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Bekki-Nozaki Amplitude Holes in Hydrothermal Nonlinear Waves
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We present and analyze experimental results on the dynamics of hydrothermal waves occurring in
a laterally heated fluid layer. We argue that the large-scale modulations of the waves are governed
by a one-dimensional complex Ginzburg-Landau equation (CGLE). We determine quantitatively
all the coefficients of this amplitude equation using the localized amplitude holes observed in the
experiment, which we show to be well described as Bekki-Nozaki hole solutions of the CGLE.
[S0031-9007(99)08940-1]

PACS numbers: 47.20.Dr, 05.45.—a, 47.27.Te, 47.35.+i

The status and nature of the so-called amplitude equanental context. Our system is a long, straight, and nar-
tions which can be derived in the vicinity of symmetry- row convection cell in which a thin fluid layer with a free
breaking instabilities is now well established [1,2]. Theysurface is subjected to a horizontal temperature gradient.
are “universal” insofar as they essentially depend on thélydrothermal nonlinear waves appear via a direct Hopf
symmetries of the physical system and of its bifurcated sobifurcation, indicating the relevance of the CGLE. The
lutions, but also because they often remain valid, at leadtpatiotemporal dynamics of the waves exhibits localized
at a qualitative level, even far away from the instability amplitude holes. The basic scales of the equivalent CGLE
threshold [3,4]. However, determining accurately the co-are determined using the regular part of the wave trains.
efficients of the underlying relevant amplitude equationData collected in the vicinity of amplitude holes show that
from experimental data remains a difficult task, especiallythey have the structure of Bekki-Nozaki solutions. This
in these far-from-threshold regimes. also provides estimates of the remaining coefficients of

The complex Ginzburg-Landau equation (CGLE),the CGLE, an approach which, we argue, could be effi-
which describes the large-scale modulations of the bifureient in other experimental contexts. Finally, the overall
cated solutions near oscillatory instabilities, is perhapgonsistency of our results is checked.
the most-studied amplitude equation [1]. This privileged The experimental setup is schematically described in
situation is due to both its relevance to many experimentaFig. 1. A layer of fluid [silicon oil of viscosityr =
situations and to the variety of its dynamical behavior,0.65 cS (centistoke) and Prandtl numker= 10] of height
in particular, its spatiotemporal chaos regimes. One of is confined between two copper blocks maintained at
the landmarks of the CGLE is that it possesses localizefixed temperatures, and7 - by thermostated water circu-
“defect” solutions. Even in one space dimension, wherdation, and a bottom glass plate. This forms a straight, nar-
no topological constraint exists, numerical simulations ofrow channel of lengtii, = 25 cm and width, = 2 cm.
the CGLE [5,6] and analytical [7,8] work have revealed As soon as the temperature differenk®& = 7, — T_ is
the existence and importance of various amplitude hol@ot zero, a basic flow sets in. It consists of a surface flow
solutions, which can often be seen as the “building blockstowards the cold side with a bottom recirculation. Increas-
of the complex spatiotemporal dynamics observed. Inng AT, the basic flow becomes unstable to traveling hy-
particular, the one-parameter family of traveling holedrothermal waves [11] via a supercritical Hopf bifurcation
solutions discovered by Bekki and Nozaki [9] has beer{12]. We observe these waves by low-contrast shadowgra-
shown to play an important dynamical role in a largephy, which captures the vertical average of the temperature

portion of parameter space including in regions where
they are linearly unstable [5]. Similar objects have been ir 2z
identified in various experimental contexts af priori Ty A T T_{
. . Fluid

relevance, e.g., Rayleigh-Bénard convection and coupled X
wakes [10]. However, to our knowledge, there is still no
case where a direct comparison with known solutions of
the CGLE could be achieved.

In this Letter, we present a quantitative comparison g v e s
of localized amplitude holes observed in an experiment source T
with hole solutions of the CGLE, the relevant amplitude =

equation. We use the observed holes to fully determinq:'G_ 1. Experimental cell and basic wave pattern. Above:

