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Above a critical flow rate, a single jet impinging from below on a water-air interface oscillates while arrays of jets exhibit collective behaviors. The aim of the paper is to explain the physics governing such an array. First, a series of experiments shows that the instability mechanism leading to the oscillation of a single jet is due to a feedback effect between surface distortion and the unstable jet as in the ''jet-edge'' system and that several jets are coupled through surface waves. Then a modelization is proposed in which jets are considered as oscillators close to their limit cycle coupled by delayed action to take into account the wave propagation. A good agreement is obtained between the predictions of the model and experiments on sets of two or four jets. The long range of the surface waves and the large number of oscillators render this jet configuration very similar to idealized phase coupled nonlinear oscillators investigated in theoretical models but with a not instantaneous coupling ensured by traveling waves. This allows in particular the existence of various synchronization modes, which appear as geometrical patterns. ͓S1063-651X͑98͒07407

I. INTRODUCTION

A lot of theoretical work has been done on large populations of coupled oscillators because of their interest to represent various physical or biological systems with a large number of degrees of freedom ͑see, for instance, ͓1-3͔͒. On the experimental side, several attempts have been made to design extended systems that can be considered as such a set of oscillators. Some of them use fluids perturbed by a spatially periodic action that to some extent behave as coupled oscillators such as coupled wakes ͓4͔, air jets ͓5͔, magnetically driven vortices ͓6͔, and to a lesser extent coupled thermal boundary layers ͓7͔. Modelization of these systems has often been done by using a nonlinear amplitude equation modified to take into account the coupling with the neighboring oscillators. The exact nature of the coupling term depends on the underlying physics and various schemes have been used such as an additional drive depending linearly on neighboring amplitude ͓4,6͔, an additional nonlinear term ͓6͔, or a delayed modification of the nonlinear saturation term ͓5,7͔. Another interesting system consists in using vertical jets close to a water-air interface. It can be easily extended to configurations with a large number of oscillators. When they are isolated, such jets can rotate or oscillate at constant amplitude ͓8,9͔. When they are associated in arrays, phase locks and a wide variety of phase patterns are observed that depend on the symmetries of the network ͓10͔.

Up to now, the understanding of the jet rotary instability was only partial, in particular the observed frequency dependence ͑decreasing with the jet velocity͒, which is quite unusual for standard jet instability. Moreover, no quantitative model for the coupling and the phase pattern has been proposed. The two aims of this paper are ͑i͒ to provide a clearer understanding of the jet rotation and ͑ii͒ to present the first model able to predict quantitatively the coupling between jets. In the next section, after a brief presentation of the experimental setup, experiments concerning the single jet instability ͓11,12͔ are presented. A model of the oscillation is discussed based on the ''jet tone'' concept ͓13͔, which provides the right scaling of the frequency. Then, in Sec. III, simple arrays of two or four jets are investigated experimentally and a model is presented to explain the observed phase patterns. In Sec. IV, the results are discussed. The model is tested by comparing the predicted and observed frequency and modes of oscillation for various sizes and flow rates. Then to explain the unlocking of jets when they are separated by a too large distance, the effect of a slight detuning of the jets is investigated. supplied from an elevated reservoir ͑to avoid any vibration due to a pump͒ through a flow meter and a regulation valve. Its top part is a removable 6-mm-thick perforated plate located a few millimeters below the surface. Various types of plates can be used. For the present paper, square networks of holes with a radius bϭ0.5 mm are used and flow velocities at the hole, and U lies between 0.5 and 0.7 m s Ϫ1 leading to the Reynolds numbers (Ub/) in the range 250-350. The whole device is immersed in a 110 l plexiglass constant level water tank. In some experiments the surface tension was varied in the range 50-75ϫ10 Ϫ3 Nm Ϫ1 using soap. To control the depth h of the jets below the surface ͑typically 6 mm͒, the vertical position of the jet nozzles can be adjusted with a micropositioner. More details can be found in ͓10͔. When one of the jets reaches the water-air interface, there is a stationary axisymmetric bump. Its radius bЈ is determined by the equilibrium between the jet pressure UЈ 2 ͑where is the water volumic mass and UЈ is the jet velocity at the bump͒ and the surface resistance, which scales as /bЈ ͑ is the superficial tension͒. When U is larger than a threshold U f so that this equilibrium is no longer possible, i.e., UЈ is so large that equilibrium would require bЈ smaller than b, the surface breaks and the system looks like a ''small fountain.''

