in a localization of pattern stress whose features deperif® same convective structures and thus the same mean flow
on the mean pressure gradient and thus on mean flow boungources. It has resulted in two opposite behaviors: straight
ary conditions. rolls and axisymmetrical roll§foci) kept the same behavior;

Owing to the low magnitude of mean flows, the conse-focus pairs and textures displayed a spectacularly large delay
quence of pattern stress might be thought to be negligibledf time dependence. The former structures involve a continu-
They are however enhanced by the aspect ratio owing to th@us symmetry of the wave-vector field and the latter struc-
cumulative effect of mean flow stretch. At least at low tures none. Their respective sensitivity to the change of mean
Prandtl number and moderate aspect ratio, they then succef@w boundary condition has been recovered analytically by

in inducing local instabilityprior to large-scale instability. ~ exploiting the consequences of the existence or of the failure
of such symmetry. The origin of the sensitivity differences

traces back to the degeneracy displayed in symmetric struc-
tures through the vanishing of mean flows. This actually de-
The difference of behaviors of symmetric structures com-couples not only steady states but also their onset of insta-
pared to asymmetric ones traces back to the vanishing dfility from mean flow boundary conditions. On the opposite
their mean flowgF=0). This important degeneracy inhibits side, asymmetry generates mean flows that enhance phase
the retroaction of large scaldf) on small scalesk) and  gradients by cumulative roll stretch. The resulting localiza-
prevents localization of pattern stress. This results in a modition of pattern stress then succeeds in triggering local insta-

Both experiment and analysis agree with a link betwee

1. Continuous symmetry

Convective structures are governed by only two hydrody-

3. Correlation between symmetry and bifurcation
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bility prior to large scale instability, at least in moderate  Since the horizontal spatial scale of the mean flow is large
aspect ratio cells and at low Prandtl number. compared to the cell depth, horizontal diffusion may be ne-
The opposite behaviors of symmetric and asymmetriglected with respect to vertical diffusion. Length scales being
structures show that their physics actually differ. In particu-nondimensionalized with the cell depth and time scales with
lar, textures cannot be modeled by foci but, to the preserthe vertical diffusion time, the order of magnitude of mean
analysis, by focus pairs. This points to the physical mechaflow self-advection, mean flow diffusion, and mean flow
nism governing focus pairésee Sec. IV € as a relevant sources are, according to E@2), Pr'R!F% F, and
prototype of those at work in textures, at least for the modPr 'R 1¢2 respectively. Then, for Brl, R>10, ande<1,
erate aspect ratios addressed here. the condition of equilibrium between the two former terms
The fact that our experiment has been performed at modand the latter giveE~Pr 1 R™! ¢2. The effective Reynolds
erate aspect ratio raises some questions regarding pattern dyamber RéF), i.e., the ratio Qg the self-advection to diffu-
namics in larger cells. Then more substructures than in theion, is then, R&)=0(Pr °R “¢?. In the present case of
present case would interact, some of them being cut bgxtended cell§R>1) and in the vicinity of the convective
boundaries, the other being located in the bulk. The formethreshold(e<1), it is quite small so that the self-advection of
structures are bound by impermeable walls and the latter bl may be neglected compared to its diffusion.
permeable ones regarding mean flows. Do they behave as in When taken into account simultaneously, these interac-
closed containers or rather as in open ones? Do they shotions yield the Cross-Newell equatiof® and(2) where the
the same dynamics or not? What is their respective sensitiviirst equation(1) is a phase-diffusion equation supplemented
ity to a change of mean flow boundary condition? Answeringby an advection term of the phase by the mean flow and the
these questions would improve our understanding of strucsecond equatiori2) expresses the Siggia-Zippelius mecha-
tures interactions and of the influence of boundary on thaism.
bulk dynamics.
. Both our observations and analysis have_finally revealeq AAPPENDIX B: CONTINUITY OF THE PRESSURE FIELD
link between the geometry and the dynamics of convective AT THE INTERFACE
structures. According to it, distortion is a dangerous mode
which, whatever its magnitude, modifies the route to time The hydrodynamical interfaceR{ <r <R™) separates an
dependence by bringing about a coupling between large anidner zone (<R™) from an outer zoneR" <r<R') [Fig.
small scales. This property traces back to the nonlocalityi(a)]. Two pressure fieldsl; andIl, have been defined by
generated in distorted states but inhibited in symmetric one€qgs.(11) and(12) in each of them. Our purpose is to evalu-
Here, this nonlocality is provided by hydrodynamics. Inate the corresponding pressure dréid across their inter-
other systems, other long-range interactions induced by eledace:
tromagnetic fields or chemical mediators may play this role.