the coefficients of the underlying CGLE. This providesschematic side view. Below: Top view and instantaneous
clear-cut evidence of Bekki-Nozaki holes in an experi-shadowgraphic image of the wave pattern.
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gradient variations (surface waves exist, but their effect isvhere k, is the dominant wavelengthy, is the basic
negligible). In this geometry, the waves propagate awayrequency, andA is a one-dimensional complex field
from a “source region” located arbitrarily on the cold wall, describing the (large-scale) modulations of this wave. (On
and the end boundaries at= 0, L, act as sinks with no the other side of the source, one has to change the sign
apparentreflection (Fig. 1). Far= 1.2 mm, correspond- of k.)
ing to the experiment reported below, the source region Using complex demodulation techniques, can be
emits curved waves which become planar further awagxtracted from the experimental data. Figures 2b and 2c
(Fig. 1, bottom) and propagate along thexis. show the space-time evolution ¢f| and k = g = ko,
Figure 2a presents a typical spatiotemporal evolutiorwhere g = 9, arg4). In these pictures, the localized
as obtained from the acquisition, with a fixed-gain cam-deformations of the waves visible in Fig. 2a clearly appear
era, of a single 512-pixel line (of negligible width) along as propagating amplitude holes across which the phase
the x axis in the center of the cell. Here, the source apgradient varies rapidly. At some space-time poirnt,
pears as a rather ill-defined, erratic object. (Closer to theven vanishes and the phase gradient diverges: A space-
Hopf bifurcation, steady, regular, evolution is observed.time dislocation occurs (Fig. 2a). The amplitude holes
Fourier analysis of diagrams such as Fig. 2a reveals thaian be seen as the objects mediating the evolution to wave
on each side of the source only waves propagating awayatterns more regular than those emitted by the source.
from the source are present and that they are approximately Our system clearly calls for a one-dimensional model.
monochromatic (the second harmonic is 2 orders of magfhe waves arise via a supercritical Hopf bifurcation.
nitude smaller). More precisely, restricting ourselves toAway from the source, they propagate only in one direc-
one side of the source (say= 90 on Fig. 2a), we can tion. All of this indicates that the evolution df could be
write the recorded physical variable: governed by a single CGLE on each side of the source,
_ . _ even though the regime studied here takes place at a finite
V1) = Alx, yexilkox = wor)] + c.c., (1) distance from threshold (fot = 1.2 mm, AT, = 4.3 K,
and thus the relative distance to threshold is- 0.19 for
/////,// 777 // AT = 5.1 K). We thus suppose that obeys
7 _ A = o 4 £3(1 + i
—: //(//{{‘!f/////é%/‘/ur”“'//:,/ i 70(d; vga)C)A =eA + 50(1 + ia)d A
] \ AR

\\ “-'&‘-*""‘“‘\\\\‘{\‘“ — g1 + ip)|APA, (2)
1 \\\ \\\ wherew, is the group velocity of the waves, and¢, are
J NN NN the basic time and length scales of the wave modulations,
N \ andg is areal number. Below, we estimate, from the data
\\*\ RN of Fig. 2, all of the coefficients of Eq. (2) and check the
overall consistency of our hypothesis.

The linear part of the variation of the local frequeney
with the local wave numbet yields our estimate of the
group velocity: v, = dw/dk = —1.16 mm/s (Fig. 3a).
This is consistent with the average value of the velocity
of small perturbations, estimated afl.15 * 0.25 mm/s,
to be compared to the phase velocity, = wo/ko =
—2.8 mm/s. This confirms that the source is indeed a
source, since perturbations do propagate outward.

Figure 3b shows the variation ¢fi| with k¥ as deter-
mined from the portion of Fig. 2 at the left of the source
(x =90 mm). The maximum amplitude is observed for
the basic wave numbeky, = —1.11 mm~!. Space-time
points away from the localized amplitude holes corre-
spond to the largdA| (say, |A| > 0.5) portion of the
curve. Locally, around these points, the solution of (2)
] is expected to be close to one of the phase-winding solu-
T T T T T tions of wave vectog = k + k (see, e.g., [1]):

0 25 Ti
ime (s) A=A exdi(gx — w,)] with A(ZI = (e — &4q%)/g

Spatial position x (mm)

FIG. 2. Spatiotemporal evolution of the wave patterm at

1.2 mm andAT = 5.1 K (yielding a Marangoni number Ma: and w, =[eB + (a« — B)éFa’)/m0 — veq. (3)
950). Only a central portion of length 18.5 cm is shown during . I 2 2 . .

100 s. (a) Original data; (b) evolution of the modul{ss| The Ilnear_va_rlatlon of|A]* with ¢* is confirmed in
(black: |A| = 0; white: |A| = 1); and (c) phase gradient  Fig. 3¢, Vielding &o/e =253 mm and e&/g =