II. PROPERTIES OF THE JET AS AN OSCILLATOR

A. Experimental setup

B. Observations

Above a critical velocity UϭU c the axisymmetric equilibrium of the bump becomes unstable and it starts rotating around the jet axis ͑Fig. 2͒, while generating surface waves with a spiral geometry ͑Fig. 3͒. The frequency range of these oscillations lies between 10 and 50 Hz, and measurements can be made either with stroboscopic lighting for visualization or intensity of a light beam reflecting on the bump towards a photodiode for time evolution. Experimental results about frequency can be summarized in the following way: ͑i͒ for a given geometry the frequency decreases with the jet velocity ͓Fig. 4͑a͔͒, ͑ii͒ it increases with surface tension ͓Fig. 4͑b͔͒, ͑iii͒ when the depth, or U, is varied, the most relevant parameter seems to be the bump height bЈ ͑where primes denotes quantities related to the bump͒ as shown in Fig. 4͑b͒ of ͓10͔.

It appears that the jet rotation can be synchronized when excited with surface waves in the range of frequencies corresponding to the free rotation one. This was shown in a series of experiments, which present some similarities with the oscillating edge experiment by Staubli and Rockwell ͓13͔. Surface waves were generated on the water tank through a blade connected to the coil of a loudspeaker. The evolution of the bump oscillation with the forcing frequency has been followed. Two phase-locking areas have been seen for forcing frequencies close to the bump frequency or in a region at lower frequencies. For other frequencies both oscillations, i.e., forcing waves and bump oscillation coexist ͑see Fig. 5͒.

C. Discussion

The observed rotation of the bump suggests that the jet is subjected to a helical instability. This is compatible with the Reynolds number range. Moreover, previous works demonstrated that a few diameters away from the nozzle, when the shear layer has widened, this mode is the one with the largest growth rate ͓11,12͔. However, for the free jet, the most unstable are of order of 0.5U/b, which corresponds to frequencies of the order of 100 Hz for the present experiment, i.e., typically three times the experimental ones. In addition, the observed frequency decreases with jet velocity instead of increasing. An additional frequency-selection mechanism must be invoqued. The water-air interface, which is not in the standard theory, provides this ingredient. The helical instability distorts the surface and this causes a pressure fluctuation along the jet path, which can be amplified by the jet. Such an amplification is well known and examples are given in ͓14,15͔. Indeed the strength of the feedback will depend on the amplitude of the surface distortion. When the helical instability distorts the bump, surface tension tends to restore the initial shape, which corresponds to the equilibrium between the surface tension and the pressure. The spring force scales as bЈ, i.e., the product of the surface tension by a characteristic length. To restore the initial shape, this force has to modify the momentum of the water inside the bump, which scales as UЈbЈ 3 . The characteristic time of the bump relaxation is the ratio of these two quantities, i.e., ϭUЈbЈ 2 /. Thus the feedback between the bump and the jet is expected to be optimum when the latter rotates at an angular velocity 0 , so that 0 r ϭ1, i.e., 0 is proportional to /bЈ 2 UЈ.

Using the flow rate conservation bЈ 2 UЈϭb 2 U, the scaling of frequency should be 0 ϭG(U)/b 2 U, where G(U) is an unknown dimensionless number that takes into account the numerical factor and the actual geometry of the flow, which may vary with the jet velocity. In Fig. 6, b 2 U 0 / ͓i.e., the expected G(U)͔ is plotted as a function of the velocity of the jet for various water velocities and depth. The fact that this quantity is almost constant ͑except for high U, i.e., low 0 ͒ shows that the model for oscillation is correct and moreover that geometry distortion due to variations of U is not too large. In conclusion, taking into account the value of G deduced from Fig. 6 one gets 0 ϭ͑0.9Ϯ0.1͒/b 2 U. ͑1͒

It is also possible to eliminate UЈ in the relation 0 Ϸ/bЈ 2 UЈ using the equilibrium discussed in Sec. II A between the stress UЈ 2 and superficial tension /b, i.e., UЈ is proportional to b Ϫ0.5 so that 0 should approximatively scales with b Ϫ1.5 . This curve is compatible with experimental results ͓10͔ although the exponent cannot be determined accurately ͑between Ϫ2 and Ϫ1.5͒.

As discussed at the beginning of the section, these frequencies are two or three times lower than the optimum for the amplification by the jet. However, taking a reasonable velocity profile across the jet, the linear theory still predicts an instability with Re(k z ) and Im(k z ) of the order of 1000 and 100 m Ϫ1 , respectively ͓12͔. The amplification takes place on distances l lying between bЈ and h so that its value e Im(k z )1 will be in the range 1-1.5. If the coupling between the pressure modification due to the bump distortion and the jet is not too lossy, the system can oscillate. To explain the rotation start at UϭU c , the following scenario is likely: when U is low, the Reynolds number is too low for an amplification process to take place. When U increases above U c , Im(k z ) reaches a value such that the oscillation is possible. The most favored frequency is 0 since the feedback on pressure is optimum at the bump resonance.

