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We experimentally study the susceptibility to symmetry breaking of a closed turbulent von Kármán

swirling flow from Re ¼ 150 to Re ’ 106. We report a divergence of this susceptibility at an intermediate

Reynolds number Re ¼ Re� ’ 90 000 which gives experimental evidence that such a highly space and

time fluctuating system can undergo a ‘‘phase transition.’’ This transition is furthermore associated with a

peak in the amplitude of fluctuations of the instantaneous flow symmetry corresponding to intermittencies

between spontaneously symmetry breaking metastable states.

DOI: 10.1103/PhysRevLett.105.214501 PACS numbers: 47.20.Ky, 47.27.Cn

Phase transitions are ubiquitous in physical systems and
are generally associated with symmetry breaking. For ex-
ample, ferromagnetic systems are well known to undergo a
phase transition from paramagnetism to ferromagnetism at
the Curie temperature Tc. This transition is associated with
a symmetry breaking from the disordered paramagnetic—
associated with a zero magnetization—toward the ordered
ferromagnetic phase—associated with a finite magnetiza-
tion [1]. In the vicinity of Tc, a singular behavior charac-
terized by critical exponents is observed, e.g., for the
magnetic susceptibility to an external field. In the context
of fluid dynamics, symmetry breaking also governs the
transition to turbulence, that usually proceeds, as the
Reynolds number Re increases, through a sequence of
bifurcations breaking successively the various symmetries
allowed by the Navier-Stokes equations coupled to the
boundary conditions [2]. Finally, at large Reynolds num-
ber, when the fully developed turbulent regime is reached,
it is commonly admitted that all the broken symmetries are
restored in a statistical sense, the statistical properties of
the flow not depending anymore on Re [3]. However,
recent experimental studies of turbulent flows have dis-
turbed this vision raising intriguing features such as finite
lifetime turbulence [4]—questioning the stability of the
turbulent regime—and the possible existence of turbulent
transitions [5–11]. Consequently, despite the fact that tur-
bulent flows are intrinsically out-of-equilibrium systems,
one may wonder whether the observed transitions can be
interpreted in terms of phase transitions with a symmetry-
breaking or susceptibility divergence signature. In this
Letter, we introduce a susceptibility to symmetry breaking
in a von Kármán turbulent flow and investigate its evolu-
tion as Re increases from 150 to 106 using stereoscopic
particle image velocimetry (PIV). We observe a divergence
of susceptibility at a critical Reynolds number Re ¼ Re� ’
90 000, which sets the threshold for a possible turbulent
‘‘phase transition.’’ Moreover, this divergence is associated
with a peak in the amplitude of the fluctuations of the flow
instantaneous symmetry.

Our experimental setup consists of a Plexiglas cylinder
of radius R ¼ 100 mm filled up with either water or water-
glycerol mixtures. The fluid is mechanically stirred by a
pair of coaxial impellers rotating in opposite directions
(Fig. 1). The impellers are flat disks of radius 0:925R, fitted
with 16 radial blades of height 0:2R and curvature radius
0:4625R. The disks’ inner surfaces are 1:8R apart setting
the axial distance between impellers from blades to blades
to 1:4R. The impellers rotate, with the convex face of the
blades pushing the fluid forward, driven by two indepen-
dent brushless 1.8 kW motors. The rotation frequencies f1
and f2 can be varied independently from 1 to 12 Hz.
Velocity measurements are performed with a stereoscopic
PIV system provided by DANTEC Dynamics. The data
provide the radial ur, axial uz, and azimuthal u’ velocity

components in a meridian plane on a 95� 66 points grid
with 2.08 mm spatial resolution through time series of 400
to 27 000 fields regularly sampled, at frequencies from 1 to
15 Hz, depending on the turbulence intensity and the
related need for statistics. The control parameters of the

FIG. 1 (color online). Schematic viewof the experimental setup
and the impellers’ blade profile. The arrow on the shaft indicates
the impeller rotation direction studied. Symmetry: The system is
symmetric regarding anyR� rotation of angle � around any line
of the equatorial plane which crosses the rotation axis.
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studied von Kármán flow are the Reynolds number Re ¼
�ðf1 þ f2ÞR2=�, where � is the fluid viscosity, which
controls the intensity of turbulence and the rotation number
� ¼ ðf1 � f2Þ=ðf1 þ f2Þ, which controls the asymmetry
of the forcing conditions. The rotation frequencies f1;2
are regulated by servo loop control and we obtain for � a
typical absolute precision of 1� 10�3 and time fluctua-
tions of the order of �2� 10�4. The correlation between
these fluctuations and the flow dynamics is negligible.