Then, the present system might appear as a minimal model SII=II,(R*,6)—1I;(R",6). (B1)
for the understanding of the inner mechanisms governing
their organization or their dynamics. This will be performed first by determining a continuous

matching of the pressure gradieM$I in the interface, sec-
ond by evaluating its order of magnitude, and finally by de-
ducing the corresponding pressure d@p.

The Cross-Newell equations describe the basic interac-
tions between the phase field and the mean flow figld 1. Continuous matching of the pressure gradients

They may be split into self and mutual interactions. . .
y may b The mean flowF may be split in the whole system into a

(i) Roll-roll interaction. Diffusive terms of the Boussinesq ional R and 2l parVIl. both di
equations give rise to a local interaction between neighborto'[""t'on"’I partR and a potential parvll, both divergence-

ing rolls. This results in an anisotropic diffusion of the roll ree.
position and thus of the phase fidldl. F=R+ VII. (B2)
(i) Roll action upon mean flows. It corresponds to the
Siggia-Zippelius mechanism by which distorted rolls behave
as local mean flow sourcg&6]. The resulting mean flow is
linked to its sources in a nonlocal way.
(iii) Mean flow action upon rolls. It results from the ad-

APPENDIX A: THE CROSS-NEWELL EQUATIONS

This splitting is not unique but examples 4r€;, ,VII;)
in the inner zone andF,,,VIl,) in the outer zone, as de-
fined in Sec. IV C 3. Sincd is continuous in the whole
vection of roll flows by the mean flow. Depending on the syftemr, z?tﬁ[gﬁmgn%?ﬂtmﬁo?ﬁ n;ﬁcﬂﬂiﬂ c;f :Ee pretst-
boundary conditions imposed on the phase field, it resultgu'c dradie ia .0 € Interface turns out 1o
either in phase drift, phase distortions, or both of themconstru_ct an explicit continuous expression c_Jf the r_otatlonal
[28,12). Whereas the link between phase advection and rolgg\rl]veRall:stuciz ?h;vi{jttra;cljtnzorresponds Fg in the inner
distortion islocal, the one between mean flow and roll phase Let us I;rbeIR and R, its ra;j'al and orthoradial compo-
results from a spatial integration of the phase advection and us a r 0! \ . ’ P
is thusnonlocal nents and introduce Fhe follqvv_lng coupling between mean
(iv) Mean-flow—mean-flow interaction. It arises from the flow sources and vertical vorticity:

diffusion and the selfadvection of the mean flow. It reduces
to vertical diffusion heréand thus, for a Poiseuille profile, to R = r O

L ! ) ’ =—= cot(26), B3
a multiplication by a constanpfor the following reasons: ' 6"z (26) (B3)
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where y is a function ofr, a priori undetermined. In order APPENDIX C: INTERFACE VORTICITY
for the vertical vorticity ofR to be equal td},, the function AND MEAN FLOW SHEAR

R, must satisfy In an open container, the net vertical vorticity in the

upper-right quarteD, of the cell (0<r<R’, 0<6<7/2)
may be deduced from relatiori$)—(6):

r X
rR9=j ri1+=Q,dr. (B4)
0 3

ffnzdszfm.. (C1)
Do 4

In the convective domain, the choige=1 yieldsR=F;; . sincew,=—w/3, the interface vorticity dominates the verti-
In the conductive domain, relatid3) shows that the radial ca| vorticity produced in the bulk and imposes a negative
componentR, of R is always zero sinc€), vanishes in the  sign of the net vertical vorticity in the doma,. The cir-
outer zone. Its orthoradial componeR}, can be forced to  culation of the mean flow fiel& along the boundaries @,
vanish too, by choosingy in the interface so that must then be negativiFig. 13a)]. This is in contrast with
Ry(R, ,0)=0. Then, in the outer zon&=F,,=0. the case of closed containers, where the analogous circula-

Different choices ofy satisfying the above requirements tion along the upper-right quarteD.(0<r<R, 0<#
may be made inside the interface. The relevance of this de</2) is positive[Fig. 12a)].
gree of freedom is ensured by the fact that their differences At some places of the boundary @f,, the mean flow
correspond to potential flows whose pressure ditbp cir- ~ Mmust therefore point in a direction opposite to that displayed
culation of the corresponding flow between the two sides ofn @ closed container. Figure 13 shows that this mainly oc-

the interfacg vanishes, owing téB3) and (B4). curs in the outer zone. In the remaining parts, especially in
the inner zone, the amplitude of the mean flow, and in par-