The loudspeaker experiment can be interpreted along the same lines. When the incoming waves distorts the bump efficiently i.e., when its frequency is close to 0 it can lock in phase the jet instability. This is not contradictory with the presence of another region at lower frequency, where there is a phase locking that could correspond to the direct excitation of the jet by the surface wave. 

III. COUPLING OF OSCILLATORS IN SIMPLE GEOMETRIES A. Experimental results with simple arrays

Results of Sec. II suggest that when the system contains several jets, they can be coupled. This has been investigated for two types of jet configurations.

͑i͒ The first one consists in two jets separated by distances 6ϫ10 Ϫ3 ϽaϽ12ϫ10 Ϫ3 m, the plate being 6 mm deep. When a is too large ͑above 12ϫ10 Ϫ3 m͒ the coupling disappears. The flow rate was varied, limited on the lower side by the threshold for jet oscillation, and on the upper side by the fountain regime. This corresponds to the single jet frequency range: 240Ͻ 0 Ͻ300 s Ϫ1 ͓Eq. ͑1͔͒. The two bumps oscillate at the same frequency, with the same amplitude ͑note that the photodiode technique does not allow an accu-rate amplitude measurement͒ and the same direction of rotation. There are two differences with the single jet case: ͑i͒ the critical flow rate for the bump oscillation appearance is lower for two bumps than the one for a single one, ͑ii͒ the frequency is different from the single jet one 0 as shown in Fig. 7. The results obtained during 0 scans ͑i.e., U scans since 0 decreases as U increases͒ for various values of jet spacing a, are presented in Table I. The second column represents the phase difference between the motion of the two jets. Two collective modes are observed: an acoustic mode where the two bumps oscillate in phase ͑phase difference of 2͒, and an optical mode where the two bumps oscillate in phase opposition ͑phase difference of ͒. When there is a transition, the symbol at left ͑right͒ represents the mode at low ͑high͒ 0 . In this case the value of 0 at the transition is displayed in the third column. A transition between two modes is accompanied by a phase and frequency jump ͑always positive when 0 increases͒, which is indicated in the last column. Around the transition there is a domain where the system hesitates between the two modes with a typical half-width ⌬ 0 ϭ10 s Ϫ1 . Similar results are obtained for lines of five jets.

͑ii͒ The second network is made of four jets displayed on squares of different sizes. The plate is still at 6 mm from the surface. For this network the onset of the threshold velocity is lower than for two jets so that the range of 0 that can be explored is larger, between 240 and 310 s Ϫ1 . As for the twojet network, bumps oscillate at the same frequency at qualitatively the same amplitude and the same direction of rotation. The two modes are recovered: in the optical mode the two adjacent jets on the square oscillate in phase opposition while in the acoustic mode all jets are in phase. Again there are transitions and a perturbed area in the transition zone. The results are presented in Table II.

B. Modelization

A natural model to fit the data should be a network of jets oscillating all at the same frequency with the same direction of rotation and coupled through surface waves. One considers first jet m. It is defined by its position Z m ϭX m ϩiY m , and the bump displacement is z m ϭx m ϩiy m . When the stationary state is reached, z m ϭ␣ m e i 0 t with ␣ m its slowly varying complex amplitude and m ϭarg(␣ m ) represents the phase of the motion. When jet m is alone, the rotation occurs with a pulsation 0 so that the argument of ␣ m does not depend on time. This behavior is well represented by the following equation:

d␣ m dt Ϫ␥͑U͒͑1Ϫ␣ m ␣ m *͒␣ m ϭ0,

͑2͒

where an asterisk denotes complex conjugate. The second term represents the effect of the jet instability, which amplifies the motion at a rate ␥, ␥ is real ͑positive when UϾU c ͒, and which saturates for ͉␣ m ͉ϭ1 ͑amplitudes have been normalized to the free jet saturation amplitude͒.