When � ¼ 0, the experimental system is symmetric with
respect to any R� rotation exchanging the two impellers:
the problem conditions are invariant under � rotation
around any radial axis passing through the center of the
cylinder (Fig. 1). The symmetry group for such experimen-
tal systems is Oð2Þ [12]. When � � 0, the experimental
system is no longer R� symmetric, and the symmetry
switches to the SOð2Þ group of rotations. However, the
parameter �, when small but nonzero, can be considered as
a measure of the distance to the exact Oð2Þ symmetry: the
SOð2Þ system at small � can be considered as a slightly
broken Oð2Þ system [13,14]. Depending on the value of �,
the flow can respond by displaying different symmetries:
(i) the exact R�-symmetric flow composed of two toric
recirculation cells separated by an azimuthal shear layer
located at z ¼ 0 when � ¼ 0 [Figs. 2(a) and 2(c)]; (ii) an
asymmetric two-cells flow, the shear layer being closer
to the slowest impeller (z � 0), when � � 0

[Figs. 2(b) and 2(d)]; (iii) and finally, a fully nonsymmetric
one-cell flow, the whole shear layer being concentrated in
between the blades of the slowest impeller, when � becomes
large enough [7,10,15].
In order to quantify the distance of the flow to the R�

symmetry, we use the normalized and space-averaged
angular momentum IðRe; �; tÞ as order parameter:

IðtÞ ¼ 1

V

Z
V
rdrd’dz

ru’ðtÞ
�R2ðf1 þ f2Þ

;

whereV is the volume of the flow [16]. An example of time
variation of IðtÞ at � ¼ 0 in the turbulent regime is provided
in Fig. 3. We assume that ergodicity holds, meaning that the
instantaneous turbulent flow is exploring in time its energy
landscape according to its statistical probability. In this
framework, the time-average value �I of IðtÞ is equivalent
to a statistical mechanics ensemble average providing the
average is performed over a long enough duration in order
to correctly sample the slowest time scales. Then, using this
ensemble averaged order parameter, we define a suscepti-
bility of the flow to symmetry breaking as�I ¼ @ �I=@�j�¼0.
Note that �I is proportional to the mean altitude zs of the
shear layer which is the natural measure of the flow sym-
metry. Contrary to zs, IðtÞ is defined for any instantaneous
velocity field, including turbulent ones.
In the nonfluctuating laminar case, when � ¼ 0, �I ¼ 0

due to the symmetry of the flow. In contrast, as � drifts
away from 0, the value of the angular momentum �I be-
comes more and more remote from zero as the asymmetry
of the flow grows. In such a framework, there is a formal
analogy between ferromagnetic and turbulent systems. For
ferromagnetism [respectively, turbulence], the order pa-
rameter is the magnetizationMðT; hÞ [the angular momen-
tum IðRe; �Þ], the symmetry-breaking parameter is the
external applied field h [the relative driving asymmetry
�], the control parameter is the temperature T [the
Reynolds number Re, or a function of it].
In the following, we first investigate the influence of

turbulence on �I and �I as Re increases from 150 to 106. In
the laminar flow at Re ¼ 150, the symmetry parameter �I ¼
IðtÞ evolves linearly with � [Fig. 4(c)] and the susceptibility
is �I ¼ 0:240� 0:005. Increasing the Reynolds number,
one expects to reach fully developed turbulence around
Re ¼ 10 000 [10]. In such turbulent regimes, velocity fields

FIG. 2 (color online). (a),(b) Schematic drawings of the flow
topology and (c),(d) corresponding experimental maps of mean
velocity field of the turbulent von Kármán flow at Re ¼ 800 000
for (c) � ¼ 0 ( �I ¼ 0) and (d) � ¼ �0:0147 ( �I < 0). The color
maps the azimuthal velocity u’, from blue to red (‘‘jet’’ color

map), whereas the arrowsmap the (ur,uz) field. The resolution has
been reduced by a factor of 2 for better visibility. The r $ �r
symmetry in (c) and (d) reveals that the time-averagedmean fields
are axisymmetric.

