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We investigate steady granular surface flows in a rotating drum and demonstrate the existence of rigid
clusters of grains embedded in the flowing layer. These clusters appear to be fractal and their size is
power law distributed from the grain size scale up to the thickness of the flowing layer. The implications
of the absence of a characteristic length scale on available theoretical models of dense granular flows
are discussed. Finally, we suggest a possible explanation of the difference between velocity profiles
observed in surface flows and in flows down a rough inclined plane.
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Granular materials share properties with both usual liq-
uids and solids. They can form an inclined free surface
without flowing, but when the angle of the free surface ex-
ceeds some threshold value, an avalanche occurs. Global
behaviors can be described by models derived from fluid
mechanics [1,2] or nonlinear physics [3,4]. However,
some experimental results remain far from being under-
stood. Detailed measurements of the mean density profile
and the mean tangential velocity profile obtained in three-
dimensional flow (3D) by NMR [5] and in two-dimensional
flows (2D) by direct image analysis [6,7] show strong evi-
dence that the relation between stress and strain is nonlo-
cal: (i) the velocity gradient is found to be constant in the
flowing layer whereas momentum balance predicts a linear
variation of the shear stress with depth [8]; (ii) the veloc-
ity gradient presents a different scaling with the depth for
dense granular flows down a rough inclined plane [9] in-
dicating the nonlocal influence of boundary conditions on
internal rheology inside the flowing layer; (iii) the velocity
gradient does not vanish at the free surface at variance with
typical fluids. Very recent models have tried to account for
some nonlocal effects [6,8,10]. We report here the first ex-
perimental evidence of rigid clusters of grains embedded
in the flow and characterize their geometrical and statisti-
cal properties. Although clustering instabilities driven by
the inelasticity of grain collision are well known in granu-
lar gases [11], they have never been observed in dense
surface flows. We find that these clusters are fractal and
their size is power law distributed from the microscopic
scale —the diameter of a grain —up to the macroscopic
scale —the flowing layer thickness. Therefore, no char-
acteristic correlation length can be defined in the flowing
layer. Almost 50% of flowing beads belong to these ob-
jects. We discuss recently proposed nonlocal models in
the light of these experimental observations and propose
an argument to explain the differences observed between
granular surface flows and granular flow down a rough in-
clined plane.

Experimental setup.—The experimental setup is illus-
trated in Fig. 1a. It consists in a duralumin rotating drum
of diameter D0 � 45 cm and variable gap, half filled with
0031-9007�02�89(3)�034301(4)$20.00
steel beads of diameter d � 3 6 0.05 mm. Two drum
thicknesses are used:

(A) A gap of 7 mm so that a quasi-2D packing is ob-
tained but with a local 3D microscopic disordered struc-
ture. The fast camera allows us then to track the beads
actually seen through the transparent sidewall of the tum-
bler: Around 40% of the beads are hidden and cannot be
tracked.

(B) A gap of 3 mm so that a pure 2D packing is obtained
and all the beads can be tracked. Additional metallic ob-
stacles (bound to the inside of the drum) have been added
in the static part of the packing to prevent any 2D ordering
effects which would induce nongeneric effects. The main
drawback is that the measurements can be made only dur-
ing the time when the obstacles are in the bottom part of
the drum.

In the recorded region, located at the center of the drum,
the flowing layer thickness R and the mean angle u of
the flow can be changed by varying the rotation speed V.
Regimes obtained for V varying from 1 to 8 rpm are inves-
tigated. On this range of rotating speeds, surface flows are
steady and inertial effects are negligible (the Froude num-
ber Fr � V2D0�2g, g being the gravity constant, varies
from 2.5 3 1024 to 1.6 3 1022 when V varies from 1 to
8 rpm).