One considers now an array of jets, coupled through surface waves. This can be more easily studied when the bumps rotate in stationary conditions at the frequency , i.e., when ␣ m (t)ϭ␣ 0 e i(Ϫ 0 )t . Note that Ϫ 0 Ӷ 0 so that ␣ m (t) is a slowly varying function. Surface waves have a welldefined wave number k(), which is the solution of the surface wave dispersion relation for deep water ͓in our case the product k()ϫ(depth) is about 5͔ ͓16͔:

k͑ ͒gϩk͑ ͒ 3 gl c 2 Ϫ 2 ϭ0 with l c 2 ϭ g . ͑3͒
A given jet n radiates a spiral capillary wave, which depends on the flow velocity U and on the bump displacement. Dur-FIG. 7. Evolution of the pulsation for two coupled jets with aϭ11 mm ͑squares͒, and for one single jet ͑circles͒ as a function of the jet velocity. ing its propagation between jets n and m separated by a distance r mn , the wave is attenuated by geometrical effect ͑energy flux proportional to 1/r in cylindrical geometry͒ and other dissipation mechanisms. The total attenuation will be included in a function f (r). The wave experiences also a phase shift given by k()r mn . The simplest coupling term in the amplitude equation compatible with surface waves leads to the following equation:

i͓Ϫ 0 ͑ U ͔͒␣ m Ϫ␥͑U ͒͑ 1Ϫ␣ m ␣ m *͒␣ m ϩ͑U ͒ ͚ n m
f ͑ r mn ͒e Ϫik͑͒r mn ␣ n ϭ0. ͑4͒

The function 0 (U) is the free jet frequency, which can be measured directly by single jet experiments ͓see Fig. 4͑a͔͒ and is the frequency of the motion in the array. The coupling constant (U) contains the wave amplitude and the physics of the forcing effect of a wave on the helical jet instability. This model allows us also to recover the fact that the threshold is lower when there are several jets. For instance, if one considers now in Eq. ͑4͒ a small amplitude oscillation ͑instead of a saturated one͒, the real part reads

Im ϭϪ␥͑U͒ϩRe ͩ ͚ n m f ͑ r mn ͒e Ϫik͑͒r mn ͪ ϭ0. ͑5͒
Even for UϽU c so that ␥ is negative, the growth rate can be positive in accordance with the observations described in Sec. III A.

There are two parameters in our dynamical system: ␥(U) the growth rate of the free jet instability, the coupling constant (U). In addition, the function f (r) must be adjusted. For the sake of simplicity, it will be taken equal to e Ϫr . The parameters ␥,, do not depend on the geometry of the jet lattice ͑a dependence in the nozzle diameter and depth is not excluded but all experiments have been made taking these two parameters constant͒. In Sec. III D, experiments will be simulated fitting ␥(U), (U), and by simple number. Thus the parameters and ␥ will be taken independent of U, i.e., the notation ''function of U'' will be skipped.

C. Analytic determination of phase patterns of two-or four-jet arrays

Two-jet network

The system is described by a set of two equations, which admit obviously solutions with ͉z 1 ͉ϭ͉z 2 ͉ϭ͉␣͉. A mode is defined by the phase shift between both jets ⌬ϭ 2 Ϫ 1 . The system ͑4͒ becomes i͑Ϫ 0 ͉͒␣͉Ϫ␥͑ 1Ϫ͉␣͉ 2 ͉͒␣͉ϩe Ϫa e Ϫik͑͒a ͉␣͉e i⌬ ϭ0, ͑6a͒ i͑Ϫ 0 ͉͒␣͉Ϫ␥͑ 1Ϫ͉␣͉ 2 ͉͒␣͉ϩe Ϫa e Ϫik͑͒a ͉␣͉e Ϫ⌬ ϭ0. ͑6b͒

This system has solutions if Eqs. ͑6a͒ and ͑6b͒ have the same as solution. Two modes are allowed, ⌬ϭ0 or ⌬ϭ. Their frequencies and amplitudes are obtained from the real and imaginary parts:

Ϫ 0 ϩ͉͉e Ϫa Im͓e i͓Ϫk͑ ͒aϩarg͑ ͔͒ ͔ϭ0, ͑7a͒ Ϫ␥͑1Ϫ͉␣ ͉ 2 ͒ϩ͉͉e Ϫa Re͓e i͓Ϫk͑ ͒aϩarg͑ ͔͒ ͔ϭ0 ͑7b͒
with equal to Ϫ1 or 1, respectively, for the optical and the acoustic mode. From Eq. ͑7a͒ it is possible to deduce the frequency and amplitude of both modes. A simple approximation can be obtained using Ϫ 0 Ӷ 0 , i.e., taking the coupling terms evaluated for ϭ 0 :