FIG. 3 (color online). Global angular momentum IðtÞ as a
function of time for an experiment performed at Re ¼ 43 000
for � ¼ 0. Green (light gray) dots are PIV data sampled at 15 Hz,
and blue (dark gray) dots correspond to 1Hz low-pass filtered data
IfðtÞ. Eye-guiding lines have been drawn at IðtÞ ¼ �I� ¼ �0:04.
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of von Kármán flows are characterized by a high level of
intrinsic fluctuations, i.e., fluctuations of the same order of
magnitude as the mean values [15]. Therefore, even when
� ¼ 0, theR� symmetry is of course broken for the instan-
taneous flow. However, as is usually observed for classical
turbulence, this symmetry is restored for the time-averaged
flow [Fig. 2(c)], which proves that time averages are long
enough to correctly sample the slowest flow time scales.
Then, as in the case of the laminar flow,when � is varied, we
observe the breaking of theR� symmetry of the mean flow
[Fig. 2(d)].

In Fig. 4(c), we see that, at Re ¼ 800 000, in the close
vicinity of � ¼ 0, �Ið�Þ evolves actually much more rapidly
with � than in the laminar case with the susceptibility being
larger by more than 1 order of magnitude: �I ¼ 9� 1.
Therefore, turbulence seems to enhance dramatically the
sensitivity of the flow to symmetry breaking. Further-
more, for intermediateRe ¼ 65 000, the slope of �Ið�Þ around
� ¼ 0 is even much steeper—�I ¼ 43� 1—than for Re ¼
800 000. In Fig. 4(a), we plot the susceptibility with respect
to Re. We see that the susceptibility actually grows by more
than 2 orders of magnitude—from 0.24 to 46—between
Re ¼ 150 and Re ’ 90 000, before decreasing by a factor
of 4 between Re ’ 90 000 and Re ¼ 800 000. These results
suggest a critical behavior for �IðReÞ near Re ¼ Re� ¼
90 000� 10 000: a divergence—revealing a continuous sec-
ond order phase transition—or only a maximum—revealing
either a subcritical bifurcation or a continuous transitionwith

finite-size effect. This cannot be experimentally tested fur-
ther since the highest measured�I are already of the order of
the highest measurable value considering the � precision of
our setup. For higher j�j, we observe a crossover—for the
slope—in the curve �Ið�Þ at j�rj ¼ ð6� 1Þ � 10�3 for Re ¼
800 000 and very close to � ¼ 0, at j�rj ¼ ð0:9� 0:15Þ �
10�3, forRe ¼ 65 000 [Fig. 4(c)]. For j�j> j�rj, we recover
the laminar slow evolution of �I with � up to � ¼ �0:1where
the flow bifurcates to the one-cell topology (not shown).
Since �Ið�Þ is quite independent of Re for j�j> j�rj at large
Re, we can extrapolate this linear behavior to � ¼ 0. This
extrapolation describes the ideal behavior at critical
Reynolds number Re� if �I diverges: a jump of �I between

�I0 and þI0, where I0 ’ 0:05. This can be interpreted as a
spontaneous ‘‘turbulent momentization’’ I0 at � ¼ 0—
possibly affected by finite-size effects—by analogy with
the spontaneous magnetization M0 at zero external field for
ferromagnetism. It is also similar to the experimental results
of [17].
A signature of this momentization can be seen on the

instantaneous global angular momentum IðtÞ for Re near
the peak of susceptibility and � ¼ 0 (e.g., in Fig. 3).
Indeed, one observes that IðtÞ does not remain near zero
(its mean value) but shows a tendency to lock preferentially
on the plateaus �I� with I� ¼ 0:04 ’ I0. Therefore,
the turbulent flow explores a continuum of metastable
symmetry-breaking patterns evidenced by �0:04 &

IfðtÞ & 0:04, IfðtÞ being the 1 Hz low-pass filtered value

of IðtÞ. The global angular momentum actually fluctuates
very much along time with two separate time scales: fast
fluctuations related to ‘‘traditional’’ small scale turbulence
and time intermittencies corresponding to residence time
of few tens of seconds. If one performs a time average over
one of these intermittent periods only, one obtains a time
localized ‘‘mean’’ flow, which breaks spontaneously the
symmetry, analogous to what is obtained for true mean
flows when � � 0, as presented in Figs. 2(b) and 2(d).
The presence of strong fluctuations is not surprising

here: close to a phase transition we expect critical fluctua-
tions. To check this, we compute the standard deviation
�IðRe; �Þ. Figure 4(b) shows, for � ¼ 0, how �I varies
from zero in the laminar case to finite values for highly
turbulent flows going through a maximum at Reynolds
number Re ¼ Re� ¼ 45 000� 10 000 located below the
peak of susceptibility at Re�. Additionally, in Fig. 4(d), the

dependence of �I as a function of the symmetry control
parameter � reveals a strong difference between the two
Reynolds numbers shown: �Ið�Þ presents a sharp and
narrow peak at � ¼ 0 for Re ¼ 65 000, which does not
exist forRe ¼ 800 000. The amplitude of this peak from its
bottom to its top actually measures the additional amount
of low frequency symmetry fluctuations due to the multi-
stability. This amount of fluctuations appears to be con-
nected to the susceptibility increase below Re�.