The beads are lighted via a continuous halogen lamp.
Sequences of 200 frames are recorded via a fast cam-
era at a sampling rate of 1 kHz. The recorded region
size in pixels is 480 3 234, one pixel corresponding to
0.227 3 0.227 mm. Frame processing allows us to ob-
tain the position of the center of mass of the beads seen
through the transparent side wall of the tumbler. Since the
image of a single bead is made up of about 23 6 3 pixels
(depending on the distance to the sidewall), the errors on
the determination of bead location is about 150 mm [12].
Tracking each bead on ten successive frames allows us to
evaluate its velocity averaged on 10 ms (see Fig. 1b). The
mean angle u of the flow is calculated from the averaging
of the velocity of all the beads on the whole sequence of
200 frames. The images are then divided into layers 1 bead
diameter wide parallel to the flow. The mean tangential
© 2002 The American Physical Society 034301-1
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FIG. 1. (a) Sketch of the experimental setup. (b) A typical in-
stanteous velocity field obtained for quasi-2D flows (geometry
A) with V � 8 rpm in the rectangular box of (a). (c) Velocity
profile measured at the center of the drum for three different ro-
tation speeds: V � 1 rpm, V � 3 rpm, and V � 8 rpm. The
arrows indicate the end of each profile. The precision on each
point is better than the point size.

velocity Vm�z� of the layer at depth z is then defined as the
average of the velocity of all the beads of the sequence of
200 frames whose center of mass is inside the layer.

For both geometries (A) and (B), two phases can be ob-
served: a solid phase experiencing a creep motion where
Vm decreases exponentially with z (see also [13]) and a
flowing phase exhibiting a clear linear velocity profile (see
Fig. 1c for the quasi-2D case) with a velocity gradient
�g � dVm�dz independent of R, u, the coefficient of resti-
tution of the beads and drum gap [7]. The creep motion
is not studied in this Letter. In the following, we focus
on the flowing layer and neglect beads with velocities less
than 100 mm�s since these are assumed to belong to the
static bed.

Velocity fluctuations in quasi-2D and pure 2D flows.—
In order to investigate possible collective effects, we study
first the spatial correlations of the instantaneous velocity
field for both geometry (A) and (B). Calling V�x, z, t� the
velocity of a bead of the frame t located at the �x, z� coor-
dinate in �ex , ez�, where the unit vector ex (respectively,
ez) is parallel (respectively, perpendicular) to the mean
flow, the bead fluctuation velocity is defined as Ṽ�x, z, t� �
V�x, z, t� 2 Vm�z�ex. Since the orientation of the fluctua-
tion ñ � Ṽ�Ṽ is not correlated to the depth z (whereas the
amplitude Ṽ of the fluctuation decreases with the depth z),
we focused on the instantaneous field made up of these
orientations.

One of these instantaneous fields is represented in
Fig. 2a and reveals aggregates of strongly correlated
beads. These correlations can be quantified by looking at
the orientation-orientation correlation functions: Given
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FIG. 2 (color). Clusters of beads with correlated velocity fluc-
tuation orientation in quasi-2D flows [geometry (A)]. (a) Typi-
cal instantaneous field of the orientation of the beads velocity
fluctuations obtained for a quasi-2D flow [geometry (A)] with
V � 8 rpm. The original instantaneous velocity field is rep-
resented in gray. (b) The corresponding orientation correlation
functions as a function of particle separation (see text for de-
tails). (c) Distribution function P�d� of the angle d between the
orientation of the velocity fluctuations of two beads in contact.
The straight line corresponds to a uniform function. (d),(e) Typi-
cal frames of the isolated clusters, respectively, for V � 8 rpm
and V � 1 rpm (see text for details). The position of the beads
belonging to the flowing layer are represented with a black circle.
The gray arrows represent the raw velocity field. Beads be-
longing to the same cluster are drawn in the same color (f )
Probability density function of the size (in number of beads N)
of these clusters. Data have been shifted for clarity. From bot-
tom to top, V � 1 rpm, V � 2 rpm, V � 3 rpm, V � 4 rpm,
V � 6 rpm, and V � 8 rpm. For these different V, i.e., for
different u and R, the distribution decreases as a power law
(straight line) with the same exponent a�A� � 2.9 6 0.1.