FIG. 8. Functions ( 0 ) and ␣ ( 0 ) defined by Eq. ͑8͒; dotted line ͑acoustical mode͒, full line ͑optical mode͒. The numerical values chosen here are aϭ8.5 mm and e Ϫa ϭ15e Ϫ3i/4 . →2 at 0 ϭ300 →2 at 0 ϭ320 →2 at 0 ϭ311 →2 at 0 ϭ300 ϭ 0 Ϫ͉͉e Ϫa sin͓Ϫk͑ 0 ͒aϩarg͑ ͔͒, ͑8a͒

͉␣ ͉ 2 ϭ1Ϫ ␥ ͉͉e Ϫa cos͓Ϫk͑ 0 ͒aϩarg͑ ͔͒. ͑8b͒
For 0 , i.e., U values so that Ϫk( 0 )aϩarg()ϭ/2 ͑mod ͒, the two modes have the same amplitude ͑equal to 1͒. At these points the frequency difference between the two modes is 2͉͉e Ϫa . In the Appendix it is shown that only the mode that has the largest amplitude is stable. This means that experimentally only this mode should be seen. An example of this prediction is shown in Fig. 8, which illustrates one of the computations discussed in Table III. The functions ␣ ( 0 ) and (0) are shown for aϭ8.5 mm and ϭ15e Ϫ3i/4 . According to the prescription that the observed mode is the one with the largest amplitude, a jump from acoustic to optical mode should be observed at 0 around 275 s Ϫ1 .

Four-jet network

One considers now a network with four jets on a square. Introducing the experimental mode structure, i.e., ͓0000͔ and ͓00͔ in Eq. ͑4͒, one obtains the equation equivalent to Eq. ͑7͒:

͑ Ϫ 0 ͒ϩ͉͉Im͑ 2e Ϫa e Ϫik͑͒aϩi arg͑ ͒ ϩe Ϫa& e Ϫik͑͒a&ϩi arg͑ ͒ )ϭ0, ͑9a͒ Ϫ␥͑1Ϫ͉␣ ͉ 2 ͒ϩ͉͉Re͑ 2e Ϫa e Ϫik͑͒aϩi arg͑ ͒
ϩe Ϫa& e Ϫik͑͒a&ϩi arg͑ ͒ ͒ϭ0, ͑9b͒

with equal to 1 or Ϫ1, respectively, for the acoustic and the optical mode. These equations provide the evolution of the amplitude and the frequency of each mode with the natural frequency 0 . Again, within the approximation Ϫ 0 Ӷ 0 , the two modes have the same amplitude for FIG. 9. Pulsation of the motion of jets displayed on a square (aϭ11 mm) as a function of the free jet pulsation ( 0 ). Experimental results for a depthϭ6 mm ͑squares͒, solution of Eq. ͑8͒ ͑circles͒, numerical simulation ͑triangles͒, with ϭ120, ␥ϭ60, ϭ33.3e Ϫiϫ3/4 . The lines with double arrows on the graph represent the transition areas between the acoustic and the optical mode. Ϫk( 0 )aϩarg()ϭ/2 ͑mod ͒, while the frequency difference at the transition between the two modes is 4͉͉e Ϫa .

IV. COMPARISON WITH THE EXPERIMENTAL DATA

A. Mode transition

In Table III, one shows a comparison between the experimental data and the ones obtained with the analytical treatment for values of arg() in an optimum range, i.e., around Ϫ3/4. The second column of Table III contains experimental data from Sec. III A while the last three columns give the modes with the largest amplitudes obtained from Eqs. ͑7͒ or ͑9͒. arg() has been determined by trying to fit all the observed transitions ͑their location depends on ͉͉ only through corrections of order (Ϫ 0 )/ 0 , as can be seen in Table IV͒, or at least the observed modes when the values of jet spacing a correspond to windows without transition. The computations are made in the window 250Ͻ 0 Ͻ325 s Ϫ1 for two and four jets. The predicted modes are in quite good agreement with the experimental ones, especially if one takes into account the error bars about ϩ/Ϫ10 s Ϫ1 on 0 at transition. In the following arg()ϭϪ3/4 will be taken.

B. Strength of the coupling

In a second step, ͉͉ and can be found from expression ͑7a͒ using the two-jet experiment. For both modes, experimental frequencies should follow the relation

lnͯ 2 Ϫ 0 2 cos"k͑ ͒aϩ/4… ͯϭl n͉͉Ϫa. ͑10͒
If the value of can be measured as a function of a, it should be possible to guess ͉͉ and . However, due to the small range of a and the low value of attenuation, the accuracy is poor. Several combinations of and are possible provided ͉͉e Ϫa stays in the same range. This is shown in Table IV, which displays a comparison between the five experimental mode transitions given in Tables I andII and the simulated ones taking two combinations of ͉͉ and .