(dark: k < 0; bright: k > 0). 0.00054 (a.u.). Note that we thus have, > &)/ =
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(a) (b) (ODE) whose fixed points are the phase-winding solutions
6.0 : : (3). Localized objects connecting two such solutions of
W L0 A A ] wave vectorg, and gg appear, within the ansatz, as
K homoclinic g, = gr) or heteroclinic . # gr) orbits.
N The holes observed in Fig. 2 are not stable structures
05 ¢ ] connecting two infinite phase-winding solutions, but they
K, subsist long enough, and can be sufficiently isolated to
K l k reveal that their wings are indeed well described by phase-
0.0 — 0.0 1 winding solutions. (As a matter of fact, we repeatedly
assimilated, above, the large-amplitude regions separating
(d) the holes to portions of these solutions.) Figure 4 shows
IA| an isolated hole extracted from Fig. 2. One can measure
rather accurately the two wave numbefs = 0.13 and
gr = —0.32 (in the CGLE frame) connected by the
central hole, which can thus be tentatively seen as a
heteroclinic orbit in the ODE ansatz.
. All sufficiently localized structures on Fig. 2 also
9 .o ‘ ‘ connect two different wave numbers. This rules out the
0.00 0.05 010 0O 20 40 homoclinic holes recently studied by van Hecke [6], and
: . _ leave, as possible candidates, the family of hole solutions
E(I)(Sécse' (C,;ngloy fT']Smc;T th(g)ol_a(t(z:a)ogolzrlgéazcr:]s 'gjiﬂu;?oitntgealzfitvzfnthefound by Bekki and Nozaki [9]. The explicit form of

value, all the corresponding space-time points were determinedh€se solutions is too lengthy to be given here (see, e.g.,
and averages calculated on each bin. (a) Local frequengg  [8]). They form a one-parameter family (at fixed,

local wave numbek; the slope of a linear fit gives the group B) which can be parametrized by, e.g., the veloaity
velocity vy. (b) Local amplitudglA| vs ; solid line: see text.  of the hole. They take the shape of an exponentially

(c) 1A]? vs ¢? [same data as in (b)]. (d) Two instantaneous : ; : P ; _
profiles of |A| (x) near the source taken at time 0 and 30 S_Iocallzed amplitude hole with a minimum amplitupteimi,

inset: In|A| vs x and linear fit (thin line). ‘accompanied by a rapid phase slaft _
To compare data such as that of Fig. 4 to these

solutions, we need to determine the valuesr@nd 8 and
3/ko: The cell is effectively “infinite” and the variations the “optimal” solution of the corresponding family. We
of A occur on scales significantly larger than the basigroceed as follows: We estimaig, gr, and|A|mi, from
lengthkq . the data since we found these were the characteristics of
Time scalery can be estimated from the real part of thethe hole for which the most accurate measurement can be
spatial linear growth rate of waves near the source, which immade. We find, for all values of the, 8) plane where it
equal toe/ v, [4]. From Fig. 3d, we findry/e = 8.5 = exists, the Bekki-Nozaki hole solution with the measured
0.5 s, about 4 times the basic periddr/wy = 2.03 s, value of g. + gr. We then select the (codimension
confirming that the variations of are slow compared to 1) subsets of thga, 8) plane where, moreover, this
the basic oscillations. Note thag is of the same order as hole solution possesses the measured valug obr the
the viscous diffusion timé?/»v = 2.2 s. estimated value ofA|mn (Fig. 5, dashed lines). These
At this stage, all of the basic scales of Eq. (2) have beetwo lines intersect, yielding the desired valuesxoénd 8.
estimated. To determine the remaining two parameters Taking into account the error bars @@, gr, and|A|min,
and 3, global quantities deriving from the “wave part” of we finda = —1.5 = 0.5andB = —0.4 = 0.05. By the
the data could, in principle, be sufficient. For example,
Fig. 3a could be used to extract the expected variation
of w, with ¢. But the data is too noisy to yield any @ (b)
meaningful estimate af andB. Moreover, as long as the 0 FargA) ‘
source is not controlled, the “input” waves cannot be varied i-
at will to explore the family of solutions (3), contrary to ., ©
other experimental situations [4]. We now focus instead
on the localized amplitude holes already mentioned.
Many localized, propagating objects connecting two
phase-winding solutions have been observed numerically 5 ‘
in the one-dimensional CGLE [5]. Analytical methods are o 10 20 00, 10 20
largely “mlte.d’ Soiar’ to solutions dep(_endlng only on theFIG. 4. Amplitude hole. Solid lines: Experimental data ex-
reduced variablg = x — vy7, wherevy is the (constant) yacteq from a cut of Fig. 2 at= 60 s. Dashed lines: Corre-

velocity of the object [7,8]. Using this ansatz, the CGLE sponding Bekki-Nozaki hole solution of the equivalent CGLE
reduces to a third-order ordinary differential equation(rescaled variable’ = x./e/&o).
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coefficients. This was made possible by showing that the
localized amplitude holes observed experimentally corre-
spond to the Bekki-Nozaki hole solutions of the CGLE.
The overall consistency of our results was checked. Since
the operating regime of the CGLE at the estimated pa-
rameter values does not exhibit sustained disorder, it
would be interesting to analyze experimental data col-
lected at other parameter values in the hope of reaching
spatiotemporal chaos regimes of the type exhibited by the
CGLE. This is left for future work, together with an at-
tempt to obtain a better control of the system by forcing
the behavior of the source. More generally, we believe
that using the localized structures or defects of pattern-