ticular the back flow, is reduced, but the direction is kept.
2. Order of magnitude of the pressure gradient in the interface The mean flow shear at the interface results from the large
, variations of the orthoradial componefte, across the in-
We seek to deduce the order of magnitudeVal from o306 Their origin may be understood as follows. Mass
those off andR in the interface. At first, we assume that the ¢nservation implies continuity df-r across the interface.
interface does not increase the order of magnitude of thgqyating the circulation of the mean flow on an infinitesimal

mean flow in the inner zone and outer zone. On the contrangontour in the interface to the flux of vertical vorticity then
the roll compression would be larger than usual so that thgjelds

threshold of time dependence would be much smaller than in
closed containers. This scenario is rejected by experimental o,
observationgsee Sec. Ill D 2 ThenF is still O(a?/R) on [F(Ry)—F(R-)]le=% (C2
both sides of the interface so that its shear ra®({a?/R).

Since the spatial derivatives aB{1) inside the interface, sq that the shear is directly produced by the interface vortic-
the order of magnitude df andR inside it are the same as jty , . |ts magnitude i€(a%/R) sincew,=O0(w)=0(a?).
that of their vertical VortiCityQﬂ . This VortiCity results from It is thus of the same order as the mean flevand modifies
three different phenomena: roll distortion, mean flow shearijt considerably, as shown by the comparison between Figs.
and roll amplitude variations. The first two contribute(g, 12 and 13.
to the same order of magnltudé/R The contribution of the The interface Vorticity thus produces local eﬁemear
last may be easily estimated by emphasizing that rolls engt the interface but also important nonlocal effectsnean
norma”y to the interface. Then, |Oca”y, they look like a Setﬂow direction, decrease of the back ﬂbwf primary impor-
of parallel rolls fadlng away a normal boundary. For reasongance for the transition to time dependence.
of symmetry, the mean flow that they produce by amplitude
decay must then be parallel to their axis and invariant by
translation along the boundary so that its vertical vorticity
vanishes. Put together, these estimates yieJd, F, R, and

APPENDIX D: INFLUENCE OF THE SHEET
ON MEAN FLOWS

VII to be at leasD(a’/R) in the interface. Apart from local vorticity sources produced at the roll
boundaries by roll amplitude decay, the sheet induces a vis-
3. Pressure drop across the interface cous shear in the conductive domain that decreases the flow

Since the pressure gradieWiI is well defined and con- driven by pressure gradienf5ig. 1(c)]. '!'his add.ition.aI ef- .
fect may be easily evaluated by assuming a Poiseuille profile

tinuous in the interface, evaluating the pressure débp . . . )
across it makes sense. Its order of magnitude is that of thf(-f')r the mean flow. This results in the following relation be-

pressure gradientO(a?/R), multiplied by the interface tween the potential mean flow§ in.the inner and outer zones
width, O(1) in the present problem, so thall=0(a?/R). Fip andFo, and the pressure field:

Since, in an extended ceR ™ 1=0(10 ) =0(1), wefinally

obtain slI=0(a?), so that the pressure fieldd, and II; Fip=VII,  Fop=tVIIl, t=1-34(1-¢), (D1

match continuously at second order in a: ] ) ] .
where 6=d,/d is the relative distance of the sheet to a hori-

II,(R,0)—1II;(R,8)=0(a?). (B5)  zontal plate and a transmission factor.
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The sheet perturbation may thus be handled by renormalwvhich increases roll compression and lowers the onset of
izing the pressure fields in both the inner and outer zones byme dependence. Sing< — 3, the maximum wave number
I, =11, I1,=tII, respectively. Since, the actual pressure fieldis reached at the pattern center so that a localized instability
IT is continuougsee Appendix B this means introducing a should first occur there. Its value is
virtual pressure drop at the interfacél,—1II;=—(1
—1)II;. The remaining boundary conditions of the system k(0,0 =k
being unchanged, the basic state of instability can be found ' °

straightforwardly as in Sec. IV C 4. Only the value gfis ]
modified: As expected,t=1 corresponds to fully open containers

[k(0,0)=k,], and t=0 to closed containers k[0,0)
1+p 4 =ko(1+Ap)]
B=- 2—(1-)(1-p %" (D2) In the present experimens=3 andp=2, so that =% and
B=-—0.72. Taking fork, the expression determined close to

In the limit p>1, B simplifies toB=—1/(1+t) which, for ~ onset of convection given by Manneville and Piqueifr¥4]

t<1, is smaller than the value 3 expected without sheet and recalling that .=a?a/[2+ a(1+ p)] with a=4.19¢ at
perturbation {=1). This indicates the presence of an addi-Pr=0.71, p~0, anda?~1 [9,10], we obtain, for the wave
tional back flow on the line joining focus and pattern centernumber at the pattern center, the curve plotted in Fig. 7.

1+ 1_—HAC
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