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Convective and absolute Eckhaus instability leading to modulated waves in a finite box

Nicolas Garnier,∗ Arnaud Chiffaudel,† and François Daviaud
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We report experimental study of the secondary modulational instability of a one-dimensional
nonlinear traveling wave in a long bounded channel. Two qualitatively different instability regimes
involving fronts of spatio-temporal defects are linked to the convective and absolute nature of the
instability. Both transitions appear to be subcritical. The spatio-temporal defects control the global
mode structure.

PACS numbers: 47.20.Lz, 47.35.+i, 47.54.+r, 05.45.-a

The Eckhaus instability [1] is one of the major sec-
ondary instability of nonlinear patterns. While the
Eckhaus dynamics for steady patterns (e.g., Rayleigh-
Bénard) is fast, dealing with local wavelength nucleation
or annihilation [2], it presents slow evolution of travel-
ing modulated waves in the traveling-wave-pattern case.
Such modulated patterns are believed to be essential for
the description of the transition to phase and defect chaos
in complex Ginzburg-Landau models [3]. Experiments
on nonlinear traveling waves are frequently carried out
in annular cells [4, 5, 6, 7, 8] for the simplicity of the
underlying wave pattern, and generally consider the Eck-
haus instability close to the wave threshold. The main
specificity of our wave-system is to become Eckhaus un-
stable for increasing value of the control parameter, i.e.,
as a first step on the route to spatio-temporal chaos [8].
In this Letter, we focus on new results in a long rect-
angular cell: an homogeneous traveling-wave undergoing
the Eckhaus instability generates modulated waves. Our
results reveal the rich effect of a finite group velocity
within a closed cell: we describe quantitatively the con-
vective and absolute modulated wave-patterns and the
associated transitions.

Setup. Our physical results concern the secondary bi-
furcation of a wave pattern. We treat this system as a
nonlinear wave model: this approach does not require
any connection with the underlying physics of the con-
vective flow. The experimental setup, its basic flow and
the nature of the primary bifurcation producing the un-
derlying wave-pattern have been described in detail [9].
It consists of a thermocapillary convective flow in a long
narrow channel where an external parameter —the hori-
zontal temperature difference ∆T— drives an instability
toward propagating hydrothermal waves [9, 10, 11]. The
length of the channel is L = 180mm. It is occasionally
compared to an equivalent annular channel [8] of perime-
ter P = 503mm, i.e., a periodic boundary condition sys-
tem. The aspect ratios ensure one-dimensional patterns.

We have shown [9] this primary bifurcation to be well
described by the convective/absolute transition: a global
mode is the first structure observed when the control
parameter ∆T is increased above the absolute thresh-
old ∆Ta = 3.66K. In the periodic channel, waves ap-

pear at the convective threshold ∆Tc = 3.1K which
can be used to build a dimensionless control parameter
ǫ = ∆T/∆Tc − 1. Above complex competition regimes
between right- and left-traveling waves (e.g. blinking
states), we have shown a single wave train to become
almost uniform in the cell for ∆T & 4.5K (Fig. 1). This
state constitutes the basic state for the present study: we
will now focus on the secondary instability of this single
wave train.

When ∆T is increased far enough from the primary
onset, a modulational instability occurs. As the group
velocity is finite, the modulational perturbations are ad-
vected. The present paper focuses on the distinction be-
tween the convective and the absolute modulational in-
stability regimes and the relevance of a new object: a
front of dislocations or modulations. In periodic condi-
tions, this modulational instability occurs at the lowest
possible wavenumber Kmod = 2π/P [8]: it is strictly an
Eckhaus [1] instability. In the linear channel, for simplic-
ity, we will also refer to Eckhaus instability, although the
wavenumber of the modulational instability modes are
somehow larger: typically Kmod ∼ 4·(2π/L).

Absolute instability. Figs 2 and 3 present the three
states which support our discussion. For ∆T > ∆Tm,a =
(5.56±0.03)K, the observed pattern (Fig. 2b) can be de-
scribed as a wave composed of two wave trains of mean
wavenumbers ku and kd. The wavenumber, frequency
and amplitude of both wave trains are modulated in
space and time. The wavenumber Kmod of the modu-
lation is of order of |ku − kd|. Waves are emitted from
one end of the cell with wavenumber ku ∼ 21·(2π/L) and

FIG. 1: The measured (thin line) and schematic (thick line)
amplitude profile of the single-wave system for ∆T = 4.75K.
The pattern is presented as the envelope amplitude A(x) of a
right-traveling wave, although both directions are equivalent.
The amplitude B(x) of the minor (left) wave is negligible. For
details see Fig. 2 in Ref. [9].
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FIG. 2: Spatio-temporal diagrams of the local and instanta-
neous wavenumber k(x, t) of the wave: temporally stabilized
regimes for (a) ∆T = 5.54K and (b) 5.65K. The waves propa-
gate from left to right. The mean wavenumber can be visually
estimated by the mean gray level and is labeled (units 2π/L)
in the upstream (ku) and downstream (kd) regions. A uni-
form wavenumber (a) represents a non-bifurcated state, and
illustrates both stable and convective regimes below ∆Tm,a.
The modulated state (b) is the global mode of the Eckhaus
instability. Each black to white transition of the wavenumber
value at xF /L = 0.32 is due to a phase jump in the core of
a defect. The defect front is stable with time. (c) By Hilbert
demodulation of phase-gradient image (b) we get the spatial
profile of the amplitude Amod of the modulation.