The previous experimental results set a strong connection
between the spontaneous symmetry fluctuations of the flow

FIG. 4 (color online). Reynolds number dependence of
(a) susceptibility to symmetry breaking �I of the von Kármán
mean flow at � ¼ 0 and (b) standard deviation �I of the global
angular momentum IðtÞ at � ¼ 0. In (a), the dotted line corre-
sponds to the mean field theory approach with a critical Reynolds
number Re� ¼ 70 000 and the dashed line to Re� ¼ 90 000.

(c) Global angular momentum �I and (d) standard deviation �I

as a function of � for Re ¼ 150 (greenh), Re ¼ 65 000 (red�),
and Re ¼ 800 000 (blue 4). In (a) and (b), horizontal error bars
are of the order of the marker size. In (a) vertical error bars are
computed as the maximum error that can arise from the sharp
dependence of �I with � around � ¼ 0.
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and the mean flow response to the system symmetry break-
ing: the interpretation of the large fluctuations of IðtÞ in terms
of multistability suggests that the strong observed linear
response of the mean flow [Fig. 4(c)] with respect to � in
the close vicinity of � ¼ 0 is the result of a temporal mixing
between the metastable states in different proportions.

Nevertheless, as the Reynolds number is varied, two
distinct maxima have been evidenced in our turbulent
flow: one for the susceptibility �I to the Oð2Þ symmetry
breaking near Re ¼ Re� ’ 90 000, and the other for the

standard deviation of the global angular momentum IðtÞ
near Re ¼ Re� ’ 45 000. In this Reynolds number range,
the turbulence is generally expected to be fully developed;
i.e., any nondimensional characteristic quantity of the flow
should beRe independent. This is definitively not the case in
this von Kármán experiment. Actually, visual observations
of the flow reveal an increase of the average azimuthal
number m of large scale vortices in the shear layer from
m ¼ 3 to m ¼ 4 through an Eckhaus-type transition, be-
tweenRe� andRe�. In the following, wemake the hypothe-

sis that at least one critical phenomenon exists in the range
50 000 & Re & 100 000. Using the turbulent von Kármán-
ferromagnetism analogy, we can check how classical mean
field predictions for second order phase transition apply to
our system. In terms of susceptibilities, it predicts a critical
divergence at a temperature Tc: � / jT � Tcj�1. Since the
logarithm of the Reynolds number has already been pro-
posed as the control parameter governing the statistical
temperature of turbulent flows—T � 1= logRe [18]— this
prediction translates in our case into �I / j1= logRe�
1= logRecj�1. This formula reasonably describes our data
with Rec between typically 70 000 and 90 000 [Fig. 4(a)]
supporting the asymmetry between the two branches even
with a unique exponent �1. As far as fluctuations are
concerned, it is difficult to find a reasonable critical expo-
nent for �I. However, the results show that the maxima for
�I and �I are clearly separated. This is at variance with
classical phase transition theory, stating, e.g., in the fluc-
tuation dissipation theorem, that �2

I should be proportional
to �I. A reason for this discrepancy lies in the high level of
intrinsic fluctuations in our system thatmakes this transition
nonclassical. Instabilities or bifurcations occurring on
highly fluctuating systems are commonly found in natural
systems, and the literature reports transitions and symmetry
breaking at high Re (see, e.g., Refs. [5–11,17,19–21]), but
the corresponding theoretical tools are still not well settled.
Existing studies of phase transitions in the presence of
fluctuations generally consider systems in which an exter-
nal noise—additive or multiplicative—is introduced [22].
In particular, it has been shown inmodels thatmultiplicative
noise can produce an ordered symmetry-breaking state
through a nonequilibrium phase transition [23]. This be-
havior could be at the origin of our observed transition. We
can notice that, as Re increases, the turbulent momentiza-
tion I0 first increases and then decreases, contrary to the
magnetization in the usual paraferromagnetic transition.

This result is reminiscent of a reentrant noise-induced phase
transition similar to that observed in the annealed Ising
model [24,25]. The study of the evolution of I0 and/or I�
with Re requires more statistics and is left for future work.
Finally, our turbulent system, in which we can have access
to both the spatiotemporal evolution of the states and the
mean thermodynamic variables, appears as a unique tool to
study out-of-equilibrium phase transitions in strongly fluc-
tuating systems.
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