FIG. 5. Parameter plane of the CGLE. STI: spatiotemporakorming systems to determine quantitatively their relevant

intermittency regions (from [5]). B-F: Benjamin-Feir line

below which all solutions (3) are unstable. Dashed lines: se

text (grey areas: error bars). Circle: estimatedg) values.

amplitude equations can be a rewarding approach to this
difficult experimental problem.
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values, to the accuracy of the estimates. This strengthe

the confidence in the results, since different objects moving

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Ph§5.
ns 851 (1993); Y. KuramotoChemical Oscillations, Waves,
and TurbulencgSpringer-Verlag, Berlin, 1984).

at different velocities, connecting different wave numbers [2] P. Manneville, Dissipative Structures and Weak Turbu-

all yield the same parameter values. We also performed
a final check, by plotting, for the estimated values of

«a and B, the variation of|Aln, with the local phase
gradient at the “bottom” of the hole along the family of
solutions (Fig. 3b, solid line).

The agreement with the
small{A| values measured on Fig. 2 is very good. This is

lence (Academic Press, Boston, 1990); S. Sasa, Physica
(Amsterdam)108D, 45 (1997).

[3] T. Leweke and M. Provansal, J. Fluid. Meck88 265
(1995); P. Kolodner, S. Slimani, N. Aubry, and R. Lima,
Physica (AmsterdamB5D, 165 (1995); S. Jarre, P. Le
Gal, and M.P. Chauve, Phys. Fluids 2985 (1996);

Y. Liu and R. E. Ecke, Phys. Rev. Le{t8, 4391 (1997).

an additional indication that all of the low-amplitude points [4] v. Croquette and H. Williams, Physica (Amsterdag7p,

are indeed located “inside” Bekki-Nozaki holes.
For the estimated values afand 8, the CGLE is in the

300 (1989); Phys. Rev. 89, 2765 (1989).
[5] H. Chaté, Nonlinearity7, 185 (1994).

parameter region where the phase-winding solutions (3)[6] M. van Hecke, Phys. Rev. Let80, 1896 (1998).

are linearly stable fotg| small enough, and no sustained

spatiotemporal disorder exists in one space dimension

[5]. Moreover, the Bekki-Nozaki amplitude holes are
linearly unstable [13]. This is not in contradiction with

the dynamics observed in the experiment: the Bekki-

Nozaki holes, although unstable, exist, and can constitu
important building blocks of even chaotic dynamics [5].

[7] W. van Saarloos and P.C. Hohenberg, Physica (Amster-
dam)56D, 303 (1992); Physica (Amsterdar@D, 209(E)
(1993).

[8] R. Conte and M. Musette, Physica (Amsterda@9D, 1
(1993).

[9] N. Bekki and K. Nozaki, Phys. Lettl10A, 133 (1985).

tﬁO] J. Lega, B. Janiaud, S. Jucquois, and V. Croquette, Phys.

Rev. A 45, 5596 (1992); J.M. Flesselles, V. Croquette,

The waves emitted by the source can be locally attracted
to this family of unstable fixed points before escaping
along its unstable manifold (a mechanism also invoked by
van Hecke in [6]). The tendency of the waves trains to[11]
become more regular away from the source (see Fig. 2) is
consistent with disorder being only transient in the CGLE
with the estimated parameter values.

In summary, we have presented experimental results 0['12]
the dynamics of the nonlinear hydrothermal waves trav-
eling in a laterally heated fluid layer. We have shown 13]
that, although the regime studied here is rather far from
the onset of waves, the large-scale modulations of the ba-
sic pattern are governed by a one-dimensional complex
Ginzburg-Landau equation and we estimated its full set of

and S. Jucquois, Phys. Rev. LetR, 2871 (1994); P. Le
Gal, M.P. Chauve, |. Peschard, and S. Jarre, Curr. Top.
Phys. Fluidsl, 307 (1994).

M. K. Smith and S.H. Davis, J. Fluid MecH32 119
(1983); J.-F. Mercier and C. Normand, Phys. Fluiis
1433 (1996); F. Daviaud and J.M. Vince, Phys. Rev. E
48, 4432 (1993); D. Schwabe, U. Mdller, J. Schneider,
and A. Scharmann, Phys. Fluids2368 (1992).

N. Mukolobwiez, A. Chiffaudel, and F. Daviaud, Phys.
Rev. Lett.80, 4661 (1998).

H. Sakaguchi, Prog. Theor. Phys85 417 (1991);

H. Chaté and P. Manneville, Phys. Lett. A71 183
(1992); S. Sasa and T. lwamoto, Phys. Lett1A5 289
(1993); S. Popp, O. stiller, I.S. Aranson, and L. Kramer,
Physica (Amsterdanm4D, 398 (1995).

3255