two particles, labeled by 1 and 2, let k be the unit vector
pointing from the center of 1 to the center of 2. The vector
ñ1 has component ñ

k
1 parallel to and ñ�

1 perpendicular
to k; it is likewise for particle 2. Following [14], we
define two correlation functions Ck�r� �

P
ñ
k
1ñ

k
2 and

C��r� �
P

ñ�
1 ñ�

2 where the sums are over all particles
such that the distance between the two particles is within
d�4 of r. These two correlation functions reveal strong
long range correlations (of the order of 30%) that extend
on a range of the same order as the flowing layer thickness
R (see Fig. 2b). To isolate the correlated aggregates, we
have used the following criteria: Two beads i and j
belong to the same cluster whenever (i) they are in contact
[15] and (ii) the angle dij between ñi and ñj is smaller
than a given value dc arbitrarily chosen equal to 60±. This
034301-2
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value corresponds to the point where the experimental
orientation distribution crosses the value of the uniform
distribution (see Fig. 2c). Values ranging from 30± up to
90± have also been tried and do not modify the following
conclusions. Figures 2d and 2e show typical frames of
the individual clusters for geometry (A), respectively, for
V � 8 rpm and V � 1 rpm. Note that the size of the
largest ones is comparable to the flowing layer thickness
R: The distribution of the number of beads N in a cluster
is a power-law N2a in both geometries (A) and (B), with
an exponent equal, respectively, to a�A� � 2.9 6 0.1 and
a�B� � 2.0 6 0.1 for quasi-2D and 2D flows (see Fig. 2f
for the quasi-2D case). In both cases, the exponent is
independent of V, i.e., independent of both R and u.
This indicates that no typical correlation length scale can
be defined to characterize the spatial correlations of the
velocity field.

Volume fraction fluctuations in pure 2D flows.— In or-
der to find out the physical origin of these correlated
clusters, measurements on the local volume fraction fluc-
tuations were performed on the 2D stacking [geometry
(B)]. A Voronoi tesselation can then be used to define
the local volume fraction n associated with each bead. Let
us note that this technique assumes that all beads’ posi-
tions are known and consequently cannot be applied for
the quasi-2D packing of geometry (A). The relative fluc-
tuations of n are very small, a few percent (see Fig. 3a),
but sufficient to alter significantly the beads’ behavior.
According to the “Reynolds” dilatancy concept [16], an
assembly of rigid particles cannot deform whenever its vol-
ume fraction is higher than a given threshold nc. For pure
2D packing of monodisperse beads, nc � p�4. Clusters
of beads in contact with n $ nc have been isolated in the
flowing layer (see Figs. 3d–3f). Almost 50% of beads of
the flowing layer belong to one of these solid clusters. As
was found for the clusters defined using velocity correla-
tion, the size of largest ones is of the order of R. The
size distribution is again a power law with an exponent
a�B�

n � 1.5, weakly dependent of V (see Fig. 3c). This
exponent is slightly smaller than the one obtained from
the analysis of velocity fluctuations. It should be noted
that although there is some overlap between both types of
clusters, they are not identical. We have also plotted the
number of beads N in a cluster against the cluster radius of
gyration Rg (Fig. 3b). The power-law scaling is indicative
of a fractal structure with an apparent fractal dimension
equal to d�B�

n � 1.7 6 0.1. The mean aspect ratio of the
clusters, calculated as the ratio of the two principal axes
of their inertia tensor, does not depend on their size and is
found to be close to 2. They preferentially orient along the
flow direction. Their lifetime, defined as the duration dur-
ing which their size is larger than the half of their maximal
size, is of order of

p
d�g � 1022 s, where g is the gravity.