propagate along the cell at the phase velocity. The phase
modulation of this wave train, traveling at the group ve-
locity, is spatially growing. On Fig. 2c, we clearly see the
exponential growth of the local-wavenumber modulation
amplitude Amod along x. At a fixed, finite distance xF

from the source-boundary, the wavenumber modulation
is so large that it allows the wavenumber to change from
ku to kd by time-periodic phase slips. For x > xF , the
mean wavenumber is kd ∼ 17·(2π/L). In this second re-
gion, the modulation is damped (Fig. 2b,c): we conclude
that ku (resp. kd) waves are unstable (resp. stable) with
respect to modulations.

We call dislocation front the set of spatio-temporal loci
where spatio-temporal dislocations occur. For ∆T >
∆Tm,a, the position xF of this object is stationary; Fig. 4
shows the relation between the control parameter and
the front position which remains located in the first half
of the cell whatever the value of ∆T . Steady dislocation
fronts have been observed for traveling waves in a Taylor-
Dean experiment [12]. In general, hysteresis has not been
investigated [13]. From the modulation amplitude pro-
files Amod(x) (Fig. 2c), we also extract the spatial growth

FIG. 3: Transient leading to the state of Fig. 2a. The state
has been prepared at t = 0: a dislocation front is slowly
advected out of the cell. The modulations grow along x but
vanish along t: this is the signature of a convective instability
regime. The arrow indicates the asymptotic front velocity.

FIG. 4: Spatial position xF of the dislocation front for abso-
lutely unstable states vs ∆T . Stable and convectively unsta-
ble states without permanent dislocation front are represented
by a symbol at xF = L.

rate of the modulations: it is finite and positive (squares
on Fig. 5a).

We claim that those stationary states to be the global
modes for the modulational (Eckhaus) instability. The
structure of these global modes is very peculiar: nothing
seems to saturate the modulations except the breakup
of the underlying wave-pattern, i.e., the abrupt change
of the mean-wavenumber downstream the dislocations.
Similar patterns have been numerically observed in semi-
infinite [14] and closed cells [15]. Like Couairon and
Chomaz [14] we observe the nonlinear global threshold
and the absolute instability threshold to be identical.

Convective instability. For ∆T < ∆Tm,a, dislocation
fronts are not observed on asymptotic states. The asymp-
totic regime (Fig. 2a) is an homogeneous wave of uni-
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form wavenumber ku ∼ 21 · (2π/L). However, tran-
sients obtained after control parameter changes show
traveling dislocation fronts slowly advected out of the
channel (Fig. 3): those states are convectively unstable
states with respect to the modulational (Eckhaus) in-
stability. They are observed in the small gap between
∆Tm,c = 5.45K and ∆Tm,a = 5.56K.

For ∆T < ∆Tm,c, asymptotic states are uniform and
dislocation fronts do not exist. Close to ∆Tm,c very
long transients are often observed. These transient pat-
terns (not shown) are also slightly modulated; the mod-
ulations do not reach the critical amplitude producing
dislocations; the modulation amplitude profiles generally
decrease (negative spatial growth rate) along the down-
stream direction and slowly travel toward the upstream
direction. So, the uniform wave looks stable. The tran-
sients may last much longer than the experimental run-
ning time, and those results have to be considered with
care.

Using a second Hilbert transform of phase-gradient
data (as Fig. 2c), we measured spatial and temporal
growth rates of the modulation. We present these data
for the unstable upstream wave train. The temporal
growth rate for modulations in the laboratory frame is
negative below ∆Tm,a and positive above. It is also close
to zero around the convective transition where very long
transients are observed. The spatial growth rate of the
upstream ku wave train for all three regimes is presented
on Fig. 5a. It is positive for both unstable regimes but
the slope is seemingly different in the convective and ab-
solute cases. It is negative below ∆Tm,c.

Perturbed states. In order to test the above descrip-
tion, we perturbed the uniform states either by plunging
a thin needle in the convective layer or by dropping a
cold or hot droplet of fluid. The frequency content of
those perturbations differs from the above reported tran-
sients: the modulation wave trains contain only a few
wavelengths and appear to be advected downstream at
roughly the group velocity. All observed perturbations
show positive spatial growth rate and negative temporal
growth rate in the laboratory frame. The spatial growth
rates are presented on Fig. 5b. In the convective regime,
the growth rate appears to be selected at the same value
as in spontaneous transients. In the stable regime, how-
ever, the data are very dispersed but remain positive.