To summarize, from Tables III andIV, it appears that the amplitude, nature, and location of modes can be reasonably fitted by the model especially if one takes into account the small number of parameters to be fitted: One ͓arg()͔ to fit all the transition ͑location and direction͒ and two ͓modu-lus͑͒ and ͔ for the values of frequencies ͑with little effect͒. The value of ␥ plays almost no role ͑it has been taken equal to 60͒. An example of comparison theory-experiment of ( 0 ) for a four-jet system is shown in Fig. 9. The transition has been simulated in two ways. First there is the largest amplitude mode given by Eq. ͑9͒. One admits then that the system cannot choose between the two modes if it exists a difference of less than 10% between the amplitudes of the modes. This assumption allows us to determine a small transition zone ͑''analytical transition''͒ where the two modes, like in the experiments, are unstable. This is possibly due to desynchronization as discussed in the next section. Second, there is the result obtained by evolving in time the jet motion using a scheme described elsewhere ͓17͔.

C. Effect of a scattering of oscillator properties

When a increases beyond 12 mm, the synchronization becomes poor and eventually is lost. Another experimental feature is that, in the transition zone ͑when the amplitudes of the two modes are close together͒ the system is unstable. A possible explanation could be the unavoidable dispersion in the 0 values, which tends to hamper the synchronization. This is a well known effect for coupled oscillators ͓1͔. This effect has been investigated more quantitatively for a two-jet system. One assumes that there is some scatter in the 0 values, i.e., that they become 1,2 ϭ 0 Ϯ⌬. In the presence of coupling, the motion of jet m can be expressed as ␣ m (t)e Ϫi 0 t . Provided it is slowly varying, the evolution of ␣ m (t) obeys the following equation:

d␣ m dt Ϫi͑ m Ϫ 0 ͒␣ m Ϫ␥͑1Ϫ␣ m ␣ m *͒␣ m ϩ ͚ n m
e Ϫa e Ϫik͑ n ͒r mn ␣ n ϭ0. ͑11͒

Equation ͑11͒ has been solved using an iterative scheme to determine the n values to be used in the coupling coefficients ͓17͔. For the system chosen ͑aϭ8.5 mm as in Fig. 8͒ there is a predicted transition acoustic→optical at 0 ϭ291 s Ϫ1 ͑observed at 280 s Ϫ1 ͒. For ⌬ϭ0, these modes are found by the evolutive computation. When ⌬ is nonzero, depending on the e Ϫa value, there exists a zone ⌬ Ͻ⌬ max where a synchronization is possible. The value of ⌬ max depends on k( 0 )aϩarg() and ͉e Ϫa ͉. This domain is displayed in Fig. 10͑a͒ for 0 ϭ240 s Ϫ1 ͑far from the mode transition͒ and 295 s Ϫ1 ͑close to the mode transition͒. The synchronization domain depends on k( 0 )a, i.e., the phase of the interaction between the jets. In particular, close to the transition point, the system becomes very sensitive to any defect, i.e., is hard to synchronize. This is expected since at this location the eigenvalues associated to the mode stability analysis are close to zero ͑see the Appendix͒. This is shown in Fig. 10͑b͒, which displays the value of ⌬ max for ͉e Ϫ ͉ϭ15 as a function of 0 . This simple model explains two experimental findings. ͑i͒ The synchronization becomes difficult for aϾ12 mm. According to Table IV, the values of e Ϫa at this point range between 16 (ϭ120) and 32 ( ϭ50). For such coupling parameters, according to Fig. 10͑b͒, the desynchronization occurs for ⌬ about 10-20 s Ϫ1 , i.e., an 0 scatter in the range 5-10 %, i.e., according to Eq. ͑1͒ a scatter in the hole diameter of order of 5%. ͑ii͒ The width of the unstable domain in Fig. 10͑b͒ is compatible with the width of the transition zone in experiments.

V. CONCLUSION

The mechanism for the oscillation of a single vertical jet impinging on an interface has been investigated. It turns out that a feedback mechanism between surface waves and the unstable jet is at the origin of the oscillations of the bump to the surface. An analogy can be made with the ''jet-edge'' system if considering a ''resonant edge'' mechanically attached to springs. Indeed, the stiffness of the springs is here equivalent to the surface tension of the fluid. In a dimensional model, the frequency is found to be proportional to the surface tension and conversely proportional to the jet velocity. These results are in good agreement with the experimental results obtained when varying the surface tension of the fluid, the velocity of the jet, and the depth of the nozzle.