Discussion.—These solid clusters can be compared to
the collective objects postulated in different nonlocal mod-
els for granular flows. Mills et al. [8] postulate the exis-
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FIG. 3 (color). Presence of rigid clusters in the flowing layer
of pure 2D flows [geometry (B)]. (a) Averaged volume frac-
tion profile nm�z�. The straight line corresponds to n � nc .
(b) Cluster size N plotted against their radius of gyration Rg .
The error bar indicates the standard deviation on Rg of clusters
with a given N . A power-law behavior (straight line) indicates
fractal structures of dimension d

�A�
f � 1.6 6 0.1. (c) Probability

density function of the size (in number of beads N) of the “rigid”
clusters (see text for details). Data have been shifted for clarity.
From bottom to top, V � 2 rpm, V � 7 rpm, V � 10 rpm,
and V � 13 rpm. They are power law distributed with an ex-
ponent close to a�B�

n � 1.5 weakly dependent of V. Frames (d),
(e), and (f) show a typical sequence of these clusters. Beads
belonging to the static phase appear in gray. Beads belonging
to the same cluster are drawn in the same color. The clusters
are tracked on the successive frames. Clusters keep their color
when they remain in successive frames.

tence of 1D transient solid chains in the flowing layer, well
separated from each other. In their approach, which de-
scribes granular flow down a rough inclined plane, a grain
colliding with one of these chains transmits its momen-
tum throughout the whole chain. On the other hand, for
surface flows, Rajchenbach [6] suggests that each shock
impact is imparted to the whole substrate beneath and thus
that the momentum is “dissipated” into the whole packing.
This description has been recently extended by Andreotti
and Douady [10] who account for the possible trapping of
flowing grains in the bumps of the static bed. The local-
ization of the flow within a layer of finite thickness and
the linear velocity profile are well reproduced in their ap-
proach. However, their model does not account for the
invariance of the velocity gradient when the thickness R
or the local angle u are changed. The collective objects
that we observe are neither chainlike nor the whole pack-
ing, but rather widely distributed fractal clusters involving
50% of the beads of the flowing layer. No typical length
034301-3
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scale can be defined. This last point may be responsible
for the selection of a velocity gradient independent of both
R and u, i.e., independent of the shear stress.

The observation of the successive clusterized frames
shows that the largest clusters are emitted by the static
phase and die either by fragmenting into smaller ones or
by sticking back to the static phase. Differences between
granular flows down a rough inclined plane and granular
surface flows can then be rationalized as follows: cluster-
ing results from the competition between inelastic multiple
collisions, which tends to aggregate grains together [11],
and shear, which erodes clusters. For flows down an in-
clined plane, these two effects lead to clusters of a typical
size, whereas in surface flows, the static bed plays the role
of a cluster reservoir: its erosion by the flowing grains can
generate very large size clusters that then split and cas-
cade into smaller and smaller ones (this mechanism might
explain why we observe power-law distributions). In this
view, the cluster size distribution, and a fortiori the veloc-
ity gradient, depend crucially on the boundary conditions.

The absence of a characteristic correlation length to de-
scribe the locally “jammed” clusters of beads is quite in-
teresting. First, this contrasts with an assumption made in
most local and nonlocal models [4,6,8,10], where the tran-
sition between the “solid” phase and the “liquid” phase is
supposed to occur over a well defined length scale. The ex-
istence of multiscale rigid clusters indicates that the flow-
ing phase is actually critical and suggests the proximity of
a continuous “jamming” transition, of the type proposed in
[17] (see also [18] for a related discussion). In this respect,
it is interesting to note that similar power-law distributed
clusters of strongly correlated motion have recently been
observed in a colloid close to the glass transition [19].

We thank B. Dubrulle, O. Pouliquen, and D. Salin
for fruitful discussions and C. Gasquet, V. Padilla, and
P. Meininger for technical assistance.
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