Discussion. Let us start our discussion by two impor-
tant remarks:

(i) The modulation amplitude Amod never saturates:
All observed Amod profiles appear locally exponential
along x. No nonlinear saturation effect is thus observed.
The occurrence of dislocations (for Amod ∼ |ku − kd|) is
the only limit to exponential growth. This is a strong
argument for the Eckhaus instability to behave subcriti-
cally in this closed cell. Remember it is supercritical in
the annular cell [8]. This difference is due to the mean
wavenumber of the carrier-wave pattern. It will be dis-

FIG. 5: (a) Evolution of the spatial growth rate of the modu-
lation with the control parameter for transient (◦) or steady
(squares) spontaneously modulated wave patterns. Linear fits
of the three regimes —stable, convective and absolute— are
presented. They intersect at ∆Tm,c and ∆Tm,a. These data
concern the modulations of the upstream region of the cell
whose mean wavenumber is ku ∼ 21·(2π/L). Corresponding
data for the downstream region are negative while ∆T . 8K.
(b) Idem for perturbation initiated wave-packets in the stable
(+) and convectively unstable (◦) regimes. The solid lines re-
produce the fits of (a) to allow quantitative comparisons: the
same growth rate is selected in both cases for the convective
regime.

cussed elsewhere.

(ii) Reflections : The modulation wave system is a
perfect single wave system: the reflections of the modu-
lations at the boundaries are irrelevant since there is no
possibility for reflected information to travel back to the
source.

The observation facts described above are coherent
with the interpretation in terms of convective and ab-
solute instability. The striking point is the positive spa-
tial growth rates for perturbations in the seemingly sta-
ble regime below ∆Tm,c. As for spontaneously modu-
lated patterns, we would expect those modulation wave-
packets to decrease in space exactly as the stable kd wave
trains do in the absolute regime (Fig. 2c).

Suppose that the convective instability is subcritical as
suggested in remark (i). Then, above ∆Tm,c, the tran-
sient evolves on an unstable branch (Fig. 3) close to the
absolute branch (Fig. 2b). However, below ∆Tm,c, a sec-
ond unstable branch co-exists, which can be reached only
by perturbing the flow: this description can be supported
by the schematic Fig. 6 inspired by zero group velocity
instabilities. These branches present very different pat-
terns: The upper branch exhibits extended modulations
over the whole cell, with slow evolution and, for high
enough amplitudes —the generally observed case above
∆Tm,c—, dislocation fronts. The lower branch exhibits
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FIG. 6: Schematic representation of the observed regimes,
based on the usual representation of a subcritical bifurcation
with zero group velocity. The ordinate is only qualitative.
Solid heavy lines represent the steady states, bifurcated or
not, above or below ∆Tm,a = 5.56K. The thin dashed lines
may account for two different transient modes (see text).

FIG. 7: Front velocity around the convective/absolute transi-
tion. The circles (◦) show the velocity of dislocation fronts in
transient convective regimes below ∆Tm,a. Above ∆Tm,a, the
(negative) velocities of transient modulation fronts invading
the cell from downstream are shown by squares. For compar-
ison, the group velocity at wave onset is 0.90mm.s−1 .

fast-traveling narrow modulation wave trains and cannot
be reached spontaneously by varying ∆T . This hypoth-
esis can explain the very different aspect of spontaneous
and induced transients in the stable regime below ∆Tm,c.
It is also known that the shape of induced nonlinear pat-
terns below subcritical instabilities depends of the forcing
amplitude [16], so the dispersion in Fig. 5b may be due
to both the effect of amplitude and the presence of the
two branches.

Another observation of the convective branch is in-
triguing. We record the asymptotic velocity of the dislo-
cation fronts between ∆Tm,c and ∆Tm,a, i.e., the tangent
to the space-time trajectory when the front leaves the
cell (Fig. 7). The observation is surprising: the closer
we are to the absolute instability onset, the faster the
front moves! Then its velocity jumps below zero above
∆Tm,a. A contrario, around ∆Tm,c, the front velocity
is zero, leading to infinitely long transients, i.e., tempo-
ral marginality. This quantifies the experimental com-
plexity of carrying out the experiment around this point.
What is the meaning of the velocity jump at ∆Tm,a? Is
the convective/absolute transition also subcritical? It is
probably: while our protocol [13] did not allow to ex-
plore all branches by varying ∆T up and down from one
state to another, a test has been made to transit directly
from an absolute state to a stable state just below ∆Tm,c:
the absolute modulation profile remains fixed in the cell.
This can be due either to hysteresis, or to the vanishing

front velocity... which makes the system marginal in this
region. This point would need to be addressed with an
improved experimental device.

Finally, in some regimes to be presented elsewhere [17],
the front position xF (t) exhibits chaotic behaviors (pe-
riod doubling or quasiperiodicity): it can thus be viewed
as the order parameter for the modulational instability
up to the transition to spatio-temporal chaos.

To conclude, we claim to have observed both convec-
tive and absolute transitions for a modulational or Eck-
haus instability in a long bounded channel. The subcrit-
ical convective transition is characterized by zero spatial
growth rate and zero advection velocity for the modu-
lated wave pattern, which can be viewed as spatial and
temporal marginality. The absolute transition is charac-
terized by the dynamics of dislocation fronts. The front
velocity data suggest the transition to be subcritical as
well. This question deserves a theoretical support which
remains, to our knowledge, unexplored.
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and P. Manneville for fruitful discussions.
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