Considering simple ensembles of jets, a phase-locking mechanism has been observed. When the jet velocity, i.e., the resonant frequency is modified and two modes are observed, namely an acoustic mode and an optical one. A modelization in which each bump is a nonlinear oscillator coupled with its neighbors through surface waves gives reasonable agreement with the experimental results, especially if one takes into account the scatter of jet frequencies due to imperfections. Generalization of this model to infinite networks is possible at the expense of a more complex formalism, which will be presented in a forthcoming paper ͓17͔. It appears that systems of jets are very close to the large population of coupled oscillators investigated by theoreticians. There is, however, one important difference, the coupling is ensured not by instantaneous interaction ͑reflected by a coupling constant͒ but by traveling waves propagating at finite velocity. This plays a significant role in the formation of phase patterns observed in large regular networks.

APPENDIX: STABILITY ANALYSIS OF THE LIMIT CYCLE IN THE TWO JET CONFIGURATION

Following the notation of Sec. III C, the two jet system has two limit cycles described by Eq. ͑6͒, the acoustic mode with an amplitude at saturation ␣ 1 and a frequency 1 and the optical mode with an amplitude ␣ Ϫ1 and a frequency Ϫ1 . The phase shift between the bumps of a given mode is , which is equal to zero for ϭ1 and otherwise. The equations governing the eigenmodes are i͑ Ϫ 0 ͒Ϫ␥͑ 1Ϫ␣ ␣ *͒ϩe ϪaϪik͑ ͒a e i ϭ0.

͑A1͒

One considers that the system is at the limit cycle for the mode ͑ϭϩ or Ϫ1͒ so that the envelope of rotation of bump m (mϭ1,2) is close to ␣ e i( Ϫ 0 )tϩim . A small perturbation corresponding to a mode Ј is added which is of the form f (t)e i( ЈϪ 0 )tϩim Ј . Thus, the envelope of the position of bump m is ␣ m ϭ␣ e ͓i( Ϫ 0 )tϩim ͔ ϩ f (t)e i( ЈϪ 0 )tϩim Ј and is as follows: After multiplication by e Ϫi ЈtϪim Ј , an evolution equation for f (t) can be deduced from the linearized equation ͑A1͒,

d f dt ϩi͑ ЈϪ 0 ͒ f ͑t͒Ϫ␥ f ͑t͒ϩ2␥␣ 2 f ͑t͒ ϩ f ͑t͒e Ϫa e Ϫik͑ Ј͒aϩi Ј ϭϪ␥␣ 2 f *͑t͒e 2i͑t͒ .

͑A3͒

Using Eq. ͑A1͒ expressed for the limit cycle of mode Ј, Eq. ͑A3͒ can be simplified. Taking the complex conjugate, a similar equation can be obtained for f *(t), 

d f ␥dt ϭ͑␣ Ј 2 Ϫ2␣ 2 ͒ f ͑t͒Ϫ␣ 2 f *͑t͒e 2i͑t͒ ,

Figure 1

 1 Figure1describes the experimental setup. The jets flow out of a tranquilization chamber containing a 5-cm-thick porous medium. The chamber is filled by pressurized water

FIG. 2 .

 2 FIG.2. Picture of a rotating bump for UϾU c . The jet diameter is equal to 1 mm, the height and width of the bump are of the same order, about 3 mm.

  FIG. 4. ͑a͒ Evolution of 0 with the jet velocity U. ͑b͒ Effect on 0 of a change in surface tension obtained by adding soap to water.

  FIG. 5. Effect on the bump pulsation 0 of a launched surface wave ͑blade connected to a loudspeaker excited by a sinusoidal tension͒. The natural value of 0 is 126 s Ϫ1 .

  d␣ m dt Ϫ␥͑1Ϫ␣ m ␣ m *͒␣ m ϩe ϪaϪi 0 t ͓e Ϫik͑ ͒a ␣ e i͑ tϩ ͒ϩe Ϫik͑ Ј ͒a f ͑t͒e i͑ Јtϩ Ј ͒ ͔ϭ0. ͑A2͒The zero-order equation gives the equation of the limit cycle of mode . The terms can then be developed to first order in f . The linearized terms ared␣ m dt → ͩ d f dt ϩi͑ ЈϪ 0 ͒ f ͑t͒ ͪ e i͑ ЈϪ 0 ͒tϩim Ј , ␣ m ␣ m *␣ m →␣ 2 e i͑ ЈϪ 0 ͒tϩim Ј ͓2 f ͑t͒ϩ f *͑t͒e 2i͑t͒ ͔with (t)ϭ( Ϫ Ј)tϩm( Ϫ Ј ).

FIG. 10 .

 10 FIG.10. ͑a͒ Synchronization domain for 0 ϭ240 s Ϫ1 ͑crosses͒ and 295 s Ϫ1 ͑stars͒ for a two-jet system with aϭ8.5 mm in the space Xϭ͉e Ϫ ͉ and Y ϭ⌬; ͓arg() is kept equal to Ϫ3i/4͔. ͑b͒ Value of Y ϭ⌬ max as a function of Xϭ 0 for e Ϫ ϭ15e Ϫ3i/4 and aϭ8.5 mm.

  

  

TABLE I .

 I Modes in a two-jet array for 240Ͻ 0 Ͻ300 s Ϫ1 .

	a (m) Phase difference	0 at transition (s Ϫ1 )	jump at transition (s Ϫ1 )
	0.006	→2	275	220→220ϩ80
	0.0085 2→	280	226→226ϩ56
	0.009	2→	270	226→226ϩ56
	0.011			

TABLE II .

 II Modes in a four-jet array for 240Ͻ 0 Ͻ310 s Ϫ1 .

	a (m)	Phase difference ͑neighboring jets͒	0 at transition (s Ϫ1 )	jump at transition (s Ϫ1 )
	0.0085 2→	295	250→250ϩ40
	0.009			
	0.011 →2	300	250→250ϩ56

TABLE III .

 III Experimental modes and simulated ones for three values of arg͑͒.

			Result of Eqs. ͑7͒ or ͑9͒ for ͉͉ϭ33.33 and ϭ120
	a (m) jets	Transition at 0 (s Ϫ1 )	arg()ϭϪ5/8	arg()ϭϪ3/4	arg()ϭϪ7/8
	0.006 2J	→2 at 0 ϭ275	→2 at 0 ϭ277	→2 at 0 ϭ256	2
	0.0085 2J	2→ at 0 ϭ280	2→ at 0 ϭ310	2→ at 0 ϭ291	2→ at 0 ϭ273
	0.009 2J	2→ at 0 ϭ270	2→ at 0 ϭ287	2→ at 0 ϭ270	2→ at 0 ϭ255
	0.011 2J				→ 2 at 0 ϭ300
	0.0085 4J	2→ at 0 ϭ295	2→ at 0 ϭ295	2→ at 0 ϭ273	2→ at 0 ϭ255
	0.009 4J		2→ at 0 ϭ271		
	0.011 4J				

TABLE IV .

 IV Mode transitions for three values of ͉͉ and and arg()ϭϪ3/4.

	a (m)	Experimental
	number of jets	jump (s Ϫ1 )

Solution of Eqs. ͑7͒ ͑two jets͒ or ͑9͒ ͑four jets͒ ͉͉ϭ60 ϭ50 ͉͉ϭ100 ϭ120 ͉͉ϭ320 ϭ250 0.006 2J 220→220ϩ80 230→230ϩ70 220→220ϩ80 210→210ϩ90 at 0 ϭ275 s Ϫ1 at 0 ϭ255 s Ϫ1 at 0 ϭ255 s Ϫ1 at 0 ϭ255 s Ϫ1 0.0085 2J 226→226ϩ56 250→250ϩ55 250→250ϩ60 250→250ϩ60 at 0 ϭ280 s Ϫ1 at 0 ϭ293 s Ϫ1 at 0 ϭ290 s Ϫ1 at 0 ϭ291 s Ϫ1 0.009 2J 226→226ϩ56 240→240ϩ55 240→240ϩ65 240→240ϩ60 at 0 ϭ270 s Ϫ1 at 0 ϭ270 s Ϫ1 at 0 ϭ270 s Ϫ1 at 0 ϭ269 s Ϫ1 0.0085 4J 250→250ϩ40 250→250ϩ90 240→240ϩ80 230→230ϩ80 at 0 ϭ295 s Ϫ1 at 0 ϭ262 s Ϫ1 at 0 ϭ258 s Ϫ1 at 0 ϭ258 s Ϫ1 0.011 4J 250→250ϩ56 250→250ϩ90 260→260ϩ90 260→260ϩ80 at 0 ϭ300 s Ϫ1 at 0 ϭ310 s Ϫ1 at 0 ϭ310 s Ϫ1 at 0 ϭ312 s Ϫ1

Since (t) is a slowly varying function, the system can be considered as a linear operator on f . The eigenvalues are

given by the zeros of the determinant 2 Ϫ2(␣

2 and ␣ Ј 2 Ϫ␣ 2 . Both roots have a negative real part, i.e., the system is stable if and only if the limit cycle corresponds to the mode with the largest amplitude.